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Abstract 

 

This report proposes a research activity designed to apply advanced analytics to power systems. The objective is to 

employ recent advances in data analytics to develop an adaptive optimization framework that continuously leverages 

data to accelerate engine performance optimization. The analytics will address advanced combustion monitoring and 

real-time diagnostic challenges and will also extend to preventative maintenance strategy development. A combination 

of physics-based modeling, hardware capabilities, and large data integration will be used to predict engine degradation 

on a component-specific level and to determine whether life optimization is required. An adaptive prognostic tool will 

be developed to evaluate engine degradation and determine the remaining useful life for each gas path component. 

The ultimate goal is a model-driven digital twin for advanced prognostics and capabilities. The project aims to benefit 

airline and U.S.-based engine and parts manufacturers by contributing to efforts necessary to keep the U.S. commercial 

aviation engine industry poised to be the world leader in performance, cost, and reliability in the future. 

Keywords: Advanced Analytics, Power Systems, Engine Performance, Optimization Framework, Combustion 

Monitoring, Preventative Maintenance, Physics-Based Modeling, Engine Degradation, Digital Twin, Prognostics.

1. Introduction 

 

The Engine Health Management systems are designed 

to protect engines by monitoring their condition 

relative to the limits deemed safe by the engine 

manufacturer. In many cases, these limits represent the 

minimum acceptable condition of a component. 

Access to real-time and historical field data for 

engines provides a wealth of information. With more 

data, advanced analytics and predictive maintenance 

models can be developed with higher fidelity, 

providing a more in-depth understanding of the system 

being analyzed. The kind of insights provided by 

advancing these models ultimately contribute toward 

greater safety, engines with longer service lives, 

servicing models that allow customers to put their 

engines down for maintenance during optimal time 

slots, and assets optimized to provide maximum 

service between those maintenance activities. 

 

 

 

1.1. Background and Significance 

Manufacturing companies generate huge volumes of 

data daily from the operation of engines and other 

assets. This 'big data'—which includes sensor 

readings, equipment usage, and metadata associated 

with periods, trigger events, and control settings—can 

be harnessed to support real-time decision-making and 

analytical tasks to improve performance. 

Decomposing datasets like these into meaningful 

insights with high operational impact is a major 

challenge. Advanced analytics offers solutions to 

translate the data into value—from generic patterns or 

condition monitoring anomalies to predictive 

maintenance opportunities that maximize both 

machines and associated logistical performance. 

Predictive power generation analytics can drive 

profitability through reduced forced outage rates, 

improved maintenance planning, less avoidance of 

risk and market damage, mitigated load and reserve 

imbalance costs, and more cost-effective operations. 

Many companies rely on advanced analytics and 

decision support systems to improve and optimize 
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performance across wind, solar, and thermal asset 

portfolios. The advanced power generation analytics 

technologies and methodologies are scalable and have 

been deployed by utilities, OEMs, and ISOs across the 

globe on different sites, from single eccentric assets to 

mixed fleet power plant portfolios, transmission and 

distribution grids, and power trading environments. 

 

 
Fig 1 : Predictive Maintenance towards 

Sustainable Smart Manufacturing 

 

1.2. Research Objectives 

The primary research objective of this study is to take 

the first step in developing industrial engineering 

approaches to quantify the potential value of in-service 

engine condition data in design and operations 

analysis. More specifically, leveraging all forms of 

contemporary in-service aircraft engine data, new 

methodologies are employed to estimate the ripple 

effect of subjective inspections, data quality, 

maintenance actions, and operational decisions 

between the in-service engine performance analysis 

and the remaining aircraft technologies. The 

methodology includes: (1) data transformations to 

obtain the indices with the most effective diagnostic 

coverage, (2) investigating the relationships between 

engine condition monitoring sensor measurements and 

engineering parameters related to engine combustor 

repair, and (3) measurement sensor feature ranking for 

combustor repair solutions. This operational objective 

is achieved in two ways: first, we partner with engine 

companies to gain access to all of the proprietary data 

required for the engineering application. The data 

comes in over 1,000 dimensions, including periodic 

inspections, rated engine cycles, and power, 

summarized by major aircraft industry customer types 

as well as the economic reasons for replacing 

significant engine components. Second, advanced 

sensors are required to achieve accurate interval 

inspections, and insights are gained on the importance 

of examining specific engine sections with 

examinations sensitive to all possible failure modes. In 

particular, as part of exploratory analysis, we will 

examine engine combustor performance by assessing 

the dynamic temperature properties of engine 

components and how they are subject to change over 

engine life. 

 

Equation 1 : Engine Performance Metrics 

The overall engine performance (P) can be represented 

using a combination of efficiency (E), power output 

(PO), and emissions (EM): 

 

Where:    P = Overall engine performance 

E = Engine efficiency (%) 

PO = Power output (kW) 

EM = Emissions (g CO2/kWh) 

k1,k2,k3 = Weighting coefficients based on 

performance goals 

1.3. Scope and Limitations 

In this study, we propose a predictive maintenance 

system and framework for advanced manufacturing 

plants. It is important to emphasize that our study is 

not limited to its application to jet engine assembly and 

performance, although this is where we collected and 

implemented our IoT and machine learning design in 

collaboration with the airline manufacturer. Similar 

strategies can be adopted and implemented in any 

advanced manufacturing facility: automobile 

manufacturers to predict engine and car performance 

and to anticipate problems in performance, in addition 

to the advance signal of other possible future engine 

maintenance and failures, or at hospitals for medical 

devices and healthcare delivery equipment. A major 

goal in relying on the data tracked from the robots and 
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machines is to move away from the traditional cycle, 

the more-than-anticipated costly repairs, and from the 

heavy avoidance strategies, most of them being based 

on regular time-based inspections, and towards an 

expectation of planned repairs based on real-time 

advanced data analytics. 

However, original data scientists and designers will 

have to fine-tune the suggested algorithms to leverage 

most of them and handle the intricacies of specific 

advanced manufacturing settings. The most aggressive 

limitations of our study come from the data we had in 

hand, from little ex-academia experience in capturing 

manufacturing IoT information, and from the 

consecutive challenges posed by the high-frequency 

data of sophisticated machines used in jet engine 

assembly. 

 

2. Advanced Manufacturing Analytics 

 

Understanding a product's design, unique operating 

points, and resultant performance provides insights to 

enable its most efficient production. Advanced 

manufacturing analytics advance beyond root-cause 

analysis to provide holistic views of manufacturing 

performance, regardless of whether disparate data 

sources exist. These analytics allow manufacturers to 

maximize process efficiency and speed. The challenge 

is how to access and derive insights quickly from 

interconnected data gleaned from equipment, 

factories, suppliers, products, and logistics to optimize 

manufacturing results, all while meeting internal and 

external customer requirements and fulfilling internal 

commitments. 

The importance of advanced analytics in 

manufacturing becomes clearer with an understanding 

of the general challenges associated with large, 

complex modern engines as well as the current, narrow 

definitions of manufacturing and assembly in today's 

production landscapes. Modern engines are large, 

complex systems of integrated components designed 

to operate at the extremes of temperature, pressure, 

speed, and endurance requirements while consuming 

the least amount of fuel. The developmental 

fabrication process often involves the production of 

one-of-a-kind parts with the highest priority placed on 

precision and structural integrity. These capabilities 

generally dictate a large internal capital investment to 

tool the necessary items while achieving short 

production duration, final product quality, and the best 

cost performance. Optimal production processes must 

be repeatable, retain original product and part 

integrity, utilize materials to their maximum potential, 

and produce large, complex, high-value products cost-

effectively. 

 

2.1. Definition and Concepts 

Early work on predicting machine failures has 

examined a multitude of both time-driven and failure-

driven maintenance approaches. Time-driven methods 

can be defined as preventative maintenance strategies 

that overhaul or replace components at some 

scheduled interval, such as 50,000 miles. Failure-

driven methods, on the other hand, are real-time 

strategies that inspect and repair components directly 

upon failure. Time-driven methods have the advantage 

of simplicity since they require little more than a 

maintenance schedule and a functioning way of 

counting usage cycles like engine run time or miles 

driven. Unfortunately, failures will often begin to 

occur with increased frequency as a machine age, thus 

making the time-driven maintenance schedule 

suboptimal; it will result in a premature component 

replacement. On the other hand, failure-driven 

strategies require complex inspection techniques that 

can slow the production process considerably. 

Over the last two decades, the intersection of the 

Internet of Things and data-driven techniques has 

made it possible for companies to predict the rare 

event of component failure in near real-time without 

overly impeding the normal operation of a myriad of 

machine types. By leveraging advanced data 

collection and computational methods, huge data sets 

of component behavior can give birth to component 

degradation models, which can in turn inform 

predictive maintenance programs. This text will focus 

on data-driven maintenance approaches for engines in 

particular because the technology needed to collect 

data from an aircraft’s engine in real-time has matured 

faster than that for other types of machines. Not only 

has this technology been developed, but its use is 

thoroughly regulated by governmental bodies. The 

time, place, and manner in which engine data is 

recorded are subject to many standards, and the 

records themselves are subject to audit and remain part 
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of an engine’s maintenance history for as long as it 

operates. These regulations have effectively created a 

network of sensors that process information from each 

relevant system at a high frequency. These sensors 

collectively enable a detailed understanding of each 

machine’s operation and can therefore be used to 

predict a much wider array of rare events that go 

beyond mere component failure, such as when a 

machine may be inefficiently using spare parts or is 

near to exceeding some performance threshold. 

 

2.2. Technologies and Tools 

It is important to procure analytics tools that cater to 

specific needs, given that a wide range of these tools 

are available in the market. In current times, cloud 

computing services have great importance as they 

enable real-time updates, archival, and ready access to 

useful information. For a long time, machine learning 

concepts were innovated in academic contexts, but due 

to the arrival of high-performance computing, many 

different industries have started adopting these tools. 

Machine learning influences decision-making 

processes and leads to quick problem-solving. Tools 

are categorized into specialized, general-purpose 

tools, and stand-alone tools. Stand-alone tools manage 

all incoming requests, and their usage demands 

programming activity in different skills. Due to 

increased flexibility, performance, and efficiency, 

specialized systems are gaining popularity. The future 

research priority is to create a software package that 

caters to a wider audience. Such a package, 

independent of the field of application, employs 

predictive algorithms. All improvements can be 

managed centrally, which facilitates the immediate 

usage of information. During production, functional 

and health monitoring is imperative, as it permits real-

time operation and predictive maintenance. Industrial 

IoT is getting widespread attention. The most 

important part of the analytics is the collection of data, 

which is the heart of the system. Tools are classified 

based on features and existing research works on 

system monitoring in industrial IoT. 

 

2.3. Applications in Manufacturing 

The objectives of an advanced manufacturing 

analytics improvement process are typically focused 

on maintaining high product quality and reducing 

production costs. The collection of real-time data from 

sensors is a significant source of information to know 

and control the process's real-time performance. The 

in-process production data from multiple sensors can 

be compared to production standards from pre-

production planning activities or past production 

information based on previous or current data records. 

One of the primary applications of advanced 

manufacturing analytics is predictive maintenance. A 

large use case for AMM is the breakdown and cost of 

production associated with mechanical handling. 

Advanced manufacturing analytics can be 

implemented with a predictive maintenance strategy. 

This allows for avoiding high-cost maintenance 

caused by machinery breakdowns. 

A predictive maintenance system is a very advanced 

maintenance system that, by using various 

technologies and equipped with different types of 

artificial intelligence tools, is capable of predicting 

failures in specific devices and establishing a plan to 

change components before an actual failure that can 

produce significant damage occurs. In some cases, 

some machine components can be extremely costly, 

and for safety reasons, the temporary loss of the 

specific device can lead to an entire line or even an 

entire production unit shutdown. To avoid such 

shutdowns and minimize damages, predictive 

maintenance together with AMM can be deployed to 

prevent such damages. Normally, before a machinery 

breakdown occurs, several machine components wear, 

and this effect can be controlled with an advanced 

warning system based on real-time data analysis. 

 
     Fig 2 : Manufacturing Analytics Application 
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3. Optimizing Engine Performance 

 

In his presentation, Advanced Manufacturing 

Analytics: Optimizing Engine Performance through 

Real-Time Data and Predictive Maintenance, Eduardo 

Aviles, manager of WorldWide Data Center Services 

for Caterpillar, examined how the company helps 

customers manage more than $2.2 trillion in assets as 

easily as you manage your pocketbook. What these 

assets have in common is that they provide power and 

a way to move things around the world. Think ships, 

trains, heavy equipment, and more. Today, more than 

300 engine models are customizable and can cover a 

wide range of needs. The company has been doing this 

for at least 90 years. Its engines are everywhere, and 

Caterpillar is interested not just in helping customers 

know where their engines are, but also in helping 

customers when they need to know what is going on. 

Eduardo explained that engines today generate a 

tremendous amount of data that can be used to help 

service the product. This data includes what is going 

on with the engine itself and can also include data from 

the equipment around it. These generate far too much 

data to be able to look at in real-time; they are 

capturing more than 100 times what you could watch. 

Still, real-time is important to the company. They 

wanted analytics that reflected where they could 

predict failures. By using more than 100 variables to 

identify the important ones, they have built predictive 

models that reflect real-time. The challenge of big data 

is not just one of volume. They had to deal with the 

quality of the data and the velocity at which it came. 

These had to be considered and handled. Their goal 

was to give customers the maximum operating time 

and downtime that they could rely on. Anything that 

they could do to get more time in between needed 

maintenance events is major because machines are 

tools in the world economy. What they look at is the 

health of the machine, in real time and relative to the 

point in time. The data produces specific results, and 

they give you the best results based on the inputs. With 

over 112,000 alerts generated per month, they predict 

what might be coming down the road using the 

maintenance records of the past. The decisions are 

based on predictive maintenance. 

 

Equation 2 : Remaining Useful Life (RUL) 

Estimation 

The remaining useful life of engine components (RUL) 

can be estimated using:    

            

Where:      Cmax = Maximum capacity or life 

expectancy of the component (hours) 

Ccurrent = Current usage (hours) 

Davg = Average degradation rate (hours per 

hour of operation) 

3.1. Challenges in Engine Performance 

Optimization 

From the perspective of aerospace and defense, the 

emissions criteria for gas turbine engines with low 

emissions have become tighter and apply to older 

engines. However, this ambition has to be technically 

driven and cannot be a matter of legislation and 

certification. The interrelationships between 

emissions and fuel burn are crucial. The key elements 

for reducing engine emissions, however, generally 

lead to reduced engine fuel efficiency. Therefore, the 

scheduling and controlling of the required trade-off is 

important and presents one of the most significant 

ongoing challenges in gas turbine engine performance 

optimization. Data analytics using a holistic systems 

perspective and value-driven digital business 

processes are major success factors in addressing this 

challenge. 

The detailed mechanisms of component deterioration 

and the associated end-of-life phenomenon for an in-

service gas turbine are not completely understood. 

They are influenced by many internal and external 

combustion, mechanical, and operational events. The 

internal deposit formation on components is a complex 

and less understood process, and since it significantly 

degrades engine performance and imposes a risk of 

severe damage or failure, early identification and 

remedial action such as on-wing cleaning are 

desirable. A clear requirement is that the current lack 

of understanding should not restrain the development 
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of methods that are currently possible based on current 

data management, signal processing, probability, and 

statistics and that a realistic approach with a clear 

expectation and strategy should be adopted as 

possible. Indeed, the development of data-driven or 

eScience-based approaches may provide new insights 

that could add to the understanding of these complex 

phenomena. 

 

3.2. Role of Real-Time Data in Optimization 

Predictive maintenance has emerged as a powerful 

strategy for optimizing operational efficiency. Despite 

numerous advantages of predictive maintenance, 

implementation has been poor, particularly in the 

aerospace industry, mostly for structural health 

monitoring due to the limitations of available sensors 

installed on the aircraft. The arrival of wireless 

sensors, composites, and novel instruments such as 

fiber optics, combined with advanced analytics and 

data mining techniques, has led to dramatic 

improvements in predictive maintenance capability. 

Sensor-equipped components on and in aircraft, 

manufacturing plants, and equipment generate a 

colossal volume of real-time data. Real-time data 

generated from advanced sensors is hidden in the 

layers of complexity of an industrial Internet of Things 

environment. 

The innovative capabilities of real-time engine 

performance data that are rarely maximized are, 

however, unique and present an opportunity to 

optimize engine performance and efficiency. 

Although airlines and engine manufacturers control 

units periodically ingest data from the sensor-

equipped engines, problems are addressed in a 

preventive manner. The engine health-monitoring 

provider captures and analyzes data sets collected 

from sensors and performs additional analysis to 

ensure adequate safety margins are maintained for the 

life of the engine. Automating the real-time data 

mining and machine learning for rapid analysis and 

extracting valuable intelligence from the big data 

deluge from the full spectrum of engine testing, 

ground break-in or maintenance, flight phases, initial 

incidents, and the impacts on the health of the engine, 

dynamics or time constants of transient and steady 

behaviors, software extrapolation of trends, detection 

of incipient emergence of non-deterministic 

behaviors, identification of thresholds not exceeded, 

and recalls can co-create lasting value for both 

industry stakeholders. 

 

 
Fig 3 : Optimizing Predictive Maintenance Using 

Machine Learning  

 

3.3. Predictive Maintenance Techniques 

Predictive maintenance (PdM) utilizes condition-

based sensor analytics to predict when problems will 

occur in the future. Consequently, it envisions 

inspection and servicing only when needed. As 

opposed to time-based maintenance (TBM) of 

preventive maintenance that occurs at regular time 

intervals, PdM guarantees cost-effective preventive 

maintenance. Deterioration in equipment condition 

occurs over a period, manifesting as changes in 

performance. It can be detected as changes in the state 

of operation and condition using a simple model, just 

before a failure and before significant equipment 

degradation occurs. The model prediction from 

performance data driven by performance sensors can 

raise a maintainability decision before the next event. 

Presently, the most promising predictive models are 

based on machine-learning algorithms such as neural 

networks, support vector machines, decision trees, etc. 

These techniques have been used to predict equipment 

failure and degradation by mining time-series 

component data from in-service engines. 

Predictive models that combine multiple sensors 

generate actionable intelligence for condition-based 

maintenance. An effective performance monitoring 

system must be accurate, cost-effective, and use 
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readily available data from existing sensors. It helps 

increase component life, leading to cost reductions. 

Onboard monitoring of system components, electrical 

and mechanical hardware, software logic, and the 

environment through sensor data leads to predictive 

analysis. Real-time fault classification enables just-in-

time provisioning of required resources. Post-failure 

examination data can further aid the diagnostic 

response. These analyses aid the efficient diagnosis 

and prioritization of repair tasks. Subsequently, test 

and repair steps can be scheduled in the future from 

the diagnostic analysis of historical sensor data 

recorded at that time. These repairs minimize costly 

unscheduled fleet maintenance. 

 

4. Case Studies and Examples 

 

We will showcase here a few industrial examples at 

the seminar conference and also as industrial training 

cases that we have with a corporation. Please note that 

due to the proprietary nature (and the relationship with 

some industries), some specifics of each 

manufacturing setting may not be fully disclosed. If 

interested, readers are welcome to make further 

inquiries. Let us first showcase a predictive 

maintenance example with one manufacturing site. 

Example 1. Company: Corporation 

Maintenance and Manufacturing, Engine 

Manufacturing, Performance Team 

Manufacturing Site: East Hartford, CT. Focus area: 

Predictive maintenance of engine assembly line 

systems using real-time data analytics. Data sources: 

Discrete-event manufacturing data – assembly line 

machines, conveyor systems, and system-related 

output of a massive enterprise control system. The data 

sources are from time production lines, each having a 

large number of components, parts, and subassemblies 

that pass through various sequences of assembly and 

tests in a complex multiple-stage manufacturing and 

testing process. The process flow also includes special 

tests at different stages, including the instrumentation 

of sensor data. The performance test data, including 

hundreds of high-resolution signal information and 

quality analyses on selected parts/regions of the 

product, is not only used to validate the performance 

of each engine but is also used for continuous 

improvement through various engine life and mission-

specific analyses using predictive analytics. 

 

4.1. Real-World Applications in the Automotive 

Industry 

The car is now a cloud sensor able to provide 

additional insights regarding engine performance or 

the health of drivable and critical parts. In areas such 

as racing engines, real-time insights have been 

mandatory for years. What is new is the car’s ability to 

provide these insights. A race car simply cannot run 

around with an additional set of sensors to monitor the 

exhaust composition or the vibration patterns of the 

engine. So, ingredients are added to the fuel blend to 

change the pattern of the burned fuel. This results in a 

unique gas that can be detected by the on-car sensor. 

When slightly more on the condition monitoring side 

of the engine, the engine is being rattled by the forces 

of combustion. These forces lead to a unique signature 

that controls the tuning of the valve train of the engine 

as well as the suspension of the car. At the same time, 

the importance of predictive maintenance is 

increasing. Reducing unnecessary maintenance, early 

detection of potential issues, and decreasing the 

maintenance duration are, in the end, the three pillars 

needed for adoption. To achieve predictive 

maintenance, more and different types of data are 

required. This means that not only end consumers but 

also their cars are increasingly connected. Sensors and 

associated data processing technology need to be 

integrated in such a way that large amounts of real-life 

data are filtered, and processed, and that noise is 

separated from significant information. Car data 

arrives in rather unpredictable and sizable bursts, often 

at low bandwidth and fog processing is required to 

comply with latency requirements and the capacity of 

the network. To be useful in an automotive 

environment, the models need to adapt to the changing 

performance of the equipment, and this is fast enough 

so that the information is still useful after processing. 

 

Equation 3 : Real-Time Data Impact 

The impact of real-time data on performance 

optimization can be expressed as: 
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Where: 

Idata = Improvement from real-time data 

analysis (%) 

Pdata = Engine performance with real-time 

data analytics 

Pbaseline = Engine performance without 

real-time data analytics 

4.2. Success Stories in Aviation and Aerospace 

In the aviation and aerospace sectors, manufacturers 

have successfully deployed advanced manufacturing 

analytics to ensure engine performance and reduce 

operation costs. One success story in point, through 

the use of monitoring equipment that is part of the 

engines and the airframe, airlines can monitor their 

engines in real time. Alarms are used to alert 

maintenance crews of potential problems when the 

plane lands and the engine is closely examined with 

probes and visual tests in the hangar. These 

examinations will be able to make sophisticated 

decisions about whether the engine needs to be 

replaced now or later, or can still fly for a while. In a 

more advanced scenario, aviation companies can make 

a few different maintenance decisions; for example, 

postponing an engine replacement decision for a few 

more flight segments, or utilizing the currently unused 

life in the engines and running them to the maximum 

allowed. The aviation company can consider where 

and how the aircraft can be utilized effectively to 

maximize profit, minimize downtime, or be flown in a 

less stressful situation. The result is that the engine 

survives longer than forecasted while still providing 

optimal service. By having engines arrive from the 

field with unused life, and not being entirely 

consumed, the maintenance reserves needed to set 

aside a sufficient amount of money for future 

expenditures can be reduced. 

 
Fig 4 : Predictive Maintenance in Aviation Can 

Save Lives 

 

5. Conclusion and Future Directions 

 

We have reported on a novel framework for 

optimizing engine performance using real-time data 

analytics. Our manufacturing analytics presented 

several major contributions. First, we developed a 

semisupervised real-time data analytics framework 

that is capable of performing real-time optimization of 

engine performance. The engaged analytics examined 

both the performance and stability of a full-powered 

turbine engine. Second, we developed a novel 

nonlinear kernel optimization algorithm for feature 

search and final model calibration. Our optimization 

framework operates in both offline and real-time 

operational modes. Third, our manufacturing analytics 

is efficient and scalable not just for direct applications 

to other types of engine systems, but also for real-time 

optimizations of broader and more complex 

manufacturing processes. This paper reports on a 

manufacturing analytics system that was developed in 

collaboration with an industry partner. Like many real-

world systems, our evaluations of the developed 

system were limited to proprietary, large-scale 

machinery, leading to stringent real-time operational 

requirements. To rigorously evaluate our framework, 

the experiments used both existing and collected data. 

Our framework is relevant for the process and energy 

industries to optimize parameters in large systems in 

the presence of complex and evolving correlations 

with minimal instrumentation requirements. The 

principle stages of the paper led to the development of 

a novel optimization tool that can be used in real time 

for broader data analytics tasks due to its feature 
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search capability. Given its general framework nature, 

the utility of our approach is not limited to the 

performance of turbine engines but can also be 

extended to many areas of production for secure, 

reliable, and efficient services. 

 

 
                   Fig 5 : Manufacturing Analytics  

  

5.1. Key Findings and Implications 

This research also began with three general research 

questions centered on what the most important 

applications of real-time data and predictive analytics 

frameworks are. We had initially expected that major 

applications would be diagnostic development, 

product improvement, process alterations, and 

resource or service management. The results 

confirmed this expectation, with the first three 

categories being the greatest focus areas, and the 

resource management area showing less activity. The 

effectiveness gap seemed to be concentrated pre-

assembly in the early testing of parts and 

subassemblies. Engineers continued to lose the testing 

effectiveness that occurred once a full engine was run, 

but they seemed to trend in scheduled usage for 

testing, then in-use data for problem tracking or 

product improvement. 

In the last few years, highly accurate virtual modeling 

has been paired with inexpensive computing 

resources. It became easy and cost-effective to both 

collect and analyze vast amounts of data that could 

provide real-time insights about the health and 

performance of many types of devices. An advantage 

of this modeling was that technologies could be used 

that required much less intervention, so virtual testing 

could be repeated many times and never had the 

unreliability of physical testing. Highly precise 

systems monitoring was developed, but the systems 

performance result was so unexpected that engineers 

often became inattentive—another forecast decision 

surprise. By making this technology much improved, 

there was a gradual development of advanced 

manufacturing analytics. Its use as a testing 

enhancement is an alternative, quicker path to 

knowledge management, and a way to portion the 

constant improvement that affects product 

development more effectively. 

 

5.2. Potential for Future Research 

Efforts will be made in future work to find optimal 

methodologies for detailed diagnostic analysis. While 

unsupervised learning and neural network techniques 

have already exhibited promising results, also in 

comparison to some traditional statistical methods 

with their rigidity concerning single or cross-source 

data requirements, we are yet to investigate the 

remarkable potential and limitations of deep learning 

architectures, which have started standing out as the 

latest breakthrough in the machine learning literature. 

However, the interpretability and validation of such 

models have to be considered with extra care. 

Additionally, dimensional reduction, with principal 

component analysis, word embedding, convolutional 

methods, or the most promising emerging 

counterparts, has to be developed and enhanced for 

better-capturing interactions. The performance of 

these models on single and multisensory data with 

moving windows should also improve through 

advanced hardware acceleration and the reduction of 

the generalization gap. 
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