Documentary Analysis of the Treatment of Industrial Effluents Using the Electrocoagulation Process

  • Óscar David Beleño Díaz et . al
Keywords: Electrocoagulation, treatment, contaminants, wastewater, Scopus, bibliometric analysis.

Abstract

Introduction: Electrocoagulation (EC) has emerged as a promising and versatile technique for the treatment of industrial effluents, offering efficient removal of a wide variety of contaminants such as COD, BOD₅, heavy metals, synthetic dyes, and pharmaceutical compounds. In recent years, interest in EC has grown due to its potential as an environmentally friendly and cost-effective alternative for wastewater treatment.

Methods: This study presents a bibliometric analysis of 50 scientific articles published between 2004 and 2023, using Scopus as the main database. Bibliographic management and analysis tools such as Mendeley and VOSviewer were used to visualize trends in scientific production, identify key countries, collaborative networks, and thematic clusters related to EC. The analysis focused on understanding how research in this field has evolved and which directions are currently most explored.

Results y Conclusions: The results reveal an increase in scientific production since 2015, with India, Turkey, Brazil, China, and the United States being the most active contributors. Research has shifted from basic experimental studies to more integrated approaches involving hybrid technologies such as EC-Fenton, EC-O₃, and the use of biofilters (e.g., algae). There is also a growing focus on sustainability and circular economy principles, including resource recovery and the reuse of sludge as agricultural fertilizer. The findings emphasize EC's role in treating both conventional and emerging contaminants, positioning it as a strategic technology for industrial wastewater management. Future research should expand the bibliometric scope by incorporating additional databases like Google Scholar and exploring the large-scale application of EC systems.

References

[1] Abdel-Fatah, M. A., Shaarawy, H. H., & Hawash, S. I. (2019). Integrated treatment of municipal wastewater using advanced electro-membrane filtration system. SN Applied Sciences, 1(10). https://doi.org/10.1007/s42452-019-1178-9
[2] Adhoum, N., & Monser, L. (2004). Decolourization and removal of phenolic compounds from olive mill wastewater by electrocoagulation. Chemical Engineering and Processing: Process Intensification, 43(10), 1281-1287. https://doi.org/10.1016/j.cep.2003.12.001
[3] Akyol, A., Can, O. T., Demirbas, E., & Kobya, M. (2013). A comparative study of electrocoagulation and electro-Fenton for treatment of wastewater from liquid organic fertilizer plant. Separation and Purification Technology, 112, 11-19. https://doi.org/10.1016/j.seppur.2013.03.036
[4] An, C., Huang, G., Yao, Y., & Zhao, S. (2017). Emerging usage of electrocoagulation technology for oil removal from wastewater: A review. Science of The Total Environment, 579, 537-556. https://doi.org/10.1016/j.scitotenv.2016.11.062
[5] Anderson, J. (2006). Integrating recycled water into urban water supply solutions. Desalination 187 (2006) 1–9. https://doi.org/10.1016/j.desal.2005.04.062
[6] Aswathy, P., Gandhimathi, R., Ramesh, S. T., & Nidheesh, P. V. (2016). Removal of organics from bilge water by batch electrocoagulation process. Separation and Purification Technology, 159, 108-115. https://doi.org/10.1016/j.seppur.2016.01.001
[7] Bayramoglu, M., Kobya, M., Can, O. T., & Sozbir, M. (2004). Operating cost analysis of electrocoagulation of textile dye wastewater. Separation and Purification Technology, 37(2), 117–125. https://doi.org/https://doi.org/10.1016/j.seppur.2003.09.002
[8] Brillas, E., & Martínez-Huitle, C. A. (2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 166–167, 603-643. https://doi.org/10.1016/j.apcatb.2014.11.016
[9] Cabrera, M., Montenegro, L., & Jimenez, A. (2022). Análisis de un Sistema de Tratamiento de Aguas Residuales de una Industria de Embutidos. Revista Politécnica (Quito), 49(2), 47-54. https://doi.org/10.33333/rp.vol49n2.05
[10] Chandra, P., Choudhury, D., & Verma, A. (2023). Electrooxidation treatment of simulated wastewater using mixed-metal oxide anodes for bacterial decontamination. Comptes Rendus Chimie, 26. https://doi.org/10.5802/crchim.225
[11] Chen, & Guohua. (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Technology. Obtenido de http://doi.org/10.1016/j.seppur.2003.10.006
[12] Davarnejad, R., & Nikseresht, M. (2016). Dairy wastewater treatment using an electrochemical method: Experimental and statistical study. Journal of Electroanalytical Chemistry, 775, 364-373. https://doi.org/10.1016/j.jelechem.2016.06.016.
[13] Delgado-Vargas, C. A., Barreneche-Vasquez, J. S., González Cógua, N., Botero-Coy, A. M., Hernández, F., Martínez-Pachón, D., & Moncayo-Lasso, A. (2023). Optimization and application of a continuous flow photo-electro-Fenton system for the removal of pharmaceutical active compounds detected in irrigation water of Bogotá – Savanna (Colombia) Crops. Journal of Environmental Chemical Engineering, 11(5), 111030. https://doi.org/10.1016/j.jece.2023.111030
[14] Fajardo, A. S., Seca, H. F., Martins, R. C., Corceiro, V. N., Freitas, I. F., Quinta-Ferreira, M. E., & Quinta-Ferreira, R. M. (2017). Electrochemical oxidation of phenolic wastewaters using a batch-stirred reactor with NaCl electrolyte and Ti/RuO2 anodes. Journal of Electroanalytical Chemistry, 785, 180-189. https://doi.org/10.1016/j.jelechem.2016.12.033
[15] Feier, B., Florea, A., Cristea, C., & Săndulescu, R. (2018). Electrochemical detection and removal of pharmaceuticals in waste waters. Current Opinion in Electrochemistry, 11, 1-11. https://doi.org/10.1016/j.coelec.2018.06.012.
[16] García-Segura, S., Eiband, M. M. S. G., de Melo, J. V., & Martínez-Huitle, C. A. (2017). Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies. Journal of Electroanalytical Chemistry, 801, 267-299. https://doi.org/10.1016/j.jelechem.2017.07.047
[17] Gatsios, E., Hahladakis, J. N., & Gidarakos, E. (2015). Optimization of electrocoagulation (EC) process for the purification of a real industrial wastewater from toxic metals. Journal of Environmental Management, 154, 117-127. https://doi.org/10.1016/j.jenvman.2015.02.018.
[18] Ghazouani, M., Akrout, H., Jellali, S., & Bousselmi, L. (2019). Comparative study of electrochemical hybrid systems for the treatment of real wastewaters from agri-food activities. Science of the Total Environment, 647, 1651–1664. https://doi.org/10.1016/j.scitotenv.2018.08.023
[19] Hashim, K. S., Shaw, A., AlKhaddar, R., Kot, P., & Al-Shamma’a, A. (2021). Water purification from metal ions in the presence of organic matter using electromagnetic radiation-assisted treatment. Journal of Cleaner Production, 280. https://doi.org/10.1016/j.jclepro.2020.124427
[20] Holt, P. K., Barton, G. W., & Mitchell, C. A. (2005). The future for electrocoagulation as a localised water treatment technology. Chemosphere, 59(3), 355-367. https://doi.org/10.1016/j.chemosphere.2004.10.023
[21] Jasim, M., & AlJaberi F. (2023), Removal of COD from real oily wastewater by electrocoagulation using a new configuration of electrodes, Environ. Monit. Assess. 195 (651) 1–7, https://doi.org/10.1007/s10661-023-11257-y
[22] Kobya, M., & Demirbas, E. (2015). Evaluations of operating parameters on treatment of can manufacturing wastewater by electrocoagulation. Journal of Water Process Engineering, 8, 64-74. https://doi.org/10.1016/j.jwpe.2015.09.006
[23] Khan, M. M. H., Khalique, H., & Shams, S. (2023). Treatment of Public Sewage Wastewater Using Electrocoagulation Process. International Journal of Environmental Science and Development, 14(2), 119–124. https://doi.org/10.18178/ijesd.2023.14.2.1423
[24] Kryuchkova, M., Batasheva, S., Akhatova, F., Babaev, V., Buzyurova, D., Vikulina, A., Volodkin, D., Fakhrullin, R., & Rozhina, E. (2021). Pharmaceuticals removal by adsorption with montmorillonite nanoclay. International Journal of Molecular Sciences, 22(18). https://doi.org/10.3390/ijms22189670
[25] Kushwaha, J. P., Srivastava, V. C., & Mall, I. D. (2010). Treatment of dairy wastewater by inorganic coagulants: Parametric and disposal studies. Water Research, 44(20), 5867-5874. https://doi.org/10.1016/j.watres.2010.07.001
[26] Kuzniewski, S. (2021). Prevalence, environmental fate, treatment strategies, and future challenges for wastewater contaminate d with SARS-CoV-2. Remediation, 31(4), 97–110. https://doi.org/10.1002/rem.21691
[27] Lapworth, D. J., Baran, N., Stuart, M. E., & Ward, R. S. (2012). Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environmental Pollution, 163, 287–303. https://doi.org/10.1016/j.envpol.2011.12.034
[28] Lu, J., Zang, P., Li. (2021). Electrocoagulation technology for water purification: An update review on reactor design and some newly concerned pollutants removal. Journal of Environmental Management 296 (2021) 113259. https://doi.org/10.1016/j.jenvman.2021.113259
[29] Madhavan, Y., Muralidharan, M., Dhinakaran, M., Hariharan, N. M., Sai Preethi, P., Asaithambi, P., Karmegam, N., & Saravanan, M. (2022). Unravelling the emerging carcinogenic contaminants from industrial wastewater for prospective remediation by electrocoagulation – A review. Chemosphere, 307(Part 3), 136017. https://doi.org/10.1016/j.chemosphere.2022.136017
[30] Magaña-Irons, Lisset, Rojas-Vargas, Armando, González-Díaz, Yudith, & Ojeda-Armaignac, Elaine. (2020). Remoción de contaminantes del residual lácteo por electrocoagulación con electrodos de aluminio. Tecnología Química, 40(1),17-34 http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-61852020000100017&lng=es&tlng=es
[31] Markou, V., Kontogianni, M.‐C., Frontistis, Z., Tekerlekopoulou, A. G., Katsaounis, A., & Vayenas, D. (2017). Electrochemical treatment of biologically pre-treated dairy wastewater using dimensionally stable anodes. Journal of Environmental Management, 202(Part 1), 217–224. https://doi.org/10.1016/j.jenvman.2017.07.046.
[32] Martínez-Huitle, C. A., & Panizza, M. (2018). Electrochemical oxidation of organic pollutants for wastewater treatment. Current Opinion in Electrochemistry, 11, 62-71. https://doi.org/10.1016/j.coelec.2018.07.010
[33] Martins Pinheiro, Aline, Salla, Marcio Ricardo, & Bolanos Rojas, Maria Lyda. (2019). Tratamiento de aguas residuales provenientes de industria de productos de limpieza y desinfectantes por ozonización convencional y catalítica. Ingeniare. Revista chilena de ingeniería, 27(2), 223-235. https://dx.doi.org/10.4067/S0718-33052019000200223
[34] Mojiri, A., Zhou, J. L., Ratnaweera, H., Ohashi, A., Ozaki, N., Kindaichi, T., & Asakura, H. (2021). Treatment of landfill leachate with different techniques: An overview. Journal of Water Reuse and Desalination, 11(1), 66–96. https://doi.org/10.1016/j.chemosphere.2021.132580
[35] Moreno-Casillas, H. A., Cocke, D. L., Gomes, J. A. G., Morkovsky, P., Parga, J. R., Peterson, E. (2007). Electrocoagulation mechanism for COD removal. Separation and Purification Technology, 56(2), 204-211. https://doi.org/10.1016/j.seppur.2007.01.031
[36] Moussa, D. T., El-Naas, M. H., Nasser, M., & Al-Marri, M. J. (2017). A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. Journal of Environmental Management, 186(1), 24-41. https://doi.org/10.1016/j.jenvman.2016.10.032.
[37] Mousazadeh, M., Naghdali, Z., Al-Qodah, Z., Alizadeh, S. M., Niaragh, E. K., Malekmohammadi, Sima, Nidheesh, P. V., Roberts, E. P. L., Sillanpää, M., & Emamjomeh, M. M. (2021). A systematic diagnosis of the state of the art in the use of electrocoagulation as a sustainable technology for pollutant treatment: An updated review. Sustainable Energy Technologies and Assessments, 47, 101353. https://doi.org/10.1016/j.seta.2021.101353
[38] Prajapati, A. K., Chaudhari, P. K., Pal, D., Chandrakar, A., & Choudhary, R. (2016). Electrocoagulation treatment of rice grain based distillery effluent using copper electrode. Journal of Water Process Engineering, 11, 1-7. https://doi.org/10.1016/j.jwpe.2016.03.008
[39] Qasim, W., & Mane, A. V. (2013). Characterization and treatment of selected food industrial effluents by coagulation and adsorption techniques. Water Resources and Industry, 4, 1-12. https://doi.org/10.1016/j.wri.2013.09.005
[40] Rodríguez-Díaz., Y.J. Fuentes-Guevara., M.D. Beleño-Díaz., O.D. y Montoya-Armenta., L.H. (2021). Electrocoagulación como alternativa de tratamiento de aguas residuales mixtas originadas en la industria del procesamiento de lácteos y cárnicos. Tecnura, 25(67), 26-39. https://doi.org/10.14483/22487638.15769
[41] Sandoval, M. A., & Salazar, R. (2021). Electrochemical treatment of slaughterhouse and dairy wastewater: Toward making a sustainable process. Current Opinion in Electrochemistry, 26, 100662. https://doi.org/10.1016/j.coelec.2020.100662
[42] Sevda, S., Sreekishnan, T., Pous, N., Puig, S., Pant, D., (2018). Bioelectroremediation of perchlorate and nitrate contaminated water: A review, Bioresource Technology, 225 331-339. https://doi.org/10.1016/j.biortech.2018.02.005
[43] Shah, A. R., Tahir, H., & Sadiq, S. (2019). Modeling and optimization of electrocoagulation process for the removal of yellow145 dye based on central composite design. Pakistan Journal of Analytical and Environmental Chemistry, 20(2), 115–126. https://doi.org/10.21743/pjaec/2019.12.15
[44] Tertouche, S. A., Bellebia, S., Bengharez, Z., Zian, Z., & Jellali, S. (2021). Performance assessment of wastewater treatment plants (WWTPs) and application of electrocoagulation process to improve their operation. Polish Journal of Environmental Studies, 30(6), 5273–5284. https://doi.org/10.15244/pjoes/134084
[45] Trompette, J.-L., & Lahitte, J.-F. (2021). Effects of some ion-specific properties in the electrocoagulation process with aluminum electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 629, 127507. https://doi.org/10.1016/j.colsurfa.2021.127507.
[46] Valente, G. de F. S., Mendonça, R. C. S., & Pereira, J. A. M. (2015). The efficiency of electrocoagulation using aluminum electrodes in treating wastewater from a dairy industry. Ciência Rural, 45(9), 1713–1719. https://doi.org/10.1590/0103-8478cr20141172
[47] Wade Miller G. (2005). Integrated concepts in water reuse: managing global water needs. Desalination 187 (2006) 65–75. https://doi.org/10.1016/j.desal.2005.04.068
[48] Wang, J.-Y., Kadier, A., Hao, B., Li, H., & Ma, P.-C. (2022). Performance optimization of a batch scale electrocoagulation process using stainless steel mesh (304) cathode for the separation of oil-in-water emulsion. Chemical Engineering and Processing - Process Intensification, 174, 108901. https://doi.org/10.1016/j.cep.2022.108901
[49] Yavuz, Y., & Ögütveren, Ü. B. (2018). Treatment of industrial estate wastewater by the application of electrocoagulation process using iron electrodes. Journal of Environmental Management, 207, 151-158. https://doi.org/10.1016/j.jenvman.2017.11.034
[50] Zelada Romero, H. M., & Vázquez, C. (2023, August 16). Evaluation of the Efficiency of an Electrocoagulation Cell for the Treatment of Wastewater coming from the Textile Industry. https://doi.org/10.18687/laccei2023.1.1.1530
Published
2024-02-04
Section
Regular Issue