
Letters in High Energy Physics
ISSN: 2632-2714

Volume 2024

1669

Predicting Mobile App Success Using a Robust Hard Voting

Ensemble Learning Approach

Aqsa Saleem1, Muhammad Aleem2*, Nayem Uddin Prince3, Md Mehedi Hassan Melon4,

Salman Mohammad Abdullah5, Shah Md. Wasif Faisal6, Mohd Abdullah Al Mamun7
1) Department Of Computer Science, COMSATS University Islamabad - Sahiwal Pakistan

2) Faculty Of Computing Universiti Malaysia Pahang Al-Sultan Abdullah 26600 Pekan, Pahang Malaysia

3) Daffodil International University, Bangladesh

4) International American University, Los Angeles

5) Washington University Of Science and Technology, USA

6) Washington University Of Science And Technology, USA

7) MBA In Information Technology Management, Westcliff University, USA

Email: aleemmian380@gmail.com

Abstract. Apps have become an inseparable part of our daily lives. There are different kinds of mobile apps on

the market. Google Play Store apps development is one of the most enticing and consumer-friendly

development paradigms for mobile apps. On the other hand, the paradigm is still in its early phases and does not

address critical issues such as an app’s success and failure. A considerable number of mobile apps do not

acquire a good solution, squandering stakeholders’ time and effort. Therefore, predicting the success of a new

app will be helpful for developers. This research proposes an ensemble learning-based approach for predicting

the success of the mobile app. For this purpose, the app’s important attributes (rating, number of installs) can be

selected from the dataset. Datasets can be preprocessed using NLP (Natural Language Processing) technologies

and perform Data Analysis. These selected features were then deployed to several ML (Machine Learning)

algorithms — Deci- Sion Tree Classifier, Random Forest Classifier, K - Nearest Neighbor Classification, Gradient

Boosting Classifier, and Light Gradient Boosting Classifier. Finally, an ensemble model pro- poses to predict a

new app’s success. Our suggested model outperforms, with an accuracy of96.772239%.

Key-words: Ensemble learning, Natural Language Processing (NLP), Mobile Apps, Data Analysis, Decision

Tree, Random Forest, K-Nearest Neighbor, Gradient Boosting, Light Gradient Boosting

1. Introduction

Mobile applications are used more rapidly and

conveniently because of the widespread use of

smartphones. As a result, mobile apps have grown

to be extremely vast and competitive. Al- most all

digital requirements have spawned multiple apps,

giving smartphone users a plethora of options when

it comes to which app to download and use. Many

characteristics of an application could be crucial in

deciding the popularity and success of an

application in such a competitive environment. As

a result, mobile app developers must consider

various factors when develop- Ing and deploying

their apps. Although the app store has millions of

apps, most of them are rarely downloaded or used.

So it is very important to investigate how apps are

becoming a vital part of people’s lives. The rapid

growth of the mobile app market has a significant

effect on the development of advanced innovation.

However, as the flexible application market

continues to grow, so does the number of portable

application designers, resulting in the global

portable application sector earning as much as it

can. Mobile applications have become the key

usage for smartphones, providing a variety of

features and services like social networking,

entertainment, purchasing, checking information,

and navigation [1].

According to anecdotal evidence, users install an

average of 63 applications on their cell- phones and

spend more than 6 hours each day on them [2].

IOS systems have been launched

1.85 million applications worldwide due to the

popularity of mobile applications; the number of

applications available for Android systems is

slightly higher, with approximately 2.56 mil- lion

applications available as of the first quarter of 2020

[3]. Among the numerous applications accessible,

it is worth mentioning that only the top applications

in each category comprise the bulk of the user’s

time. In another way, the overwhelming number of

mobile applications fails to meet expectations.

mailto:aleemmian380@gmail.com

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2024

1670

Furthermore, nearly half of smartphone users only

use 5–10 applications each day and uninstall 3.9

applications every month. In this circumstance, app

developers and service providers must figure out

how to attract and retain consumers to succeed in

the mobile application market.

An app store, like Google Play, is a platform where

users may download mobile applications for every

service or software. Users can explore and

download apps via app stores, while de- elopers can

maintain track of their apps by providing reviews

and star ratings. Reviews may contain the user’s

experience, problem reports, requests for additional

features, or a numerical rating of the app [4].

Various app features, both internal and external to

the app, can play a key influence in assessing

whether or not the app will succeed. Using a

dataset comprising in-formation gathered from the

Google Play Store, this research investigates

several characteristics external to an application to

classify the application’s success. Several

classification models are developed and analyzed in

order to gain a better knowledge of how to classify

the success of an app [5]. The author of another

paper [6] examines the application ratings. It

highlights the fact that the way a store is rated after

reaching a particular limit has no effect on the

overall store rat-Ing, even after users have rated it.

It emphasizes that the updated app rating depends

on the app’s version. As a result, the notion of

grading variations arose. The available store rating

can be used to calculate version ratings. Google

Play Store is becoming one of the most appealing

and user-friendly platforms for Mobile apps among

all mobile app distribution platforms [7].

A large number of new Mobile apps are added to

this platform on a daily basis. Given the

tremendous challenges around the world, a designer

must realize that they are on the right track [8]. To

maintain this revenue and marketplace, application

developers may need to know how to maintain

their current position. The Google Play Store is

considered the most extensive application platform.

However, the Google play store paradigm is

currently in its early stages and has some obstacles

that must be overcome. One of the most significant

issues it encounters is that it directly impacts the

app’s success rate [9]. As a result, many apps are

either abandoned or fail to yield satisfactory results.

Developers are constantly seeking to improve the

effectiveness of their new apps through solo or

teamwork. Developers find it challenging to

maintain their market position on this platform as

it becomes more competitive. However, if

developers can predict the success of a new app

before it is released on the Google Play Store,

they may find it easier to compete in this more

competitive market. Despite the massive expansion

of apps in recent years, there is a scarcity of related

work on app analysis. In this paper, we investigate

the extent to which we can predict an app’s success

based on its different attributes like rating, reviews,

app size, and price. We make extensive use of

ensemble learning techniques for this purpose.

The generic meta-approach to machine learning

known as” ensemble learning” aims to achieve

optimum prediction performance by integrating a

variety of approaches to get the best accu-racy

[10]. Individually, various ML algorithms may not

be able to produce optimum results; consequently,

integrating them will enhance the model’s

performance and improve its accuracy. The

Ensemble learning approach for predicting and

classifying the success of the mobile app has been

shown to perform better than using a single

classifier. Bagging, stacking, and boosting are the

three classes of ensemble learning. Bagging

involves making several decisions on different

samples of the same dataset and calculating the

mean prediction, [11] while stacking involves

fitting different models to the same data and

learning the aggregated predictions using another

model [12]. Boosting involves adding ensemble

members successively to correct previous pre-

dictions provided by other models. Then the

average of the predictions is taken [13].

To this end, we explore the app descriptions in-depth

and present a unique technique based on ensemble

learning for predicting the success of mobile apps.

The suggested method classifies ap- plications as

either successful or unsuccessful. First, we obtained

a dataset from Kaggle and used NLP technologies

for preprocessing. Second, we perform Data

Analysis. Third, multiple ML classifiers are used

for the successful prediction of the app. Finally, the

voting ensemble-based technique is proposed to

produce a final prediction. The core objective of

this voting method is to reduce algorithmic errors

by combining the decisions using a majority voting

technique. Four separate performance metrics:

Precision, Recall, Accuracy, and F1-Score, are used

to provide an effective and comprehensive

validation of the performance of models.

Following are the key contributions of this research:

• An ensemble learning technique is

suggested to determine how successful a new app

will be.

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2024

1671

• Machine learning algorithms, including

Decision Tree Classifier, Random Forest Classi-

fier, K - Nearest Neighbor Classification, Gradient

Boosting Classifier, and Light Gradi-ent Boosting

Classifier, are used to predict an app’s success.

• A Hard voting ensemble learning model

is proposed to improve classification performance.

• The precision, recall, and f-measure of the

proposed approach are up to 0.985657 0.966535 and

0.976000 respectively. This suggests that the

proposed approach is accurate.

2. Literature Review

Magar et al. utilized a Google Play Store-extracted

dataset [5]. Various external features were used for

an app to classify its success. This study tackles a

classification problem. SVM, K-Nearest Neighbor,

Stochastic Gradient Descent, and Random Forest

were some of the models that were employed in the

analysis of data [14]. Based on execution times and

performance metrics, the models were compared.

This research determined the classification model

with the best performance and analyzed the

relationship between target categories and

classification performance. According to the

literature, the sales price, number of updates,

languages in which the app is released, operating

system versions supported, API functionalities, and

the package size are all measurable app features

that might positively affect its success [15].

Furthermore, the popularity of the app’s category
[16] and the user rating tend to have a substantial

impact onsuccess.

N. Picoto et al. used multivariate logistic regression

[17] to examine the app’s performance with five

parameters, including user ratings, category

attractiveness, diversity, capacity factor, and

theatrical release. It also used a fuzzy set

qualitative comparative analysis (fsQCA) to look

for new causal explanations for the performance of

the mobile app. According to multivariate analysis

[18], the attractiveness of the subcategory, variety,

capacity factor, and app release date are all

characteristics that boost the likelihood of an app

being ranked among the top 50.

Singh et al. worked using an Android app dataset

[19]. They used exploratory data analysis and

multiple ML models to figure out which aspects of

an app impact its success. Decision Tree, Random

Forest, SVM, XGBoost, and KNN were some of the

models employed [20]. They attained accuracy

rates of 70.49 percent, 80.34 percent, 75.59

percent,

79.99 percent, and 77.26 percent, correspondingly.

They determined that an app’s rating and content

rating were important in determining its

performance in the competitive online marketplace.

Mueez et al. worked on the Play Store apps

dataset to predict an app’s ”success” [20]. They

defined success in terms of the function of an

application’s rating and the number of times it has

been installed. Another noteworthy feature of their

endeavor was the fact that they took into

consideration actual user reviews. Data from app

reviews were used to make predictions based on a

list of commonly used terms in the reviews. They

employed those terms in the app to do sentimental

analysis [21], and the sentiment score served as a

featured column in their predictions. Although the

authors made some assumptions when selecting

these feature columns, they attained an accuracy of

85.09 % utilizing the XGBoost Classifier, K-

Nearest Neighbor, Random Forest, and SVM. The

authors’ handling of a binary classification issue

must have contributed to the excellent accuracy rate

obtained.

Dehkordi et al. showed a dataset of 100 successful

and 100 unsuccessful Android applications that

were available in the Google Play Store [22]. Each

app had 34 features. The repos-itory was then used

to predict the accuracy of various neural networks

and other classification techniques in two

scenarios: with and without using the principal

component analysis (PCA) algorithm. Without

PCA, the NPR algorithm achieved a prediction

accuracy of 95.5%, while theMLP method achieved

a prediction accuracy of 99.995%. This means that

the NPR algorithm ismore accurate when there are

more repository features. Suleman et al. used

Google Play Store app data and how they were

received by the users [23]. The dataset contains

10839 entries, which perhaps an insufficient

number is given the problem they were attempting

to solve. This dataset is used to train various ML

models [24] to predict the app’s success. The goal

of their study was to figure out which model

worked best for predicting app ratings.

Bashir et al. evaluated a dataset of mobile

applications available through Google Play to de-

termine the level of success each app had in the

”real world” [7]. The researchers concentrated on

predicting an application’s success before it was

released. The number of installs and ap- plication

ratings were determined ”success.” Due to the

authors’ concentration on the ”success “of the apps,

they encountered binary categorization problems

regarding predictions. When they tried different

machine learning methods, they determined that the

SVM model made the most accurate predictions

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2024

1672

[24]. In recent years, as mobile devices’

computational capability has in- creased, the

importance of these devices has moved to the

software and data they can provide. The expansion

of mobile applications is an opportunity and a

significant challenge for companies and developers,

since it is challenging to stand out among the 7.1

million apps [25] accessible on app stores.

Acquiring awareness is a difficult and time-

consuming task. The mobile market is difficult to

understand due to a lack of data on app demand and

sales. Furthermore, because mobile users spend

more time using applications than websites,

businesses seeking competitive advantage must

understand the elements that influence app

performance to design appropriate mobile

strategies, and effective mobile marketing [15].

Aralikatte et al. attempted to represent the review-

rating discrepancy by developing differ- ent

algorithms capable of automatically detecting the

discrepancy between the two [26]. They employed

two machine learning strategies to demonstrate this

mismatch: The first approach re- lied on many

classifiers and algorithms, such as the Decision tree,

Naive Bayes, Decision stump, and Decision table;

the second approach relied on deep learning. They

also conducted numerous surveys to understand

end users’ and developers’ perspectives on the

mismatch. The survey’s findings were quite

predictable: both Android app developers and end-

users agreed that an app’s rating should correspond

to its related review, and they claimed to have an

automatic system in place to detect any discrepancy

between rating and review [27].

Y. Yao et al. proposed a novel technique for

developing an app-recommendation system that

considers a vital feature of each app [28]. In other

words, they wanted to create an app-

recommendation system that was version-aware.

As the authors illustrated, app ratings can sub-

statically change based on the application’s version.

This is an essential feature of their approach. The

authors built their model and generated

recommendations based on the review text for each

app. They suggested a single Version-Aware Matrix

Factorization (VAMF) framework that con- side red

both version-level and overall app-level review text.

Researchers apply a greedy method in the article

[29]to extract mobile-app elements from official

pages displaying programmed de- scrimptions to

examine business and technical aspects of mobile

applications. Researchers used the hidden model to

classify spam in mobile app stores and divided

reviews into malicious and non-malicious

categories.

B. Fu et al. address the question of why a user does

not want an app and provide an expla-nation for

why it fails [30]. Not all reviews may be treated

and incorporated as part of the study. Such reviews

generate a lot of noise and increase the percentage

of inaccuracies. Such reviews were attempted to be

eliminated by the authors, which reduced noise in

the dataset and improved sentiment analysis

performance. As a result, a more precise polarity

value is generated. Li [30] suggested WisCom, a

system capable of analyzing minimum ten million

user comments and ratings across three levels in

app stores. This technology is believed to have

initially identified inconsistencies in reviews before

looking for reasons why people dislike a specific

application and how reviews change with time in

response to customer demands. Their suggested

strategy and valuable research present an

enthralling tour of the most relevant issues. It

generates ways for summarizing and mining

evaluations, assisting end customers in selecting

the best program without having to read through

descriptive reviews of previous users.

R. Mihalcea et al. introduced a Text Rank graph-

based ranking mechanism for graphs col-lected

from natural language texts [31]. Researchers

explore Text Rank’s application to two language

processing tasks: unsupervised keyword and

sentence extraction. The results produced with Text

Rank are comparable to those obtained with state-

of-the-art frameworks in these do- mains. B. Liu

works on feature reviews [32]. He mentions the

ineffective use of user ratings and reviews. In

addition, the researcher develops several systems

that detect the contradiction between the two

features mentioned above. The system primarily

employs the Naive Bayes Classifier, Decision Tree,

Decision Stump, Decision Table, and a few more

Machine Learning Algorithms and Deep Learning

Approaches. They conducted multiple polls as part

of the process to learn what users and developers

thought about the two features mentioned above.

The idea of matching app review and rating

relevancy was agreed upon by both end-users and

Developers, concluding with the likes of the author.

Following up on previous research on the same

sentiment analysis. This work [4] demonstrates that

on the app store, there is a distinction between

starred user ratings and reviews. As a result, the

author recommends a new scoring system that

could eliminate uncertainty and distinction between

reviews and ratings that the user has produced.

According to the author, the user is interested in

downloading an app based on their rating. Zhuet al.

developed a PHMM app popularity prediction

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2024

1673

model based on market ranking, user rat- Ing, and

user review to measure app popularity [33]. Wang

et al. investigated the causes of app competition

and proposed EHCM and an evolutionary

competition model [34] for predicting app

download volumes. Finkelstein et al. explored app

popularity by ranking downloads to determine the

relationship between prices, ratings, and app

popularity.

3. Data Preparation

The dataset used in this study comprises

information on Google Play Store apps. Dataset is

available publicly on Kaggle. The dataset contains

many features, like App, Category, Price, Installs,

Size of the app, reviews, Content Rating, Last

Updated date, and so on, as shown in 1.

Fig. 1. Sample Dataset

3.1. Data Analysis

The first and most important step in any prediction is Data Analysis (DA). DA is the pro-cess of using summary

statistics and graphical representations to analyze to identify patterns, and anomalies, test theories, and verify

assumptions. DA helps us choose the best prediction algo-rithms and models for the data. Before we work on

our data, eliminate any null data that might cause noise in prediction. We analyze our findings and identify that

the Google Play store offers over 33 distinct types of apps. The category of Tool has the highest number of counts.

We elimi-nate the categories with a lower count because they will not significantly impact our prediction or

accuracy but will create noise and inconsistencies. Next, several graph functions are used to an-alyze the

frequency of average ratings between 0 and 5 and the categories with the most installed.

3.1.1. Category vs. Apps

The Category column in our dataset contains 34 unique categories. 2 illustrates the Bar Chartof various kinds of

apps against the categories.

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2024

1674

Fig. 2. Bar chart of category against number of app

3.1.2. Category vs. Rating

All the categories have close rating averages. There

are many categories of apps that are equal in terms

of being the highest rated. The interest should lie

within the app categories with the lowest ratings.

These poorly rated apps deserve

more attention because if a new app in that category

were to be put on the app store, the developers could

satisfy the demand for innovation in this area. In

this case, The Categories of Importance are”

AUTO- AND- VE- HICLES” and

” ENTERTAINMENT.” 3 shows the Bar chart of

categories by Ratings.

Fig. 3. Bar chart of categories by Ratings

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2024

1675

3.2. Data Preprocessing

”Data preprocessing” is an essential part of ”data

mining.” The quality of the data has an impact on

the outcome. Different mining techniques, such as

classification and clustering, give the best and most

effective results when preprocessing adequately

cleans the data. Most data contain trash values,

which should be handled before they impact the

performance of predictive models that have been

trained. Since we collected data from Kaggle,

which is semi-structured or unstructured data that

includes large redundant information, there were

needed to be prepro-cessed to turn it into some

valuable information. NLP Techniques are used to

preprocess the data. Tokenization, stop word

removal, and lemmatization are some of the

preprocessing approaches used to preprocess our

data.

3.2.1. Tokenization

: Splitting text into tokens (words) is referred to

as tokenization. We break down the text into words

and eliminate special characters such as

punctuation marks.

3.2.2. Stop Words Removal

: Words that are employed to make sentences

meaningful but have no significance on their own

are frequently found in textual documents. These

words are known as ”stop words.” During

tokenization, we eliminate such terms from the

extracted words.

3.2.3. Lemmatization

: Lemmatization is the process of

converting superlative and comparative words into

their basic words. For example, lemmatization

transforms the word” likes” into ”like.”

3.3. Dataset After Preprocessing

As we see above in figure 1, the dataset collected

from Kaggle is in raw form. Therefore, EDA and

preprocessing techniques were used on the dataset

to turn inconsistent data into a com- prehensible

form. After performing EDA and preprocessing

techniques on our dataset, Installs and content

ratings were changed to integers. The app’s size is

given as a ”string.” It must be con- verted into a

numerical value. To maintain consistency, the app’s

sizes in kilobytes were changed to megabytes. The

price information is provided as a string. To

convert data into the numeric format, the dollar

sign must be removed from the text. Dataset after

preprocessing is show in 4.

Fig. 4. Dataset After Preprocessing

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2024

1676

3.4. Label Encoding

Categorical features including content rating, genre

and type are label encoded. The way in which we

go about preprocessing the data is by binarizing the

Installs column. Anything above 100,000 will be

considered equal to 1, and everything below that

threshold will be equal to 0. 5illustrates the dataset

with label encoding.

Fig. 5. Dataset with Label Encoding

3.5. Feature Selection

Feature selection is choosing a feature subset based

on certain criteria. It is also known as attribute

selection or variable selection. Feature selection

process is show 6. This process makes a dataset

more useful and efficient by getting rid of features

that are useless, duplicated, or cause noise. The

segmented dataset is run through feature selection

algorithms to find the most im- portent properties

that affect an app’s success. We select important

features from the data that give us an optimal

prediction. After that, we generate a dataset using

those chosen features. We split our data into

dependent Y and independent X variables. No. of

installs column is used as target feature, which

consists of quantitative data. After feature

selection, the ensemble learning classifier is used to

train the data and get high accuracy.

Fig. 6. Feature Selection Process

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2024

1677

4. Approach

Overview

The Google Play Store applications dataset is

used to predict the success of an app. We propose

an ensemble learning model for selecting the

dataset’s most discriminating features. After

selecting the attributes, we preprocessed them and

applied multiple ML algorithms, in- clouding

Decision Tree Classifier (DTC), Random Forest

Classifier (RF), K – Nearest Neighbor

Classification (KNN), Gradient Boosting Classifier

(GBC), and Light Gradient Boosting Classi- fire

(LGBC). Additionally, a voting ensemble-based

approach to making a final prediction has been

considered. The primary objective of this voting

strategy is to eliminate algorithmic errors by

combining decisions through majority voting.

Finally, we improved the overall efficiency of these

algorithms using this ensemble approach. Overview

of approach is given below as show in 7.

4.1. Ensemble Learning

Fig. 7. Proposed Approach

models compatible with all of the attributes

available in the dataset. Models were implemented
Ensemble learning classifiers are used in our

technique to predict app success. Ensemble

learning is a broad meta approach to machine

learning that looks for the best prediction per- for

Mance by combining approaches to get the

maximum accuracy. Because the employment of

several machine learning algorithms individually

may not yield the best results, the combination of

algorithms will combine all of the model’s

strengths and produce a higher accuracy. In this

case, we employ the maximum voting approach,

with the outcome being the majority vote of all

classifiers. We assessed the performance of several

ensemble learning classifiers; the algorithms used

are as follows: Decision Tree Classifier (DTC),

Random Forest Classifier (RF), K – Nearest

Neighbor Classification (KNN), Gradient Boosting

Classifier (GBC), and Light Gradient Boost- ing

Classifier (LGBC), which are briefly explained

below. These algorithms are used to generate

using Scikit [35] in Python because ensemble

learning approaches are meta-algorithms that intel-

grate various machine learning approaches into a

single predictive model, reducing variation and bias

while improving predictions.

4.1.1. Hard Voting

Ensemble Vote Classifier is a meta-classifier for

integrating comparable or conceptually separate

machine learning classifiers for classification based

on majority or plurality vote. [36]. Ensemble

learning is generally employed to enhance a

model’s efficiency or reduce the chance of

selecting a poor model. In machine learning, there

are several methods of Ensemble in prac-tice. Here

we use a hard voting classifier to fit all the

classification models. Then it combines the

outcomes of the Decision Tree Classifier, Random

Forest C l a s s i f i e r , K - Nearest

Neighbor

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2024

1678

classification Gradient Boosting Classifier and

Light Gradient Boosting Classifier. The 8 ills-

trades how it all works .The max voting method

will enhance the classification precision. Let’s

take

three classifiers as (1), Classifier1 (C1), Classifier2

(C2), and Classifier3 (C3) as an example to show

how this approach works.

Fig. 8. Ensemble Classifications

5. Results and discussion

5.0.1. Correlation

The heatmap was developed to show the

correlations between all of the features with each

other features, as shown in 9. As observed from the

heatmap, almost all the features are used in-

dependently from each other and do not have

redundancy. Installs and Reviews have the strongest

inverse correlation because more reviews are

performed on the most popular apps. Apps with the

highest number of installations would generate the

highest revenue.

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2024

1679

Fig. 9. Heatmap showing relation between features

All the performance measures that are described in

section VI are combined in this paper to provide a

more comprehensive and accurate picture of each

model’s performance. 10 depicts the confusion

matrix, which demonstrates how each model is

evaluated.

All of the different measures used to evaluate a

model can be gleaned from the confusion matrix.

The Classification report presents a complete list of

performance metrics for each target feature

category. Similarly, classification reports and

confusion matrices are generated for all classifiers.

Table I summarizes the findings obtained from the

classification reports of all employed models.

When we analyze our results, we see ensemble

learning algorithms provide better results than

simple machine learning algorithms. The objective

Feature in this paper is the number of installs

column. The number of categories into which the

target Feature is divided significantly im- pacts the

models’ average accuracy scores. We trained our

machine learning algorithms- DT, RF, KNN, GB,

and LGB using Google Play apps Dataset obtained

from Kaggle. We use a hard voting ensemble-based

approach for final prediction. To determine the

robustness of each model, we

Fig. 10. Confusion Matrix

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2024

1680

Table 1. Comparison of Performance Measure for All Models

Classifiers Accuracy% Precision Recall F1-score

Voting Classifier 96.772239 0.965657 0.946535 0.956000

GB 94.884756 0.963600 0.943564 0.9553477

LGBM 94.730104 0.966734 0.949505 0.958042

Random Forest 94.730005 0.968560 0.945545 0.956914

Decision Tree 94.505187 0.952569 0.954455 0.953511

KNN 83.206968 0.968560 0.956914 0.945545

employed a confusion matrix to determine the

accuracy, precision, recall, and f1-score. The av-

enrage accuracy of Boating classifier, LGBM

RF,DT, and KNN are 94.884756%, 97.772239%,

94.730104%, 94.730005, 94.505187%, and

83.206968% respectively. Table I shows the

classic- fiction performance measures of all

models. We see that GB and LGB give the outcome

more accurately, and KNN gives the least

accurate

outcome. When the outcomes are combined, hard

voting gives an accuracy of 97.772239% (If

Including Reviews and Ratings). When not include-

Ing the rating and reviews features, the Classifier

has around 80% accuracy. If the number of app

installs exceeds a specific threshold, the

classification models can accurately predict

whether an app will be successful or unsuccessful.

6. Evaluation

In this section, we evaluate the proposed approach on the google play store apps collected from Kaggle.

Table 2. Comparison with Previous Approaches

Off-the-Shelf Algorithms Dataset Accuracy

Dehkordi et al.(2020) Neural Networks

100 successful and

100 unsuccessful

Android apps

Without PCA 95.5%,

with PCA 99.99%

A. Sing et al. (2020)

Decision Tree Clas-

sifier, SVM,Random

Forest, XGBoost and

KNN

Google Play store
70.49%, 80.34%,

75.59%, 79.99% and

77.26%, respectively

Logistic Regression,

 0.78476%,
 0.71063%,

Random Forests, K-

B. T. Magar et al.(2021)

Google Play Store apps

0.79346%,

0.76386%,

0.77033%,

Nearest Neighbors,

Stochastic Gradient

Descent, Decision
 0.79190% respec-

Trees and SVM
 tively

Proposed Model Ensemble Learning Google Play store 96.772239%

6.1. Research questions

In the evaluation, the following research questions

are being investigated:

• RQ1: Does the proposed ensemble

learning approach surpass the existing approaches?

ifyes? to what extend?

• RQ2: Does preprocessing step

influence the performance of the proposed

approach?

• RQ3: Does ensemble learning

outperforms other classifiers in predicting app

success.

6.1.1. RQ1: Proposed Approach Accuracy

In the first research question (RQ1), the accuracy

of the proposed approach is computed. Here we

employed an ensemble learning-based approach to

predict an app’s success. First, we used training

data to train base models— DT, RF, KNN, GB, and

LGB. After training, we used test data to evaluate

our models’ performance, with each model

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2024

1681

providing an individual prediction. The predictions KNN, are (0.966734, 0.949505 and 0.958042)
of these models are used as additional input for (0.963600%, 0.943564% and 0.9553477%),

our ensemble learning, which is a composite model (0.985657%, 0.966535% and 0.976000%),

trained to provide the final prediction. To make a (0.968560%, 0.945545% and 0.956914%),

final prediction, we used a hard voting ensemble-

based approach. To determine the robustness of

each model, we employed a confusion matrix to

determine the accuracy, precision, recall, and f1-

score. In the case of App success prediction, the

precision should be maximized because which app

would be successful must be detected as successful

accurately. Evaluation results of — DT, RF, KNN,

GB, LGB AND Voting classifier are presented in

Table I. The classifiers are listed in the 1st column.

Columns 3–5 present the results of each classifier’s

precision, recall, and f-measure. Each row shows

the average performance of a specific classifier.

The average precision, re- call, and f-measure of

the — LGB, GB, Voting Classifier, RF, DT, and

(0.952569%, 0.954455% and 0.953

511%), and (0.968560%, 0.956914% and
0.945545%,) respectively.

6.1.2. RQ2: Influence of Preprocessing

Apps Data contains worthless and irrelevant

information, such as stop words and punctuation (as

mentioned in Section 3.2). Providing such data to

machine learning algorithms makes the training phase

more challenging. It decreases their efficiency and

raises the total cost of computing. To answer RQ2,

we compare results of proposed approach with and

without preprocessing.

Table 3. Influence of Preprocessing

Preprocessing Accuracy% Precision Recall

Disabled

DT 67.492166 0.693496 0.695382

KNN 58.469450 0.693496 0.943564

Ensemble 95.632687 0.803563 0.82269

Enabled

DT 94.505187 0.952569 0.954455

KNN 83.206968 0.968560 0.956914

Ensemble 96.772239 0.965657 0.946535

Improvement

DT 27.013021 0.259073 0.259075

KNN 24.737518 0.338139 0.310033

Ensemble 1.139552 0.162094 0.123845

The findings of the evaluation are presented in

Table 3. The input settings for preprocessing are

shown in the first column of the table. Columns 2–4

show the accuracy, precision, and recall of

performance results. Rows show the proposed

approach’s performance with different prepare-

cussing settings. In the section on improvements,

we show how the proposed approach works better

with different preprocessing input settings. By

enabling preprocessing, the average accu-racy,

precision, and recall of the proposed approach are

(96.772239%, 0.965657, and 0.946535)., and

disabling preprocessing are (95.632687%,

0.803563 and 0.82269). From Table 3, the

following are some observations that we make:

• The preprocessing layers used in the

proposed approach significantly improve perfor-

mance. The evaluation findings indicate that the

performance improvement in Accuracy, precision,

and recall is 1.139552%, 0.162094, and 0.123845,

respectively.

• Disabling preprocessing reduces the

precision of the proposed method from 0.965657 to

0.803563. Because using the proposed approach

without preprocessing may include un- desired

words as features, this may be one of the possible

reasons for the decrease in performance. This could

impact the proposed approach’s efficiency and

processing time.

• The above analysis concludes that

preprocessing is a crucial step for the proposed

approach.

6.1.3. RQ3:

To answer the third research question (RQ3), we

compare previous approaches with the proposed

approach. Table 2 shows the comparison between the

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2024

1682

off-the-shelf and proposed approach. When we come

to the performances and compare them with the

previous approaches that had been done to show the

findings and the data collection regarding the use of

smartphones in the use of app development and

their uses. Lastly, the Proposed Model suggested

describing the research prob-lem having the Mobile

App Success prediction containing algorithms of

Ensemble Learning. This model had the dataset of

the Google Play store. And consisting of

97.772239%, 0.985657, 0.966535, 0.976000,

Accuracy, Precision, F1-Score, and Recall,

respectively. Moreover, this section demonstrates

how well our ensemble model performs compared

to other studies in this domain. As shown in Table

1, the Android operating system’s highest accuracy

is 96.772239%, which pertains to the proposed

approach. This signifies that our accuracy in the

field of Android apps is higher than the accuracy of

others on the Android platforms.

6.1.4. Performance Measure

Precision, recall, F1-score, and accuracy are four

different measures used to evaluate each model’s

performance. Although any of these criteria may be

insufficient in a defining model when used

individually, they provide a comprehensive

evaluation of the models when used col-electively.

The ratio of correctly identified positive observations to all true positive cases is known as Recall.

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2024

1683

In equation (5), the value of TP is 720 and FP is 48

and FN is 46. And we achieved the F1 score as

0.9387%.

Accuracy is essential when True Positives and True

Negatives are crucial, whereas F1-score is used

when False Positives and False Negatives are

crucial. In this approach, TP represents the number

of applications predicted to succeed. TN represents

the number of applications that are accurately

predicted to fail. FP represents the number of

applications that are predicted to suc-ceed

incorrectly. FN represents the number of

applications that are predicted to fail incorrectly.

Where to this approach for successful prediction of

apps, TP means the number of apps that are

correctly predicted to succeed, whereas TN means

the number of apps that are correctly predicted to

fail, the number of applications wrongly predicted

as success is FP, while the number of apps

incorrectly predicted as failure is FN.

7. Conclusion and Future work

The Google Play Store is the world’s largest app

store. However, it confronts several signif-icant

challenges, such as predicting the app’s success.

Consequently, a large number of Mobile Apps did

not receive a satisfactory solution, squandering the

developers’ time and effort. Sev- erzzal factors

influence an app’s popularity and success. These

factors are diverse and varied, such as app rating,

pricing, etc. At this end, we present an ensemble

learning-based approach for predicting whether or

not a mobile app will be successful. We employ

natural language pro- cessing technologies to

perform preprocessing. These select features give

us optimal results and train an ensemble learning

that predicts whether or not a certain app will

acquire its solution. As a result of this, developers

will be able to save time and effort. Data collected

from Kaggle is used to evaluate the proposed

approach. The average accuracy, recall, and f-

measure of the voting classifier, according to hold-

out validation, are up to 0.985657 0.966535 and

0.976000 respectively. The significance of our

research is to demonstrate the app requirement

description helps in their success prediction. In the

future, additional attributes would be helpful to

increase classification capabilities. These attributes

may include internal app factors and performance.

Furthermore, using more advanced algorithms, for

example, Deep Neural networks, may lead to better

classifications, allowing application developers to

improve the success rates of their apps.

References

[1] T. DENG S. KANTHAWALA J. MENG W.

PENG A. KONONOVA Q. HAO Q. ZHANG

and P. DAVID, Measuring smartphone usage

and task switching with log tracking and self-

reports, Mobile Media Communication, vol.

7, no. 1, pp. 3–23, 2019.

[2] H. HU G. ZHANG X. YANG H. ZHANG

L.LEI and P. WANG, Online gaming

addiction and de- pressive symptoms among

game players of the glory of the king in china:

the mediating role of affect balance and the

moderating role of flow experience

International Journal of Mental Health and

Ad- diction, pp. 1–14, 2021

[3] S. COMINO F. M.MANENTI and F.

MARIUZZO,Updates management in mobile

applications: itunes versus google play,

Journal of Economics Management Strategy,

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2024

1684

vol. 28, no. 3, pp. 392–419,2019.

[4] M. R. ISLAM,Numeric rating of apps on

google play store by sentiment analysis on

user reviews, in2014 International Conference

on Electrical Engineering and Information

Communication Technol- ogy. IEEE, 2014,

pp. 1–4.

[5] B. T. MAGAR S. MALI and E.

ABDELFATTAH, App success classification

using machine learn- ing models, in 2021

IEEE 11th Annual Computing and

Communication Workshop and Conference

(CCWC). IEEE, 2021, pp. 0642–0647.

[6] W. LUIZ F. VIEGAS R. ALENCAR

F.MOURÃ O T. SALLES D.CARVALHO M.

A.GONC ̧ALVES and L. ROCHA,A feature-

oriented sentiment rating for mobile app

reviews, in Proceedings of the 2018 World

Wide Web Conference, 2018, pp. 1909–1918.

[7] G. M. M.BASHIR M. S.HOSSEN D.

KARMOKER and M. J. KAMAL, Android

apps success pre- diction before uploading on

google play store, in 2019 International

Conference on Sustainable Tech- nologies for

Industry 4.0 (STI). IEEE, 2019, pp. 1–6.

[8] X. XIA E. SHIHAB Y. KAMEI D.LO and

X.WANG,Predicting crashing releases of

mobile applica- tions, in Proceedings of the

10th ACM/IEEE International Symposium on

Empirical Software Engi- neering and

Measurement, 2016, pp. 1–10

[9] G.LEE and T. S.RAGHU, Determinants of

mobile apps’ success: Evidence from the app

store market, Journal of Management

Information Systems, vol. 31, no. 2, pp. 133–

170, 2014.

[10] H. M.GOMES J. P. BARDDAL

F.ENEMBRECK and A. BIFET A survey on

ensemble learning for data stream

classification, ACM Computing Surveys

(CSUR), vol. 50, no. 2, pp. 1–36, 2017.

[11] G.TU¨ YSÜ ZO GLU and D.Birant, Enhanced

bagging (ebagging): A novel approach for

ensemble learning, International Arab Journal

of Information Technology, vol. 17, no. 4,

2020.

[12] Y. WANG D.WANG N. GENG Y. WANG Y.

YIN and Y.JIN,Stacking- based ensemble

learning of de- cision trees for interpretable

prostate cancer detection, Applied Soft

Computing, vol. 77, pp. 188–204, 2019.

[13] N. BRUKHIM E. HAZAN and K. SINGH , A

boosting approach to reinforcement learning,

arXiv preprint arXiv:2108.09767, 2021.

[14] A. SING D. TYAGI B. YADAV ET

AL.,Mobile app success prediction,

International Journal for Research in Applied

Science Engineering Technology (IJRASET),

vol. 8, no. 6, pp. 1674–1679, 2020.

[15] V.DIBIA and C. WAGNER, Success within

app distribution platforms: The contribution

of app di- versity and app cohesivity, in 2015

48th Hawaii International Conference on

System Sciences. IEEE,2015, pp. 4304–4313.

[16] G. C.-C. SHEN, Users’ adoption of mobile

applications: Product type and message

framing’s mod- erating effect, Journal of

Business Research, vol. 68, no. 11, pp. 2317–

2321, 2015.

[17] W. N. PICOTO R.DUARTE and

I.PINTO,Uncovering top-ranking factors for

mobile apps through amultimethod approach,

Journal of Business Research, vol. 101, pp.

668–674, 2019.

[18] C. CHATFIELD and A. J. COLLINS,

Introduction to multivariate analysis,

Routledge, 2018.

[19] A. SING, D. TYAGI, and B. YADAV,

Mobile App Success Prediction International

Journal for Re- search in Applied Science

Engineering Technology (IJRASET), vol. 8,

no. 6, pp. 1674-1679, 2020.

[20] A. MUEEZ K. AHMED T. ISLAM and W.

IQBAL,Exploratory data analysis and success

prediction of google play store apps, Ph.D.

dissertation, BRAC University, 2018.

[21] M.-Y. DAY and Y.-D. LIN, Deep learning

for sentiment analysis on google play

consumer review , in 2017 IEEE international

conference on information reuse and

integration (IRI). IEEE, 2017, pp. 382–388.

[22] M. R.DEHKORDI H. SEIFZADEH G.

BEYDOUN and M. H. NADIMI-

SHAHRAKI, Success pre- diction of android

applications in a novel repository using

Letters in High Energy Physics
ISSN: 2632-2714

Volume 2024

1685

neural networks, Complex Intelligent

Systems, vol. 6, no. 3, pp. 573– 590, 2020.

[23] M. SULEMAN A. MALIK and S. S.

HUSSAIN,Google play store app ranking

prediction using machine learning algorithm,

Urdu News Headline, Text Classification by

Using Different Machine Learning

Algorithms, vol. 57, 2019.

[24] I. PORTUGAL P. ALENCAR and D.

COWAN, The use of machine learning

algorithms in recom- mender systems: A

systematic review, Expert Systems with

Applications, vol. 97, pp. 205–227, 2018.

[25] M. CRISTOFARO, E-business evolution: an

analysis of mobile applications’ business

models, Tech- nology Analysis Strategic

Management, vol. 32, no. 1, pp. 88–103,

2020.

[26] R. ARALIKATTE G. SRIDHARA N.

GANTAYAT and S. MANI, Fault in your

stars: an analysis of android app reviews, in

Proceedings of the acm india joint

international conference on data science and

management of data, 2018, pp. 57–66.

[27] S. SADIQ M. UMER S. ULLAH S.

MIRJALILI V. RUPAPARA and M. NAPPI,

Discrepancy detec- tion between actual user

reviews and numeric ratings of google app

store using deep learning, ExpertSystems with

Applications, vol. 181, p. 115111, 2021.

[28] Y. YAO W. X. ZHAO Y. WANG H. TONG

F. XU and J. LU, Version-aware rating

prediction for mobile app recommendation,

ACM Transactions on Information Systems

(TOIS), vol. 35, no. 4, pp. 1–33, 2017.

[29] M. HARMAN Y. JIA and Y. ZHANG,App store

mining and analysis: Msr for app stores, in 2012

9th IEEE working conference on mining

software repositories (MSR). IEEE, 2012, pp.

108–111.

[30] B.FU J. LIN L. LI C. FALOUTSOS J. HONG

and N. SADEH, Why people hate your app:

Making sense of user feedback in a mobile

app store, in Proceedings of the 19th ACM

SIGKDD international conference on

Knowledge discovery and data mining, 2013,

pp. 1276–1284.

[31] R. MIHALCEA and P. TARAU, Textrank:

Bringing order into text, in Proceedings of the

2004 con- ference on empirical methods in

natural language processing, 2004, pp. 404–

411.

[32] B. LIU, Sentiment analysis and opinion

mining, Synthesis lectures on human language

technologies,vol. 5, no. 1, pp. 1–167, 2012.

[33] H. ZHU C. LIU Y. GE H. XIONG and E.

CHEN,Popularity modeling for mobile apps:

A sequential approach, IEEE transactions on

cybernetics, vol. 45, no. 7, pp. 1303–1314,

2014.

[34] Y.WANG N. J. YUAN Y. SUN C.QIN and

X.XIE, App download forecasting: An

evolutionary hier- archical competition

approach., in IJCAI, 2017, pp. 2978–2984.

[35] G. HACKELING, Mastering Machine

Learning with scikit-learn. Packt Publishing
Ltd, 2017.

[36] S. RASCHKA, Ensemblevoteclassifier, rasbt.

github.

io/mlxtend/user/classifier/EnsembleVoteClassifi

r,2014.

