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Abstract 

Off line-signature verification is important when it comes to dealing with security and authentications in different 

fields such as banking and legal realms. The comparative analysis of three DLA that are CNN, MobileNetV2 and 

ResNet50 is performed in this study with regard to offline SV. In the past, there have been methods where engineers 

crafted features manually, thus they did not capture subtleties of signature variations. Thus, the deep learning 

approaches, especially the CNN has outperformed other approaches since it learns the features from the raw data. To 

compare these models, 

this analysis looks at each person’s structure, effectiveness, and computational speed to inform the appropriateness of 

their application to functional issues. CNNs are good for feature extraction while MobileNetV2 provides a small model 

ideal for scenarios that have fewer resources, ResNet50 has a use of residual connections to solve vanishing gradient 

problem and performs well in detecting features that even a human might not notice on the images. Finally, this research 

aims at restoring the selection of proper models that fits the particular application definitely improving the off-line 

signature verification systems. 
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1. Introduction

Background on Signature Verification: 

Offline signature verification is very important in 

enhancing security and authenticity in many sectors 

such as; banking, legal formalities, and forensic. 

Within online signature verification, characteristic 

features such as pressure, slant, and speed of the 

surface in which the signature was written are recorded 

while in offline signature verification only the image 

of the signature is used. This poses more difficulties 

hence increased levels of risks because in most cases, 

there are minimal ways of differentiating normal from 

the fake signatures (Impedovo & Pirlo, 2008). 

Therefore, the requirement for strong algorithms to 

counter balance the variation of signatures from the 

same individual and similarities of signatures from 

other different individuals.  

Historical attempts at off-line SVC relied on hand 

designed techniques to extract features from the 

signature images, by means of geometrical and 

statistical measures, where some measures included; 

width, height and curvature of the signature generation 

zone (Pal et al., 2012). Although these methods offered 

acceptably accurate solutions, they were less than 

satisfactory because they did not adapt well to the 

actualities of real-world data, particularly because the 

forgeries grew more subtle. 
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On the other hand, some deep learning techniques have 

brought significant changes in the history of signature 

verification by enabling the models to identify the most 

pertinent features from the data themselves. These 

models do not require their features to be specified 

manually and have been proven to outperform 

traditional models in terms of behavior complexity. 

Among many architectures of deep learning a CNN, 

MobileNetV2’s and ResNet50 have proven to be 

powerful models especially in tasks concerning image 

data in one way or another such as offline signature 

verification (Krizhevsky et al., 2012; Sandler et al., 

2018; He et al., 2016). 

1.1 Objective: 

The overarching research question of this work is thus 

to compare CNN, MobileNetV2, and ResNet50 in the 

context of offline signature verification. In particular, 

the task of this research is to compare the significance 

and practical applicability of the models based on 

different criteria including general statistical accuracy, 

computational time, and others that are important in 

practical applications. CNN is a basic deep learning 

model most popular for feature extraction in image 

recognition tasks. On the contrary, MobileNetV2 is a 

small scale model mostly intended to be utilized in 

mobile and edge devices achieving a reasonable level 

of accuracy for a moderate amount of computations 

(Sandler et al., 2018). ResNet50 brings in deep 

architecture and residual connection to function as a 

solution to vanishing gradient problems; it provides 

high accuracy measured when solving different image 

recognition tasks (He et al., 2016). 

By comparing two models, the paper aims at 

presenting which of the models proposed is suitable for 

offline signature verification for distinct scenarios, 

given a trade-off between the accuracy and the 

computational complexity. This analysis will assist in 

the proper selection of the right model depending on 

the application needs, whether it will be used as a 

security model for secured buildings, a verification 

model for real time systems, or an economical model 

for immensely constraining devices. 

2. Overview of Deep Learning Models

2.1 Convolutional Neural Network (CNN)

• Basic Architecture: Convolutional Neural Network

(CNN) is a type of deep learning model used mainly

for grid computation such as images. A CNN is unique

because it can acquire spatial hierarchy of features

from the input images in a fully automatic manner.

CNNs are made up of several types of layers such as;

the convolution layer, the pooling layer, an additional 

layer and the fully connected layer.  

• Convolutional Layer: The convolutional layer

which forms the basic building block of a CNN is

sometimes referred to as the convolutional neural

network layer. Kesh true applies set of convolutions

filters better known as kernels to the input image.

These filters glide on top of the image and collect local

features, for example, edges and textures. The output

of the convolution is a feature map which maintains the

spatial relationship between the pixel and enables the

network to detect important features at different

resolutions (LeCun et al 1998).

• Pooling Layer: After the convolutional layers there

is a use of pooling layers which further subsample the

feature maps. The one most used is called max pooling,

which decreases the number of nodes in the feature

maps meanwhile, keeps the most significant data.

Pooling also assists in making the network scale-

invariant – there will often be slight distortions in the

location of certain features in an image and again this

criterion argues for pooling: the system should not

change its output based on where a signature begins in

the image, for example (Krizhevsky et al., 2012).

• Fully Connected Layer: Following multiple layers

of convolution and pooling the tête de réseau are then

implemented and the resulting feature maps are

flattened into a single dimension and passed through

the fully connected layers akin to the traditional

multilayer feedforward neural network. These layers

mix the learned features and returns the final outcome

that, for instance in the signatory’s verification would

be the binary decision of whether the signature is

original or counterfeit (Krizhevsky et al., 2012).

Figure 1. Architecture of Convolutional Neural Newtork 

Use in Signature Verification: CNNs have been 

extensively used in various problems such as image 

recognition, and in particular, in signature verification. 

While applied to the signature verification problem, 

CNNs are capable of distinguishing genuine from 
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forged signatures by capturing fine characteristics 

from the input images. 

i. Feature Extraction: CNNs naturally possess the

hierarchical arrangement of layers; thus, the feature

extraction is a part of the learning process, and they

do not have to be defined manually. This capability

is important in cases of writing are considered here

are depthwise separable convolutions, inverted

residuals and simplified architecture.

ii. Data Augmentation: Here in signature verification,

the labeled data may not be plenty in many instances.

CNNs can apply the ideas of data augmentation like

rotation, scaling, translation to enhance the over-

fitting problem. This practice raises the chances of

the model to generalize across different signature

variations and increases its overall performance

(Gupta & Jain, 2020).

iii. End-to-End Learning: Fully connected CNNs can

also be trained in the end to end which means that

the model learns from the pixel values right from the

images. Unlike other established models that require

two phases that are the feature extraction phase and

the classification phase, this approach is efficient for

signature verification tasks as it eliminates the need

for the two phases as suggested by Patel et al.,

(2019).

Figure 2. Layers 

When employing CNNs in the recognition of 

signatures, the researchers and practitioners get 

improved outlook and reliability since the challenge of 

differentiation in signatures and the alteration of 

signature authentication is solved.  

For example, Hafemann et al (2017) made a study that 

showed the usability of CNNs in offline signature 

verification where a given CNN was trained on a set of 

genuine and forged signatures. New signatures can be 

identified easily due to the fact CNNs are able to learn 

from large data sets and generalize well when used in 

real applications. 

2.2 MobileNetV2 

Lightweight Architecture: MobileNetV2 is the latest 

in MobileNet series as a convolutional neural network 

architecture suitable for mobile and embedded vision 

applications. It is designed with a lightweight structure 

that enables its functional performance regardless of 

the processing power of a device such as smartphones 

and IoT. The specific features that style or pressure 

variations, or presence of noise, which can make 

signature identification a complex undertaking 

(Ranjan et al., 2018). the basic block of MobileNetV2. 

This method separates the convolution operation into 

two distinct layers: minimally deep convolutional layer 

and a point wise convolution layer. The depthwise 

convolution passes a single filter through every 

channel of the input, which makes it learn spatial 

features and the point-wise convolution (1x1 

convolution) integrates the features from different 

channels. 

This lessens the parameters by half and computations 

compared to normal convolutions but even with much 

fewer layers, it enhances the network without 

compromising speed (Sandler et al., 2018). 

Inverted Residuals: MobileNetV2 for the first time is 

applying the idea of inverted residuals where the 

architecture links a shallow depthwise separable 

convolution with a linear bottleneck layer. This 

structure helps the model to have the ability of saving 

low-dimensional representations in addition to 

improving on feature transmission. It is possible to 

store a lot of information in the network, to make it 

effectively function in the condition that ReLU linear 

activations are applied in the internal layer, the 

bottleneck layer. This work also enhances the 

efficiency of this architecture of the network while at 

the same time improving the accuracy (Sandler et al., 

2018). 

Lightweight Design: MobileNetV2 structure is 

therefore kept small and relatively light in terms of 

computational requirement and volume of resource at 

a different scale. It uses fewer parameters and has 

comparatively less latency as compared to the other 

models, and the model is perfect for mobile 

applications. The architecture supports scaling 

according to the exact need of the application, which 

makes it possible to totally optimize this model for a 

variety of devices (Howard et al., 2017). 
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Figure 3.  

Residual Block: ResNet50 is distinguished by the 

application of residual blocks as the major change 

made during the development on this model. It is made 

up of several convolutional layers which are bypassed 

by a other models, it is ideal for real time signature 

verification on devices with limited computational 

power 

Real-time Processing: Real-time Processing: 

However, in most applications of signature 

verification, the proposed solution must be able to 

compile images rapidly. MobileNetV2 is light weight 

and can perform real time inference that makes the 

authentication process to take a very short time that 

will be difficult to actually recognize. This 

characteristic is especially essential in situations where 

fast response is expected, including banking and point 

of sale systems utilize the cloud (Wang et al., 2020). 

Low Power Consumption: MobileNetV2 has been 

developed to run on low power devices including those 

with a limited battery power. Less computational work 

implies power use is low and this makes it suitable for 

use in mobile devices that require efficiency. This 

aspect is most relevant in uses where devices with vary 

low power must be used in prolonged continuous 

operations without the possibility of frequent 

recharging (Tan et al., 2019). 

High Accuracy with Minimal Resources: High 

Accuracy with Minimal Resources: Although 

MobileNetV2 has significantly less weight than the 

other two models, its accuracy is still very close to the 

ideal range for signature verification. Therefore, by 

using depthwise separable convolution and inverted 

residual blocks, the model balances powerful 

performance and limited resource. This makes it 

possible for these organizations to install their 

signature verification systems on more devices as the 

current problematic outcomes when using this 

technology do not affect its security and efficiency 

(Hussain et al., 2021). 

Some of the MobileNetV2 structures are emerging as 

ideal real-time signature verification on low-powered 

devices. By providing high accuracy, as well as being 

compact and power-efficient, it is complimentary in 

fulfilling the standards of today’s authentication 

methods 

2.3 ResNet50 

Residual Learning: ResNet50 is defined as a deep 

convolutional neural network that makes use of 

fundamental residual learning approach, which was 

developed specifically for effective training of 

admittedly rather shallow networks. While depth is 

added to neural networks, depth causes issues likes 

vanishing gradients in which gradients shrink to small 

values during back propagation and therefore learning 

slows down or may even not occur at all. 

Advantages in Signature Verification: 

Finally, because MobileNetV2 is less complex and 

more computationally light than the shortcut 

connection carrying the input added to the output. 

Mathematically, the output of a residual block can be 

expressed as: 

Output=F(x)+x 

where F(x)F(x)F(x) is the transformation of the 

convolutional layers, and xxx, is the block input. This 

structure made the network to learn the residual 

mapping rather than the original mapping and hence be 

in a position to learn the differences between the input 

and the desired output (He et al., 2016). 

Avoiding Vanishing Gradients: The shortcut 

connections in residual blocks assist in reducing the 

vanishing gradient problem because gradients have the 

other route when backpropagating. This helps in 

gradients flow more easily through the network to train 

deeper architectures which include the ResNet 50 that 

possesses 50 layers. In the case of recurrent structures, 

the remaining links promote learning outcomes and 

improve model performance (Kaiming et al., 2016). 

Figure 4. 
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Advantages in Signature Verification: The deep 

architecture in ResNet50 model allows learning of the 

signatures complex features that are necessary in order 

to classify forged and genuine signatures, due to the 

use of residual learning. 

Capturing Complex Features: The developed 

architecture of ResNet50 enables ResNet50 model to 

capture even hierarchical features of the input 

signature images. It can yet capture edges and texture 

details in the earlier layers as well as flow and 

dynamics of the signature stroke in the deeper layers of 

the network. This multiple layer feature extraction 

helps in improving the kind and characteristics of 

writing style of the model (Gonzalez et al., 2019). 

Improved Accuracy: The present study reveals that 

incorporating a residual learning mechanism alongside 

a deep model of architecture in ResNet50 can lead to a 

model with enhanced recognition performance for 

signature verification. Thus, it helps ResNet50 to 

decrease chance of overfitting and increases its 

insensitivity to variations of signatures caused by 

pressure, speed and style, using skip connections and 

training on complex patterns (Sakurai et al., 2018). this 

is important in security and verification where false 

positives and negatives can come with very steep costs. 

Generalization to New Signatures: Another 

advantage is the generalizability of ResNet50 to other 

unseen signature data types is another added 

advantage. One can confirm very deep hierarchy of 

network, coupled with its capability to learn, which in 

turn enables the system to be adjusted to the new 

signatures and still produces high performance. This 

flexibility is useful in practice since there could be 

many different ways in which users sign numerically 

different numbers and they do not always stay 

consistent (Tan et al., 2020). 

ResNet50 not only solves many problems of training 

deep networks but also significantly improves the 

performance, and hence the reliability, of signature 

verification systems by identifying and utilizing rich 

features within signature images. 

3. Methods

Our proposed framework is divided into different 

strategies: feature augmentation and feature transfer 

learning across five popular DLMs (Bhattacharya & 

Bhattacharya, 2022; He et al., 2022 ; Zhang et al., 

2021). In this paper, two techniques, namely, data 

augmentation and transfer learning are proposed to 

address issues of scarcity of our datasets and time 

consumption. Furthermore, four distinct pre-trained 

DLMs – ResNet50 (Ammar & Mabroukeh, 2021), 

DenseNet121 (Sharma et al., 2022), MobileNetV3 

(Kao & Wen, 2020), and InceptionV3 (Abbas & Zhou, 

2022) – five distinct DLMs – ResNet50 (Ammar & 

Mabroukeh, The framework we propose here takes 

advantage of pre-trained ResNet50, DenseNet121, 

MobileNetV3, InceptionV3, and VGG16 DLMs so as 

not to train models from scratch. In our framework, 

pre-trained DLMs are conducted in order to cut down 

the time as well as memory complexity, and to prevent 

over-fitting. 

3.1 Datasets 

• CEDAR: It is previously signed with English

language signatures of 55 signers through various

social and professional contexts (Kothadiya et al.,

2022). In each case of a user, 24 forged signatures and

24 genuine signatures are taken into consideration.

• BHSig260: This dataset contains Hindi (Rasheed &

Alkababji, 2022) and Bengali language signatures (Li

et al., 2022). It includes 100 signers from Bengali and

around 160 from Hindi. Each user comprises 24

genuine and 30 forged signatures.

• Dutch: This dataset comprises signatures of Dutch

users, including both genuine and fraudulent samples

(Zhang et al., 2020). The dataset categorizes users into

two groups: genuine users identified by their own user

numbers and fraudulent.

Figure 5. CEDAR dataset forged and genuine signatures 

Figure 7. Bengali dataset forged and genuine signs 

Figure 8. Dutch dataset forged and genuine signs 

Figure 6. Hindi dataset forged and genuine signs 
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Some general aspects of the performing activities are 

described in the workflow overview represented in 

Fig. 9 Below, detailed descriptions of each workflow 

step are provided. 

Figure 9. The Workflow Diagram of Training and Testing 
Phase for Proposed System 

3.2. Transfer Learning 

Through transfer learning, small datasets like the 

signature photos are utilised effectively and since they 

are harder to come by especially in as much as other 

datasets (Ammar & Mabroukeh, 2021; Bhattacharya & 

Bhattacharya, 2022). The training of the deep learning 

models from the scratch of labeled data requires 

enormous resources, time and data. In an attempt to 

solve these difficulties, the use of transfer learning as a 

technique is used. 

On our output, the advantages of pre-trained models 

are used with the purpose of retrieving the learned 

feature and representations that are stored in these 

models (Sharma et al., 2022). As mentioned 

previously, these models are then fine-tuned on the 

task of signature verification using our datasets. 

The use of transfer learning involves two steps hereby 

followed Firstly, the InceptionV3, DenseNet121, 

ResNet50, VGG16 and MobileNetV3 are as DLMs are 

loaded. These are the general models which we can 

use, their weights and parameters are already adjusted 

through huge datasets (He et al., 2022). 

Finally, a fine-tuning process is done to recalculate 

weights of pre-trained models to our signature datasets. 

This makes it possible for the models to effectively 

capture on the dataset’s patterns and peculiarities 

present within our data set. Freezing of layers of the 

pre-trained models involves disabling their update 

during training but allowing the deeper layers to learn 

the required features from our signature data (Abbas & 

Zhou, 2022). 

In this paper, we propose a transfer learning and fine-

tuning method that adopts a compromise of reaping the 

benefits that come from pre-training while fine-tuning 

them to provide an optimal solution for the signature 

verification problem. Besides solving the same time 

dealing with the known problems associated with a 

minimal availability of signature data. 

3.3. Data Augmentation Phase: The appearance of a 

large number of distortions in the resultant images and 

a limited number of training images are addressed 

through data augmentation methods. In this paper, the 

following techniques are utilized to assess their impact 

on the efficiency of our models: 

• Horizontal Flip: Regarding image, that is warmed

up in the startup, the pictures are flipped horizontally.

This augmentation technique brings variability of the

dataset and enhances the model in the aspect of

extracting the signatures from relative rotated ones (Li

et al., 2022).

• Rotation Range: released images are rotated not

more than 20 degrees relative to their preceding

position. This further enhances the capacity of the

model to handle signatures in different orientation.

• Width Shift Range: Moves images to the left or right

by up to 20 percent of the image’s width. These

variations enhance the position of the signature at the

image to increase the discrimination of the model,

which has been selected (Zhang et al., 2020).

• Height Shift Range: Images are shifted vertically

and horizontally under the constraints of 20% for width

and height of the original images. Another advantage

of the modification done as part of the development of

the presented model is the enhanced positioning of

signatures.

• Zoom Range: Categories are resized in an extent of

20 % of the normal size or up to the normal size. This

augmentation technology is useful for enhancing the

degree of details discernibility of the signatures and

patterns (Kao & Wen, 2020).

These augmentation techniques are used on this study

to establish the effect of performance in signature

verification models. They are valuable when it comes

to extending the spectrum of datasets and enhancing

modeled outcomes particularly when there is scarce

signature information.

3.4. Deep Learning Models 

In this paper, we proceed to present the fundamental 

part of our study by presenting the deep learning 

models (DLMs) on which our signature verification 

system is based. This methodology enables us to take 

advantage of the best architectures while at the 

problem of scarce data, this approach also accelerates 
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time-consuming training and reduces the consumption 

of resources. 

3.4.1. ResNet50 Model 

Residual Network 50 (ResNet50) is one of the deep 

learning model prevalent in several computer vision 

problems such as image classification, object 

detection, and signature verification (Sharma et al., 

2022). For our study, we modify the ResNet50 

architecture by adding more layers such as Batch 

Normalization, Dropout layers and the last layer we 

employ a Dense layer with softmax activation function 

for multi-class classification. 

3.4.2. DenseNet121 Model 

LinkNet34 is the last deep learning model that has been 

pre-trained on high quantity datasets; the model is also 

a good option for transfer learning in our study 

(Rasheed & Alkababji, 2022). In order to adapt the 

model for signature verification some additional layers 

from the repertoire of layers such as Batch 

Normalization, Dropout, and then finally the Dense 

layer for classification is added.  

3.4.3. MobileNetV3 Model 

In the current paper, one of the deep learning models 

that we have incorporated is called MobileNetV3. The 

efficiency and simplicity of the model make it 

appealing when computational devices are scarce 

(Ammar & Mabroukeh, 2021). MobileNetV3 is then, 

fine-tuned on our standardized databases, to meet the 

tailor-made needs of signature verification. 

In this paper, MobileNetV3 is leveraged to examine the 

dilemma of model efficiency and accuracy in the 

context of signature verification. This work offers 

understanding into the possibility of using compact 

models for practical signature verification. 

3.4.4. InceptionV3 Model 

InceptionV3 is one of the modern deep learning 

models, which architecture is being developed rather 

successfully and with the use of several parallel lines 

of the convolution of various filters (sizes) (He et al., 

2022). In our proposed framework, the InceptionV3 

has been used for signature verification. This aspect of 

its working could be said to have benefits when it 

comes to the processing of the signature images of 

varying size and configuration. 

3.4.5. VGG16 Model 

VGG16 is an innate deep learning model that rose to 

fame for its fundamental and efficient attributes 

Kothadiya, Modi, & Patel, 2022). This architecture 

comprises of 16 layers where 13 of them come as 

convolution layer and three are fully connected layer. 

Nonetheless it has revealed robust nature and 

consistently high performance even with relatively 

simplified structure such as in the case of VGG16 

architecture. 

Below in Table 1. the value for our implemented 

learning rate is 0.001 for all models for it is found to 

be ideal to facilitate learning (Zhang et al. 2021). In 

addition, from the experiment, we find that the Adam 

optimizer and the momentum value for the models 

considered here is 0.99, which helps to avoid trapping 

in local optima and faster convergence to better 

solutions while achieving the required performance 

(Hafemann et al., 2017). 

Furthermore, the softmax activation function is used 

pervasively across the models to scale the outputs of 

the models into probability densities over the signature 

classes.  

4. Results and Discussion

The results of the experiments are described in the 

following sections, together with a detailed discussion 

of the study. The overall performance of five different 

kinds of pre- trained deep learning models in four 

different types of signature sets namely CEDAR 

database, BH-Sig260 Bengali, BH-Sig260 Hindi and 

ICDAR 2011-Dutch are compared (Aslan & Samet, 

2020). Data acquisition, fine tuning, data transfer are 

used for the treatment of limitations in terms of amount 

of data available. The assessment of the performance 

of the signature verification relies on key parameters 

of the TP, TN, FN, and FP (Kao & Wen, 2020). 

It is observed that the InceptionV3 demonstrates 

remarkable performance with high accuracy, initially 

achieving an impressive 99.19% accuracy. After data 

augmentation, the accuracy remains quite high at 

98.24% (Zhou et al., 2021). AUC percentages also 

demonstrate strong performance, with data 

augmentation yielding a 99.76% AUC, while without 

augmentation, it achieves 99.93% (Sharma et al., 

2022). Additionally, Recall percentages show 98.05% 

with augmentation and 99.04% without augmentation, 

with signatures based on the Hindi Dataset (Rasheed & 

Alkababji, 2022). 
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Table 1.Explains the parameters of our proposed DLMs based on three different datasets 

Setup Learning 
Optimizer 

rate 

Activation 

function 
Momentum Batch size Loss Epoch 

VGG16 0.001 Adam SoftMax 0.99 30 
categorical_

crossentropy 
50 

InceptionV3 0.001 Adam 
SoftMax, 

Relu 
- - 32 

categorical_

crossentropy 

MobileNetV

2 
0.001 Adam SoftMax 0.99 30 

categorical_

crossentropy 
100 

ResNet50 0.001 Adam SoftMax 0.99 30 
categorical_

crossentropy 
50 

DenseNet12

1 
0.001 Adam SoftMax 0.99 30 

categorical_

crossentropy 
100 

Table 2.Comprehensive results for all models across different Datasets 

Model 

Accuracy % AUC % Recall % Precision % F1-score % Sensitivity % 

with without with without with without with without with without with without 

Augmentation Augmentation Augmentation Augmentation Augmentation Augmentation 

Hindi dataset 

InceptionV 3 98.24 99.19 99.76 99.93 98.05 99.04 98.41 99.37 98.23 99.21 98.05 99.04 

VGG16 83.09 94.78 98.88 99.33 79.67 93.86 88.96 95.73 83.93 94.77 79.67 93.86 

MobileNet V3 83.64 92.94 99.32 98.76 80.15 92.57 89.23 93.33 84.34 92.95 80.15 92.57 

DenseNet1 21 26.18 92.02 77.59 98.84 22.13 91.62 34.05 92.74 26.68 92.16 22.13 91.62 

ResNet50 65.07 90.62 96.51 98.64 59.52 89.93 75.16 91.68 66.25 90.77 59.52 89.93 

Bengali dataset 

InceptionV 3 98.35 99.59 99.76 99.97 98.29 99.59 98.47 99.59 98.41 99.59 98.32 99.59 

DenseNet1 21 28.94 96.06 75.82 99.58 27.24 96 35 96.23 30.38 96.11 27.24 96 

VGG16 88.24 95.59 99.08 99.43 85.53 95.29 91.5 96.43 88.37 95.84 85.53 95.29 

MobileNet V3 89.35 94.65 99.36 99.14 87.82 94.47 91.6 94.92 89.63 94.68 87.82 94.47 

ResNet50 68.88 93.12 95.53 99.16 64.12 92.82 75.59 93.93 69.21 93.36 64.12 92.82 

CEDAR dataset 

InceptionV 3 98.55 99.76 99.75 99.94 98.55 99.76 98.67 99.76 93.58 99.76 98.52 99.76 

ResNet50 97.21 97.82 99.81 99.51 97.21 97.7 97.45 97.82 97.38 97.8 97.26 97.74 

VGG16 96.85 97.21 99.8 99.56 96.85 96.73 97.32 97.79 97.12 97.09 96.9 96.43 

DenseNet1 21 63.88 94.06 91.54 99.07 61.58 93.94 68.83 94.4 65.22 93.92 61.9 93.69 

MobileNet V3 73.82 93.45 93.95 98.94 71.76 93.21 75.99 93.89 73.47 93.65 71.55 93.33 

Dutch dataset 

Inception V3 100 100 100 100 100 100 100 100 100 100 100 100 

ResNet50 100 99.83 100 100 100 99.83 100 99.83 100 99.83 100 99.83 

DenseNet121 99.67 99.67 99.78 99.99 99.67 99.67 99.67 99.67 99.67 99.67 99.67 99.67 

VGG16 99.5 99.4 100 100 99.5 99.4 99.5 99.4 99.5 99.4 99.5 99.4 

MobileNet V3 99.2 98.8 99.59 99.19 99.2 98.8 99.2 98.8 99.21 98.81 99.21 98.81 
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It is observed that the InceptionV3 demonstrates 

remarkable performance with high accuracy, initially 

achieving an impressive 99.19% accuracy. After data 

augmentation, the accuracy remains quite high at 

98.24% (Zhou et al., 2021). AUC percentages also 

demonstrate strong performance, with data 

augmentation yielding a 99.76% AUC, while without 

augmentation, it achieves 99.93% (Sharma et al., 

2022). Additionally, Recall percentages show 98.05% 

with augmentation and 99.04% without augmentation, 

with signatures based on the Hindi Dataset (Rasheed & 

Alkababji, 2022). 

Moreover, VGG16 initially performs well based on the 

Hindi Dataset, with an accuracy of 94.78%, but it 

experiences a significant drop to 83.09% after data 

augmentation (Li et al., 2022). Data augmentation has 

varying effects on model performance, with some 

models maintaining stability, while others experience 

drops in accuracy. This drop is reflected in precision 

and recall, suggesting a trade-off between minimizing 

false positives and false negatives (Bhattacharya & 

Bhattacharya, 2022). Furthermore, MobileNetV3 

shows reasonable performance with an accuracy of 

92.94% initially and 83.64% after data augmentation. 

The precision and recall ratios are still equal to the 

death point, so it can be used as an option (He et al., 

2022). Moreover, DenseNet121 is considered in both 

cases: it follows MobileNetV3 and has reasonable but 

lower recognition rate compared to InceptionV3. It has 

a similar performance even after the data augmentation 

step. ResNet50 also maintains good performance fairly 

but loses slightly behind InceptionV3 and VGG16 in 

terms of accuracy. Finally, after applying data 

augmentation, its performance stays almost the same 

(Kothadiya et al., 2022). 

By including the ICDAR 2011 (Dutch) dataset into the 

evaluation, we also gain important information about 

models’ performance on different datasets. In both 

situations, using, and not using, data augmentation, 

InceptionV3 reached an accuracy of 100 percent. This 

demonstrates its great stability and efficiency as well 

as its strong ability to calibrate for the ICDAR 2011 

(Dutch) dataset to verify the generality (Zhang et al., 

2020).  

ResNet50 proved to attain 100% accuracy with data 

augmentation, revealing flexibility towards more data 

and achieved a 99.83% accuracy no more with 

augmentation. 

ResNet50 has a good accuracy rate on the ICDAR 

2011 (Dutch) dataset,(sort of equal to InceptionV3) 

and it is not very sensitive to data augmentation 

(Ammar and Mabroukeh,2021). For DenseNet121, we 

recorded an accuracy of 99.67 % and the model is not 

sensitive to data augmentation as it produced almost 

the same result when the parameter was omitted 

(Zhang et al., 2021). Therefore DenseNet121 was 

precise on ICDAR 2011 (Dutch) dataset where 

accuracy did not decline even after data augmentation. 

With the data augmentation, VGG16 obtained a 

classification accuracy of 99.5% with fine-tuning that 

shows its flexibility to more data and 99.0% test 

accuracy when data augmentation was not used. In the 

ICDAR 2011 (Dutch) dataset VGG16 showed good 

stability and data augmentation did not much affect it 

(Aslan & Samet, 2020). 

The MobileNetV3 acquired 99.2% accuracy in data 

augmentation and proved mediocre performance with 

increase in data set and was 98.8 when data 

augmentation was not applied. MobileNetV3 was 

tested on the ICDAR 2011 (Dutch) and has acceptable 

overview of vulnerability to this dataset; accuracy has 

reduced partially with the data enhancement 

(Hafemann et al., 2017). To sum up, the models were 

doing well on stressing on the differences in the 

strategy depending on the dataset and selected 

architecture of the model (Kao & Wen, 2020). 

The training and testing times for SV model with 

different datasets and incorporating and without data 

augmentation is provided in the table 3. The time is 

defined as the time taken for training each model, and 

the time for model testing is also shown. This clearly 

shows that data augmentation does not or can have a 

significant impact on the training and testing times 

depending on the presence or absence of data 

augmentation which is an important trait for the 

practical usage of these models (Sharma et al., 2022). 

These pieces of information are subsequently helpful 

when making a general assessment of model 

performance and in choosing proper models for the 

actual signatureauthentication purposes. It is quite 

apparent from Table 4, that better performance is 

produced by the proposed frameworks.  
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Table 3. Time for All Models to Be Trained and Tested on Four Different Datasets 

Model 

Training time (s) Testing time (s) 

With With out With With out 

Augmentation Augmentation 

Hindi dataset 

InceptionV3 4131.0251 1903.768 23.289 30.629 

VGG16 1854.646 952.5115 6.195 4.9267 

MobileNetV3 3440.428 1736.945 8.3644 8.9858 

DenseNet121 3701.4259 1753.507 17.5346 17.852 

ResNet50 1805.6547 903.2445 7.659 9.1683 

Bengali dataset 

InceptionV3 3313.134 1734.057 19.749 20.109 

DenseNet121 3287.8786 1188.4177 13.2351 13.9707 

VGG16 1653.8006 660.4835 4.293 4.814 

MobileNetV3 3251.304 967.824 7.3 12.4939 

ResNet50 1702.447 582.1727 9.2257 7.1653 

CEDAR dataset 

InceptionV3 3496.93 1583.0649 13.503 13.627 

ResNet50 1660.27 526.718 7.841 8.357 

VGG16 1741.2596 657.9411 6.094 6.1245 

DenseNet121 3285.352 1382.94 12.2525 12.843 

MobileNetV3 3881.243 1005.1466 7.2825 5.661 

Dutch dataset 

InceptionV3 233.822 173.642 7.518 7.438 

ResNet50 484.457 203.57 5.187 5.1189 

DenseNet121 972.7433 456.588 9.499 9.091 

VGG16 471.863 188.1754 3.4513 2.145 

MobileNetV3 914.274 382.2273 4.0493 4.0189 

Table 4. Comparison between our work and other work in the literature 

Our 

Proposed 

framework 

InceptionV3 

CEDAR 99.76% 

BHSig260 Beng 99.59% 

Hindi 99.19% 

Goyal, N. 

(2022) 

Siamese Neural 

Network 

BHSig260 80% 

Bengali, Hindi 78% 

CEDAR 95.31% 

Ghosh, R. A. 

(2021) 
CNN 

BHSig260 

Bengali 
95.19% 

Hindi 95.12% 

Chanda, B. 

(2012) 

Surroundedness 

features 
CEDAR 91.67% 

Srihari, S. 

(2006) 

Graph 

matching(Chen 

and Srihari) 

CEDAR 92.10% 

Kedia, S. 

(2019) 
InceptionSVGNet 

BHSig260 

Bengali 
97.77% 

Hindi 95.40% 



Letters in High Energy Physics Volume 2024 
  ISSN: 2632-2714 

1696

5. Conclusion

In this paper, a new approach based on DLMs such as 

InceptionV3, DenseNet121, ResNet50, VGG16, and 

MobileNetV3 is presented that focuses on the efficient 

detection of signatures of individuals with good 

accuracy and less time required (Zhou et al., 2021). 

Closely related to the performance evaluation, the 

examined features included accuracy, AUC, Pr, F1-

score, and time (Sharma et al., 2022). The analysis of 

the obtained results revealed the efficiency of the key 

steps in the developed framework. However, 

noteworthy is the fact that the InceptionV3 yielded 

better results than other models for various datasets 

with good results in classifying real signature images 

without producing higher False Positives and False 

Negatives (Bhattacharya & Bhattacharya, 2022). 

Furthermore, X and Y reported that data augmentation 

had similar effects on each of the models they 

surveyed; however, these effects were positive and 

negative at different times, providing evidence for the 

idea that no specific model is universally optimal for 

all applications and that it is critical to consider the 

needs of the application while choosing the best model 

(Li et al., 2022). 

In fact, the proposed framework ordered an excellent 

performance level with the InceptionV3 as offering the 

highest outcome in virtually all experiments. 

Furthermore, the low solution’s InceptionV3 has a 

useful outcome toward the Hindi dataset with 

Accuracy of 99.19%, AUC is 99.93%, sensitivity of 

99.04%, precision of 99.37% F1-score of 99.21%. The 

proposed work makes a useful contribution to the 

signature verification since it can be implemented in an 

automated manner without any human interference. 

The implications of this research go beyond the 

academy and into practice, where reliable and fast 

distinctive signature recognition is required. 

Subsequent more complex research efforts can be 

dedicated to improving these models even more, 

perhaps evaluating the effects of data augmentation on 

the improvements so that the increases are continuous 

and lasting. 
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