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Abstract. Apps have become an inseparable part of our daily lives. There are different kinds of mobile apps on 

the market. Google Play Store apps development is one of the most enticing and consumer-friendly 

development paradigms for mobile apps. On the other hand, the paradigm is still in its early phases and does not 

address critical issues such as an app’s success and failure. A considerable number of mobile apps do not 

acquire a good solution, squandering stakeholders’ time and effort. Therefore, predicting the success of a new 

app will be helpful for developers. This research proposes an ensemble learning-based approach for predicting 

the success of the mobile app. For this purpose, the app’s important attributes (rating, number of installs) can be 

selected from the dataset. Datasets can be preprocessed using NLP (Natural Language Processing) technologies 

and perform Data Analysis. These selected features were then deployed to several ML (Machine Learning) 

algorithms — Deci- Sion Tree Classifier, Random Forest Classifier, K - Nearest Neighbor Classification, Gradient 

Boosting Classifier, and Light Gradient Boosting Classifier. Finally, an ensemble model pro- poses to predict a 

new app’s success. Our suggested model outperforms, with an accuracy of96.772239%. 

Key-words: Ensemble learning, Natural Language Processing (NLP), Mobile Apps, Data Analysis, Decision 

Tree, Random Forest, K-Nearest Neighbor, Gradient Boosting, Light Gradient Boosting 
 

1. Introduction 

Mobile applications are used more rapidly and 

conveniently because of the widespread use of 

smartphones. As a result, mobile apps have grown 

to be extremely vast and competitive. Al- most all 

digital requirements have spawned multiple apps, 

giving smartphone users a plethora of options when 

it comes to which app to download and use. Many 

characteristics of an application could be crucial in 

deciding the popularity and success of an 

application in such a competitive environment. As 

a result, mobile app developers must consider 

various factors when develop- Ing and deploying 

their apps. Although the app store has millions of 

apps, most of them are rarely downloaded or used. 

So it is very important to investigate how apps are 

becoming a vital part of people’s lives. The rapid 

growth of the mobile app market has a significant 

effect on the development of advanced innovation. 

However, as the flexible application market 

continues to grow, so does the number of portable 

application designers, resulting in the global 

portable application sector earning as much as it 

can. Mobile applications have become the key 

usage for smartphones, providing a variety of 

features and services like social networking, 

entertainment, purchasing, checking information, 

and navigation [1]. 

According to anecdotal evidence, users install an 

average of 63 applications on their cell- phones and 

spend more than 6 hours each day on them [2]. 

IOS systems have been launched 

1.85 million applications worldwide due to the 

popularity of mobile applications; the number of 

applications available for Android systems is 

slightly higher, with approximately 2.56 mil- lion 

applications available as of the first quarter of 2020 

[3]. Among the numerous applications accessible, 

it is worth mentioning that only the top applications 

in each category comprise the bulk of the user’s 

time. In another way, the overwhelming number of 

mobile applications fails to meet expectations. 
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Furthermore, nearly half of smartphone users only 

use 5–10 applications each day and uninstall 3.9 

applications every month. In this circumstance, app 

developers and service providers must figure out 

how to attract and retain consumers to succeed in 

the mobile application market. 

An app store, like Google Play, is a platform where 

users may download mobile applications for every 

service or software. Users can explore and 

download apps via app stores, while de- elopers can 

maintain track of their apps by providing reviews 

and star ratings. Reviews may contain the user’s 

experience, problem reports, requests for additional 

features, or a numerical rating of the app [4]. 

Various app features, both internal and external to 

the app, can play a key influence in assessing 

whether or not the app will succeed. Using a 

dataset comprising in-formation gathered from the 

Google Play Store, this research investigates 

several characteristics external to an application to 

classify the application’s success. Several 

classification models are developed and analyzed in 

order to gain a better knowledge of how to classify 

the success of an app [5]. The author of another 

paper [6] examines the application ratings. It 

highlights the fact that the way a store is rated after 

reaching a particular limit has no effect on the 

overall store rat-Ing, even after users have rated it. 

It emphasizes that the updated app rating depends 

on the app’s version. As a result, the notion of 

grading variations arose. The available store rating 

can be used to calculate version ratings. Google 

Play Store is becoming one of the most appealing 

and user-friendly platforms for Mobile apps among 

all mobile app distribution platforms [7]. 

A large number of new Mobile apps are added to 

this platform on a daily basis. Given the 

tremendous challenges around the world, a designer 

must realize that they are on the right track [8]. To 

maintain this revenue and marketplace, application 

developers may need to know how to maintain 

their current position. The Google Play Store is 

considered the most extensive application platform. 

However, the Google play store paradigm is 

currently in its early stages and has some obstacles 

that must be overcome. One of the most significant 

issues it encounters is that it directly impacts the 

app’s success rate [9]. As a result, many apps are 

either abandoned or fail to yield satisfactory results. 

Developers are constantly seeking to improve the 

effectiveness of their new apps through solo or 

teamwork. Developers find it challenging to 

maintain their market position on this platform as 

it becomes more competitive. However, if 

developers can predict the success of a new app 

before it is released on the Google Play Store, 

they may find it easier to compete in this more 

competitive market. Despite the massive expansion 

of apps in recent years, there is a scarcity of related 

work on app analysis. In this paper, we investigate 

the extent to which we can predict an app’s success 

based on its different attributes like rating, reviews, 

app size, and price. We make extensive use of 

ensemble learning techniques for this purpose. 

The generic meta-approach to machine learning 

known as” ensemble learning” aims to achieve 

optimum prediction performance by integrating a 

variety of approaches to get the best accu-racy 

[10]. Individually, various ML algorithms may not 

be able to produce optimum results; consequently, 

integrating them will enhance the model’s 

performance and improve its accuracy. The 

Ensemble learning approach for predicting and 

classifying the success of the mobile app has been 

shown to perform better than using a single 

classifier. Bagging, stacking, and boosting are the 

three classes of ensemble learning. Bagging 

involves making several decisions on different 

samples of the same dataset and calculating the 

mean prediction, [11] while stacking involves 

fitting different models to the same data and 

learning the aggregated predictions using another 

model [12]. Boosting involves adding ensemble 

members successively to correct previous pre- 

dictions provided by other models. Then the 

average of the predictions is taken [13]. 

To this end, we explore the app descriptions in-depth 

and present a unique technique based on ensemble 

learning for predicting the success of mobile apps. 

The suggested method classifies ap- plications as 

either successful or unsuccessful. First, we obtained 

a dataset from Kaggle and used NLP technologies 

for preprocessing. Second, we perform Data 

Analysis. Third, multiple ML classifiers are used 

for the successful prediction of the app. Finally, the 

voting ensemble-based technique is proposed to 

produce a final prediction. The core objective of 

this voting method is to reduce algorithmic errors 

by combining the decisions using a majority voting 

technique. Four separate performance metrics: 

Precision, Recall, Accuracy, and F1-Score, are used 

to provide an effective and comprehensive 

validation of the performance of models. 

Following are the key contributions of this research: 

• An ensemble learning technique is 

suggested to determine how successful a new app 

will be. 
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• Machine learning algorithms, including 

Decision Tree Classifier, Random Forest Classi- 

fier, K - Nearest Neighbor Classification, Gradient 

Boosting Classifier, and Light Gradi-ent Boosting 

Classifier, are used to predict an app’s success. 

• A Hard voting ensemble learning model 

is proposed to improve classification performance. 

• The precision, recall, and f-measure of the 

proposed approach are up to 0.985657 0.966535 and 

0.976000 respectively. This suggests that the 

proposed approach is accurate. 

 

2. Literature Review 

Magar et al. utilized a Google Play Store-extracted 

dataset [5]. Various external features were used for 

an app to classify its success. This study tackles a 

classification problem. SVM, K-Nearest Neighbor, 

Stochastic Gradient Descent, and Random Forest 

were some of the models that were employed in the 

analysis of data [14]. Based on execution times and 

performance metrics, the models were compared. 

This research determined the classification model 

with the best performance and analyzed the 

relationship between target categories and 

classification performance. According to the 

literature, the sales price, number of updates, 

languages in which the app is released, operating 

system versions supported, API functionalities, and 

the package size are all measurable app features 

that might positively affect its success [15]. 

Furthermore, the popularity of the app’s category 
[16] and the user rating tend to have a substantial 

impact onsuccess. 

N. Picoto et al. used multivariate logistic regression 

[17] to examine the app’s performance with five 

parameters, including user ratings, category 

attractiveness, diversity, capacity factor, and 

theatrical release. It also used a fuzzy set 

qualitative comparative analysis (fsQCA) to look 

for new causal explanations for the performance of 

the mobile app. According to multivariate analysis 

[18], the attractiveness of the subcategory, variety, 

capacity factor, and app release date are all 

characteristics that boost the likelihood of an app 

being ranked among the top 50. 

Singh et al. worked using an Android app dataset 

[19]. They used exploratory data analysis and 

multiple ML models to figure out which aspects of 

an app impact its success. Decision Tree, Random 

Forest, SVM, XGBoost, and KNN were some of the 

models employed [20]. They attained accuracy 

rates of 70.49 percent, 80.34 percent, 75.59 

percent, 

79.99 percent, and 77.26 percent, correspondingly. 

They determined that an app’s rating and content 

rating were important in determining its 

performance in the competitive online marketplace. 

Mueez et al. worked on the Play Store apps 

dataset to predict an app’s ”success” [20]. They 

defined success in terms of the function of an 

application’s rating and the number of times it has 

been installed. Another noteworthy feature of their 

endeavor was the fact that they took into 

consideration actual user reviews. Data from app 

reviews were used to make predictions based on a 

list of commonly used terms in the reviews. They 

employed those terms in the app to do sentimental 

analysis [21], and the sentiment score served as a 

featured column in their predictions. Although the 

authors made some assumptions when selecting 

these feature columns, they attained an accuracy of 

85.09 % utilizing the XGBoost Classifier, K-

Nearest Neighbor, Random Forest, and SVM. The 

authors’ handling of a binary classification issue 

must have contributed to the excellent accuracy rate 

obtained. 

Dehkordi et al. showed a dataset of 100 successful 

and 100 unsuccessful Android applications that 

were available in the Google Play Store [22]. Each 

app had 34 features. The repos-itory was then used 

to predict the accuracy of various neural networks 

and other classification techniques in two 

scenarios: with and without using the principal 

component analysis (PCA) algorithm. Without 

PCA, the NPR algorithm achieved a prediction 

accuracy of 95.5%, while theMLP method achieved 

a prediction accuracy of 99.995%. This means that 

the NPR algorithm ismore accurate when there are 

more repository features. Suleman et al. used 

Google Play Store app data and how they were 

received by the users [23]. The dataset contains 

10839 entries, which perhaps an insufficient 

number is given the problem they were attempting 

to solve. This dataset is used to train various ML 

models [24] to predict the app’s success. The goal 

of their study was to figure out which model 

worked best for predicting app ratings. 

Bashir et al. evaluated a dataset of mobile 

applications available through Google Play to de- 

termine the level of success each app had in the 

”real world” [7]. The researchers concentrated on 

predicting an application’s success before it was 

released. The number of installs and ap- plication 

ratings were determined ”success.” Due to the 

authors’ concentration on the ”success “of the apps, 

they encountered binary categorization problems 

regarding predictions. When they tried different 

machine learning methods, they determined that the 

SVM model made the most accurate predictions 
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[24]. In recent years, as mobile devices’ 

computational capability has in- creased, the 

importance of these devices has moved to the 

software and data they can provide. The expansion 

of mobile applications is an opportunity and a 

significant challenge for companies and developers, 

since it is challenging to stand out among the 7.1 

million apps [25] accessible on app stores. 

Acquiring awareness is a difficult and time- 

consuming task. The mobile market is difficult to 

understand due to a lack of data on app demand and 

sales. Furthermore, because mobile users spend 

more time using applications than websites, 

businesses seeking competitive advantage must 

understand the elements that influence app 

performance to design appropriate mobile 

strategies, and effective mobile marketing [15]. 

Aralikatte et al. attempted to represent the review- 

rating discrepancy by developing differ- ent 

algorithms capable of automatically detecting the 

discrepancy between the two [26]. They employed 

two machine learning strategies to demonstrate this 

mismatch: The first approach re- lied on many 

classifiers and algorithms, such as the Decision tree, 

Naive Bayes, Decision stump, and Decision table; 

the second approach relied on deep learning. They 

also conducted numerous surveys to understand 

end users’ and developers’ perspectives on the 

mismatch. The survey’s findings were quite 

predictable: both Android app developers and end- 

users agreed that an app’s rating should correspond 

to its related review, and they claimed to have an 

automatic system in place to detect any discrepancy 

between rating and review [27]. 

Y. Yao et al. proposed a novel technique for 

developing an app-recommendation system that 

considers a vital feature of each app [28]. In other 

words, they wanted to create an app- 

recommendation system that was version-aware. 

As the authors illustrated, app ratings can sub- 

statically change based on the application’s version. 

This is an essential feature of their approach. The 

authors built their model and generated 

recommendations based on the review text for each 

app. They suggested a single Version-Aware Matrix 

Factorization (VAMF) framework that con- side red 

both version-level and overall app-level review text. 

Researchers apply a greedy method in the article 

[29]to extract mobile-app elements from official 

pages displaying programmed de- scrimptions to 

examine business and technical aspects of mobile 

applications. Researchers used the hidden model to 

classify spam in mobile app stores and divided 

reviews into malicious and non-malicious 

categories. 

B. Fu et al. address the question of why a user does 

not want an app and provide an expla-nation for 

why it fails [30]. Not all reviews may be treated 

and incorporated as part of the study. Such reviews 

generate a lot of noise and increase the percentage 

of inaccuracies. Such reviews were attempted to be 

eliminated by the authors, which reduced noise in 

the dataset and improved sentiment analysis 

performance. As a result, a more precise polarity 

value is generated. Li [30] suggested WisCom, a 

system capable of analyzing minimum ten million 

user comments and ratings across three levels in 

app stores. This technology is believed to have 

initially identified inconsistencies in reviews before 

looking for reasons why people dislike a specific 

application and how reviews change with time in 

response to customer demands. Their suggested 

strategy and valuable research present an 

enthralling tour of the most relevant issues. It 

generates ways for summarizing and mining 

evaluations, assisting end customers in selecting 

the best program without having to read through 

descriptive reviews of previous users. 

R. Mihalcea et al. introduced a Text Rank graph- 

based ranking mechanism for graphs col-lected 

from natural language texts [31]. Researchers 

explore Text Rank’s application to two language 

processing tasks: unsupervised keyword and 

sentence extraction. The results produced with Text 

Rank are comparable to those obtained with state-

of-the-art frameworks in these do- mains. B. Liu 

works on feature reviews [32]. He mentions the 

ineffective use of user ratings and reviews. In 

addition, the researcher develops several systems 

that detect the contradiction between the two 

features mentioned above. The system primarily 

employs the Naive Bayes Classifier, Decision Tree, 

Decision Stump, Decision Table, and a few more 

Machine Learning Algorithms and Deep Learning 

Approaches. They conducted multiple polls as part 

of the process to learn what users and developers 

thought about the two features mentioned above. 

The idea of matching app review and rating 

relevancy was agreed upon by both end-users and 

Developers, concluding with the likes of the author. 

Following up on previous research on the same 

sentiment analysis. This work [4] demonstrates that 

on the app store, there is a distinction between 

starred user ratings and reviews. As a result, the 

author recommends a new scoring system that 

could eliminate uncertainty and distinction between 

reviews and ratings that the user has produced. 

According to the author, the user is interested in 

downloading an app based on their rating. Zhuet al. 

developed a PHMM app popularity prediction 
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model based on market ranking, user rat- Ing, and 

user review to measure app popularity [33]. Wang 

et al. investigated the causes of app competition 

and proposed EHCM and an evolutionary 

competition model [34] for predicting app 

download volumes. Finkelstein et al. explored app 

popularity by ranking downloads to determine the 

relationship between prices, ratings, and app 

popularity. 

3. Data Preparation 

The dataset used in this study comprises 

information on Google Play Store apps. Dataset is 

available publicly on Kaggle. The dataset contains 

many features, like App, Category, Price, Installs, 

Size of the app, reviews, Content Rating, Last 

Updated date, and so on, as shown in 1. 

 

 

 
Fig. 1. Sample Dataset 

 

 

3.1. Data Analysis 

The first and most important step in any prediction is Data Analysis (DA). DA is the pro-cess of using summary 

statistics and graphical representations to analyze to identify patterns, and anomalies, test theories, and verify 

assumptions. DA helps us choose the best prediction algo-rithms and models for the data. Before we work on 

our data, eliminate any null data that might cause noise in prediction. We analyze our findings and identify that 

the Google Play store offers over 33 distinct types of apps. The category of Tool has the highest number of counts. 

We elimi-nate the categories with a lower count because they will not significantly impact our prediction or 

accuracy but will create noise and inconsistencies. Next, several graph functions are used to an-alyze the 

frequency of average ratings between 0 and 5 and the categories with the most installed. 

3.1.1. Category vs. Apps 

The Category column in our dataset contains 34 unique categories. 2 illustrates the Bar Chartof various kinds of 

apps against the categories. 
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Fig. 2. Bar chart of category against number of app 

 

3.1.2. Category vs. Rating 

All the categories have close rating averages. There 

are many categories of apps that are equal in terms 

of being the highest rated. The interest should lie 

within the app categories with the lowest ratings. 

These poorly rated apps deserve 

more attention because if a new app in that category 

were to be put on the app store, the developers could 

satisfy the demand for innovation in this area. In 

this case, The Categories of Importance are” 

AUTO-   AND-   VE-   HICLES”  and 

” ENTERTAINMENT.” 3 shows the Bar chart of 

categories by Ratings. 

 

 

 
Fig. 3. Bar chart of categories by Ratings 
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3.2. Data Preprocessing 

 

”Data preprocessing” is an essential part of ”data 

mining.” The quality of the data has an impact on 

the outcome. Different mining techniques, such as 

classification and clustering, give the best and most 

effective results when preprocessing adequately 

cleans the data. Most data contain trash values, 

which should be handled before they impact the 

performance of predictive models that have been 

trained. Since we collected data from Kaggle, 

which is semi-structured or unstructured data that 

includes large redundant information, there were 

needed to be prepro-cessed to turn it into some 

valuable information. NLP Techniques are used to 

preprocess the data. Tokenization, stop word 

removal, and lemmatization are some of the 

preprocessing approaches used to preprocess our 

data. 

3.2.1. Tokenization 

 

:  Splitting text into tokens (words) is referred to 

as tokenization. We break down the text into words 

and eliminate special characters such as 

punctuation marks. 

3.2.2. Stop Words Removal 

 

: Words that are employed to make sentences 

meaningful but have no significance on their own 

are frequently found in textual documents. These 

words are known as ”stop words.” During 

tokenization, we eliminate such terms from the 

extracted words. 

3.2.3. Lemmatization 

 

: Lemmatization is the process of 

converting superlative and comparative words into 

their basic words. For example, lemmatization 

transforms the word” likes” into ”like.” 

3.3. Dataset After Preprocessing 

As we see above in figure 1, the dataset collected 

from Kaggle is in raw form. Therefore, EDA and 

preprocessing techniques were used on the dataset 

to turn inconsistent data into a com- prehensible 

form. After performing EDA and preprocessing 

techniques on our dataset, Installs and content 

ratings were changed to integers. The app’s size is 

given as a ”string.” It must be con- verted into a 

numerical value. To maintain consistency, the app’s 

sizes in kilobytes were changed to megabytes. The 

price information is provided as a string. To 

convert data into the numeric format, the dollar 

sign must be removed from the text. Dataset after 

preprocessing is show in 4. 

 

 

Fig. 4. Dataset After Preprocessing 
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3.4. Label Encoding 

 

Categorical features including content rating, genre 

and type are label encoded. The way in which we 

go about preprocessing the data is by binarizing the 

Installs column. Anything above 100,000 will be 

considered equal to 1, and everything below that 

threshold will be equal to 0. 5illustrates the dataset 

with label encoding. 

 

 

 

 

Fig. 5. Dataset with Label Encoding 
 

 
3.5. Feature Selection 

Feature selection is choosing a feature subset based 

on certain criteria. It is also known as attribute 

selection or variable selection. Feature selection 

process is show 6. This process makes a dataset 

more useful and efficient by getting rid of features 

that are useless, duplicated, or cause noise. The 

segmented dataset is run through feature selection 

algorithms to find the most im- portent properties 

that affect an app’s success. We select important 

features from the data that give us an optimal 

prediction. After that, we generate a dataset using 

those chosen features. We split our data into 

dependent Y and independent X variables. No. of 

installs column is used as target feature, which 

consists of quantitative data. After feature 

selection, the ensemble learning classifier is used to 

train the data and get high accuracy. 

 

 
 

Fig. 6. Feature Selection Process 
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4. Approach 

Overview 

The Google Play Store applications dataset is 

used to predict the success of an app. We propose 

an ensemble learning model for selecting the 

dataset’s most discriminating features. After 

selecting the attributes, we preprocessed them and 

applied multiple ML algorithms, in- clouding 

Decision Tree Classifier (DTC), Random Forest 

Classifier ( RF),  K  –  Nearest  Neighbor 

Classification (KNN), Gradient Boosting Classifier 

(GBC), and Light Gradient Boosting Classi- fire 

(LGBC). Additionally, a voting ensemble-based 

approach to making a final prediction has been 

considered. The primary objective of this voting 

strategy is to eliminate algorithmic errors by 

combining decisions through majority voting. 

Finally, we improved the overall efficiency of these 

algorithms using this ensemble approach. Overview 

of approach is given below as show in 7. 

 

 
 

 

4.1. Ensemble Learning 

Fig. 7. Proposed Approach 

 

models compatible with all of the attributes 

available in the dataset. Models were implemented 
Ensemble learning classifiers are used in our 

technique to predict app success. Ensemble 

learning is a broad meta approach to machine 

learning that looks for the best prediction per- for 

Mance by combining approaches to get the 

maximum accuracy. Because the employment of 

several machine learning algorithms individually 

may not yield the best results, the combination of 

algorithms will combine all of the model’s 

strengths and produce a higher accuracy. In this 

case, we employ the maximum voting approach, 

with the outcome being the majority vote of all 

classifiers. We assessed the performance of several 

ensemble learning classifiers; the algorithms used 

are as follows: Decision Tree Classifier (DTC), 

Random Forest Classifier (RF), K – Nearest 

Neighbor Classification (KNN), Gradient Boosting 

Classifier (GBC), and Light Gradient Boost- ing 

Classifier (LGBC), which are briefly explained 

below. These algorithms are used to generate 

using Scikit [35] in Python because ensemble 

learning approaches are meta-algorithms that intel- 

grate various machine learning approaches into a 

single predictive model, reducing variation and bias 

while improving predictions. 

4.1.1. Hard Voting 

Ensemble Vote Classifier is a meta-classifier for 

integrating comparable or conceptually separate 

machine learning classifiers for classification based 

on majority or plurality vote. [36]. Ensemble 

learning is generally employed to enhance a 

model’s efficiency or reduce the chance of 

selecting a poor model. In machine learning, there 

are several methods of Ensemble in prac-tice. Here 

we use a hard voting classifier to fit all the 

classification models. Then it combines the 

outcomes of the Decision Tree Classifier, Random 

Forest C l a s s i f i e r , K   -  Nearest  

Neighbor 
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classification Gradient Boosting Classifier and 

Light Gradient Boosting Classifier. The 8 ills- 

trades how it all works .The max voting method 

will enhance the classification precision. Let’s 

take 

three classifiers as (1), Classifier1 (C1), Classifier2 

(C2), and Classifier3 (C3) as an example to show 

how this approach works. 

 

 

 
 

 

Fig. 8. Ensemble Classifications 

 

5. Results and discussion 

5.0.1. Correlation 

The heatmap was developed to show the 

correlations between all of the features with each 

other features, as shown in 9. As observed from the 

heatmap, almost all the features are used in- 

dependently from each other and do not have 

redundancy. Installs and Reviews have the strongest 

inverse correlation because more reviews are 

performed on the most popular apps. Apps with the 

highest number of installations would generate the 

highest revenue. 
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Fig. 9. Heatmap showing relation between features 

 

All the performance measures that are described in 

section VI are combined in this paper to provide a 

more comprehensive and accurate picture of each 

model’s performance. 10 depicts the confusion 

matrix, which demonstrates how each model is 

evaluated. 

All of the different measures used to evaluate a 

model can be gleaned from the confusion matrix. 

The Classification report presents a complete list of 

performance metrics for each target feature 

category. Similarly, classification reports and 

confusion matrices are generated for all classifiers. 

Table I summarizes the findings obtained from the 

classification reports of all employed models. 

When we analyze our results, we see ensemble 

learning algorithms provide better results than 

simple machine learning algorithms. The objective 

Feature in this paper is the number of installs 

column. The number of categories into which the 

target Feature is divided significantly im- pacts the 

models’ average accuracy scores. We trained our 

machine learning algorithms- DT, RF, KNN, GB, 

and LGB using Google Play apps Dataset obtained 

from Kaggle. We use a hard voting ensemble-based 

approach for final prediction. To determine the 

robustness of each model, we 

 

 
Fig. 10. Confusion Matrix 
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Table 1. Comparison of Performance Measure for All Models 

 
Classifiers Accuracy% Precision Recall F1-score 

Voting Classifier 96.772239 0.965657 0.946535 0.956000 

GB 94.884756 0.963600 0.943564 0.9553477 

LGBM 94.730104 0.966734 0.949505 0.958042 

Random Forest 94.730005 0.968560 0.945545 0.956914 

Decision Tree 94.505187 0.952569 0.954455 0.953511 

KNN 83.206968 0.968560 0.956914 0.945545 

 

employed a confusion matrix to determine the 

accuracy, precision, recall, and f1-score. The av- 

enrage accuracy of Boating classifier, LGBM 

RF,DT, and KNN are 94.884756%, 97.772239%, 

94.730104%,  94.730005,  94.505187%,  and 

83.206968% respectively. Table I shows the 

classic- fiction performance measures of all 

models. We see that GB and LGB give the outcome 

more accurately, and KNN gives the least 

accurate 

outcome. When the outcomes are combined, hard 

voting gives an accuracy of 97.772239% (If 

Including Reviews and Ratings). When not include- 

Ing the rating and reviews features, the Classifier 

has around 80% accuracy. If the number of app 

installs exceeds a specific threshold, the 

classification models can accurately predict 

whether an app will be successful or unsuccessful. 

6. Evaluation 

 

In this section, we evaluate the proposed approach on the google play store apps collected from Kaggle. 

 

Table 2. Comparison with Previous Approaches 

 
Off-the-Shelf Algorithms Dataset Accuracy 

Dehkordi et al.(2020) Neural Networks 

100 successful and 

100 unsuccessful 

Android apps 

Without PCA 95.5%, 

with PCA 99.99% 

 

A. Sing et al. (2020) 

Decision Tree Clas- 

sifier, SVM,Random 

Forest, XGBoost and 

KNN 

 

Google Play store 
70.49%, 80.34%, 

75.59%, 79.99% and 

77.26%, respectively 

 
Logistic Regression, 

 0.78476%, 
  0.71063%, 

Random Forests, K- 
 

B. T. Magar et al.(2021) 

 

Google Play Store apps 

0.79346%, 

0.76386%, 

0.77033%, 

Nearest Neighbors, 

Stochastic Gradient 

Descent, Decision 
  0.79190% respec- 

Trees and SVM 
  tively 

Proposed Model Ensemble Learning Google Play store 96.772239% 
 

6.1. Research questions 

In the evaluation, the following research questions 

are being investigated: 

• RQ1: Does the proposed ensemble 

learning approach surpass the existing approaches? 

ifyes? to what extend? 

• RQ2: Does preprocessing step 

influence the performance of the proposed 

approach? 

• RQ3: Does ensemble learning 

outperforms other classifiers in predicting app 

success. 

 

6.1.1. RQ1: Proposed Approach Accuracy 

In the first research question (RQ1), the accuracy 

of the proposed approach is computed. Here we 

employed an ensemble learning-based approach to 

predict an app’s success. First, we used training 

data to train base models— DT, RF, KNN, GB, and 

LGB. After training, we used test data to evaluate 

our  models’  performance,  with  each  model 
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providing an individual prediction. The predictions KNN, are (0.966734, 0.949505 and 0.958042) 
of these models are used as additional input for (0.963600%, 0.943564% and 0.9553477%), 

our ensemble learning, which is a composite model (0.985657%, 0.966535% and 0.976000%), 

trained to provide the final prediction. To make a (0.968560%, 0.945545% and 0.956914%), 

final prediction, we used a hard voting ensemble- 

based approach. To determine the robustness of 

each model, we employed a confusion matrix to 

determine the accuracy, precision, recall, and f1- 

score. In the case of App success prediction, the 

precision should be maximized because which app 

would be successful must be detected as successful 

accurately. Evaluation results of — DT, RF, KNN, 

GB, LGB AND Voting classifier are presented in 

Table I. The classifiers are listed in the 1st column. 

Columns 3–5 present the results of each classifier’s 

precision, recall, and f-measure. Each row shows 

the average performance of a specific classifier. 

The average precision, re- call, and f-measure of 

the — LGB, GB, Voting Classifier, RF, DT, and 

(0.952569%, 0.954455% and 0.953 

511%), and (0.968560%, 0.956914% and 
0.945545%,) respectively. 

 

6.1.2. RQ2: Influence of Preprocessing 

Apps Data contains worthless and irrelevant 

information, such as stop words and punctuation (as 

mentioned in Section 3.2). Providing such data to 

machine learning algorithms makes the training phase 

more challenging. It decreases their efficiency and 

raises the total cost of computing. To answer RQ2, 

we compare results of proposed approach with and 

without preprocessing. 

Table 3. Influence of Preprocessing 

 
Preprocessing Accuracy% Precision Recall 

Disabled 

DT 67.492166 0.693496 0.695382 

KNN 58.469450 0.693496 0.943564 

Ensemble 95.632687 0.803563 0.82269 

Enabled 

DT 94.505187 0.952569 0.954455 

KNN 83.206968 0.968560 0.956914 

Ensemble 96.772239 0.965657 0.946535 

Improvement 

DT 27.013021 0.259073 0.259075 

KNN 24.737518 0.338139 0.310033 

Ensemble 1.139552 0.162094 0.123845 
 

The findings of the evaluation are presented in 

Table 3. The input settings for preprocessing are 

shown in the first column of the table. Columns 2–4 

show the accuracy, precision, and recall of 

performance results. Rows show the proposed 

approach’s performance with different prepare- 

cussing settings. In the section on improvements, 

we show how the proposed approach works better 

with different preprocessing input settings. By 

enabling preprocessing, the average accu-racy, 

precision, and recall of the proposed approach are 

(96.772239%,  0.965657,  and  0.946535).,  and 

disabling preprocessing are (95.632687%, 

0.803563 and 0.82269). From Table 3, the 

following are some observations that we make: 

 

• The preprocessing layers used in the 

proposed approach significantly improve perfor- 

mance. The evaluation findings indicate that the 

performance improvement in Accuracy, precision, 

and recall is 1.139552%, 0.162094, and 0.123845, 

respectively. 

 

• Disabling preprocessing reduces the 

precision of the proposed method from 0.965657 to 

0.803563. Because using the proposed approach 

without preprocessing may include un- desired 

words as features, this may be one of the possible 

reasons for the decrease in performance. This could 

impact the proposed approach’s efficiency and 

processing time. 

 

• The above analysis concludes that 

preprocessing is a crucial step for the proposed 

approach. 

6.1.3. RQ3: 

To answer the third research question (RQ3), we 

compare previous approaches with the proposed 

approach. Table 2 shows the comparison between the 
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off-the-shelf and proposed approach. When we come 

to the performances and compare them with the 

previous approaches that had been done to show the 

findings and the data collection regarding the use of 

smartphones in the use of app development and 

their uses. Lastly, the Proposed Model suggested 

describing the research prob-lem having the Mobile 

App Success prediction containing algorithms of 

Ensemble Learning. This model had the dataset of 

the Google Play store. And consisting of 

97.772239%,  0.985657,  0.966535,  0.976000, 

Accuracy, Precision, F1-Score, and Recall, 

respectively. Moreover, this section demonstrates 

how well our ensemble model performs compared 

to other studies in this domain. As shown in Table 

1, the Android operating system’s highest accuracy 

is 96.772239%, which pertains to the proposed 

approach. This signifies that our accuracy in the 

field of Android apps is higher than the accuracy of 

others on the Android platforms. 

6.1.4. Performance Measure 

Precision, recall, F1-score, and accuracy are four 

different measures used to evaluate each model’s 

performance. Although any of these criteria may be 

insufficient in a defining model when used 

individually, they provide a comprehensive 

evaluation of the models when used col-electively. 

 

 

 
 

The ratio of correctly identified positive observations to all true positive cases is known as Recall. 
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In equation (5), the value of TP is 720 and FP is 48 

and FN is 46. And we achieved the F1 score as 

0.9387%. 

Accuracy is essential when True Positives and True 

Negatives are crucial, whereas F1-score is used 

when False Positives and False Negatives are 

crucial. In this approach, TP represents the number 

of applications predicted to succeed. TN represents 

the number of applications that are accurately 

predicted to fail. FP represents the number of 

applications that are predicted to suc-ceed 

incorrectly. FN represents the number of 

applications that are predicted to fail incorrectly. 

Where to this approach for successful prediction of 

apps, TP means the number of apps that are 

correctly predicted to succeed, whereas TN means 

the number of apps that are correctly predicted to 

fail, the number of applications wrongly predicted 

as success is FP, while the number of apps 

incorrectly predicted as failure is FN. 

7. Conclusion and Future work 

The Google Play Store is the world’s largest app 

store. However, it confronts several signif-icant 

challenges, such as predicting the app’s success. 

Consequently, a large number of Mobile Apps did 

not receive a satisfactory solution, squandering the 

developers’ time and effort. Sev- erzzal factors 

influence an app’s popularity and success. These 

factors are diverse and varied, such as app rating, 

pricing, etc. At this end, we present an ensemble 

learning-based approach for predicting whether or 

not a mobile app will be successful. We employ 

natural language pro- cessing technologies to 

perform preprocessing. These select features give 

us optimal results and train an ensemble learning 

that predicts whether or not a certain app will 

acquire its solution. As a result of this, developers 

will be able to save time and effort. Data collected 

from Kaggle is used to evaluate the proposed 

approach. The average accuracy, recall, and f- 

measure of the voting classifier, according to hold- 

out validation, are up to 0.985657 0.966535 and 

0.976000 respectively. The significance of our 

research is to demonstrate the app requirement 

description helps in their success prediction. In the 

future, additional attributes would be helpful to 

increase classification capabilities. These attributes 

may include internal app factors and performance. 

Furthermore, using more advanced algorithms, for 

example, Deep Neural networks, may lead to better 

classifications, allowing application developers to 

improve the success rates of their apps. 
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