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ABSTRACT: 

Maintaining coastal water quality is vital to environmental health, public safety, and ecosystem resilience. This 

study employs a variety of statistical methods, including T-tests, single-factor ANOVA, regression analysis, and 

Principal Component Analysis (PCA), to investigate the relationships between critical physicochemical 

parameters—temperature, pH, dissolved oxygen (DO), and electrical conductivity (EC)—at two beach outfalls, 

OC3 and OC18.The aim is to discern the water quality characteristics of the two outfalls to identify relationships 

and trends between these parameters. T-tests and ANOVA revealed significant differences in electrical 

conductivity (p = 0.000125, F = 20.549) and dissolved oxygen (p = 0.008305, F = 7.640) between OC3 and OC18, 

illustrating that these parameters vary considerably between sites. However, there were no discernible variations 

in pH or temperature. Regression analysis revealed that at OC3, none of the predictors (pH, EC, or DO) 

substantially predicted water temperature. At OC18, pH was a significant predictor (p = 0.0016), indicating an 

associated connection, while EC and DO were not. PCA determined that the primary sources of variability were 

pH, temperature, and electrical conductivity. The first two principal components (PC1 and PC2) accounted for 

81.3% of the total variation, with PC1 (45.2%) influenced by temperature and pH and PC2 (36.1%) by electrical 

conductivity and dissolved oxygen. OC3 was associated with slightly higher temperatures and pH, whereas OC18 

showed higher electrical conductivity and dissolved oxygen levels. These findings emphasize the significance of 

targeted, site-specific water quality control approaches to preserve coastal ecosystems and public health. The 

application of multidimensional statistical techniques allows for a more comprehensive assessment of water 

quality and provides valuable insights into the complicated dynamics of beach outfalls. 

 

Keywords:-Water quality, Ecosystem health, Multivariate analysis, Physicochemical Parameters, Principal 

Component Analysis (PCA) 

 

1) Introduction: 

The coastal water quality is a major concern for 

environmental researchers, legislators, and the 

general populace 

 since it has far-reaching consequences for 

ecosystem health, public safety, and economic 

activity. Coastal zones are dynamic boundaries 

between land and marine habitats, with intricate 

interactions among physical, chemical, and 

biological processes. [1][2][3]. Significant 

anthropogenic pressures, such as industrial 

discharges, agricultural practices, urban runoff, and 

climate change, might deteriorate water quality and 

jeopardize the sustainability of coastal ecosystems 

in these locations [4][5]. Effective management of 

water quality and preservation of marine 

biodiversity depends on understanding the 

physicochemical characteristics of coastal waters. 

Important factors, including temperature, pH, 

electrical conductivity (EC), and dissolved oxygen 

(DO), act as markers of water quality and shed light 

on the underlying mechanisms influencing coastal 

habitats.  [1][6][7]. Temperature regulates metabolic 

rates and the solubility of gases; pH affects the 
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chemical speciation and bioavailability of nutrients 

and pollutants; DO is critical for aerobic respiration 

and the survival of aquatic species; and EC reflects 

the ionic composition and salinity of the water.  

[7][8][9]. 

Notwithstanding the significance of these variables, 

to distinguish between the water quality profiles of 

various coastal locations and to clarify the intricate 

interactions between them, extensive research 

incorporating a variety of statistical approaches is 

required. Conventional methods frequently depend 

on univariate analysis, which may ignore the 

multidimensionality of data on water quality and the 

relationships between different components [10] 

[11]. Multivariate statistical methods, including 

Principal Component Analysis (PCA), are effective 

techniques for highlighting the primary drivers of 

variability in water quality datasets, reducing the 

dimensionality of the data, and spotting significant 

patterns [5] [12] [13] [14]. Furthermore, T-tests and 

ANOVA single-factor analyses offer a strong 

foundation for detecting values that show notable 

spatial variability and comprehending the possible 

environmental causes of these variations. 

Furthermore, T-tests and ANOVA single-factor 

analyses are employed to compare the mean values 

of each parameter between different locations and 

evaluate the statistical significance of the observed 

differences. These tests offer a strong foundation for 

determining which characteristics show notable 

regional variability as well as for comprehending the 

possible environmental factors causing these 

variations. [15] [16] [17].  Regression analysis is an 

essential statistical technique in ecological research 

that helps forecast important environmental 

outcomes and understand the intricate correlations 

between many physicochemical characteristics. 

Using this technique, researchers can measure the 

direction and intensity of correlations between 

dependent and independent variables, offering 

crucial insights for practical management and 

scientific understanding [1] [18]. 

The quality of coastal waters is a multidimensional 

issue that requires a comprehensive understanding 

of the interactions between several physicochemical 

characteristics. This study adds to this 

comprehension by employing a suite of statistical 

techniques involving T-tests, ANOVA single factor, 

regression analysis, and PCA to investigate the 

relationships between physiochemical water quality 

parameters consisting of temperature, pH, DO, and 

EC at the two beach outfalls, OC3 and OC18, on 

Kuwait Bay's southern beach. These outfalls provide 

a perfect case study for evaluating the geographical 

variability in coastal water quality owing to their 

disparate environmental contexts and anthropogenic 

effects [19] [20]. Furthermore, our study pinpoints 

significant water temperature predictors, providing 

insight into the complex interactions between water 

quality indicators and how they affect thermal 

dynamics. Most aquatic organisms primarily depend 

on the thermal properties of their immediate 

surroundings, rendering water temperature a crucial 

factor in their existence. Furthermore, dissolved 

oxygen levels decrease with rising temperatures, 

which presents serious difficulties for fish and other 

aquatic life forms trying to survive. Temperature 

fluctuations can also significantly impact microbial 

metabolic activities and processes, such as gas 

exchange rates and sedimentation properties [21] 

[22]. The findings of this study possess significant 

implications for protecting marine ecosystems and 

regulating water quality. Additionally, this study 

supports targeted management strategies by 

identifying the key variables affecting regional 

variations in water quality and elucidating their 

interrelationships. 

 

2) Methods and Methodology: 

 

(a) Study Area and Sampling Sites 

This investigation was carried out at two beach 

outfalls along the coast, OC3 and OC18. According 

to Al-Yamani et al. (2004), Kuwait Bay is under 

considerable strain along the shoreline mainly due to 

excessive contamination generated by 

anthropological activities [23].   These locations 

were selected based on distinctions between 

anthropogenic influence and unique environmental 

contexts. OC3 is located in the interior of Kuwait 

Bay, at the coordinates [longitude 47.863044, 

latitude 29.320015], in a less developed and more 

stressed area than OC18, which is located at 

[longitude 47.989117, latitude 29.391525] in an 

urban area less exposed to environmental pollution 

in the Gulf's outer part as shown in fig (1). The 

samples were taken concurrently from both sites at 

regular intervals throughout 2022 to accurately 

capture changes in water quality over time. Water 

samples were collected from both outfalls using a 

standardized protocol to ensure consistency and 

reliability [19] [20]. A pre-cleaned Teflon bailer 
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collected samples 0.5 meters below the water's 

surface at each site. In situ, portable multi-parameter 

water quality meters were used to measure 

temperature, pH, dissolved oxygen (DO), and 

electrical conductivity (EC) [24]. The quality 

control procedures were followed, and standard 

solutions were used to calibrate all instruments 

before each sample session to guarantee the 

dependability and correctness of the results. 

Furthermore, the research applied various statistical 

approaches to investigate the water quality at 

these beach outfalls and evaluate the correlations 

between physicochemical indicators.  

T-tests, one-factor ANOVA, regression analysis, 

and PCA were used to detect significant differences, 

predictive associations, and principal components. 

The T-tests and ANOVA single-factor analyses 

were applied to compare the mean values of each 

parameter between various locations and assess the 

statistical significance of the observed differences. 

These analyses provide a solid basis for 

understanding the potential environmental variables 

producing these variances and for identifying which 

features exhibit significant regional variability [15] 

[16] [17].  

Furthermore, principal component analysis (PCA) 

was used to decrease the dimensionality of the 

dataset and detect primary components responsible 

for the variance in water quality measurements. The 

technique above facilitates the detection of 

significant patterns and the distinction of water 

quality profiles between the two outfalls by allowing 

the visualization of complex datasets in fewer 

dimensions [25] [26].  

 

 
Figure 1 The Two outfalls OC3 and OC18 locations map derived from [19] [20] 

 

The correlations between parameters and the 

separation of samples from OC3 and OC18 are 

graphically represented by the PCA biplot, which 

also highlights the unique environmental features of 

each site and the primary drivers of variability. 

Regression analysis was applied to simulate how 

physicochemical elements affect water temperature, 

a crucial factor affecting aquatic species' 

physiological and metabolic functions [1] [27].  The 

study's regression analysis illustrates how pH and 

electrical conductivity can predict water 

temperature, giving valuable tools for anticipating 

and addressing water quality issues. 

 

3) Results and Discussion 
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(a)Physicochemical Descriptive Statistics and 

Trends  

The analysis of environmental characteristics 

Temperature (Temp.), pH, electrical conductivity 

(EC), and dissolved oxygen (DO) at sample sites 

OC3 and OC18, as illustrated in Table (1), sheds 

light on the spatial variability of water quality within 

the research area these parameters can have a 

significant impact on the biological and chemical 

processes occurring inside the seawater, rendering 

them vital markers of the health of the aquatic 

environment. At OC3, the average temperature was 

28.856°C with a standard error of 0.712, whereas at 

OC18, the average temperature was somewhat lower 

at 28.404°C with a more significant standard error 

of 1.001. Compared to OC18 (15.7°C to 35.8°C), the 

temperature ranges at OC3 (23°C to 34.5°C) were 

narrower (Fig.2), suggesting more remarkable 

significant temperature changes at OC18, which 

may be related to anthropogenic or localized 

environmental factors [28] [29]. The solubility of 

gases, the metabolic rates of aquatic creatures, and 

the ecosystem dynamics are all significantly 

impacted by temperature [30] [31]. The pH levels at 

both locations showed slight fluctuation, with mean 

values of 7.767 at OC3 and 7.628 at OC18 and 

standard errors of 0.055 and 0.074, respectively. The 

pH range was slightly more comprehensive at OC18 

(6.91 to 8.13) than at OC3 (7.24 to 8.12), indicating 

that the water is neither too acidic nor too alkaline, 

as indicated in (Fig.2). Nonetheless, minute 

variations in pH may affect the toxicity and 

solubility of specific substances and minerals [32]. 

In contrast to OC18, which had a more 

comprehensive range (2.34 to 10.36 mg/l) and a 

higher mean DO of 3.837 mg/l with a standard error 

of 0.410, OC3 had a DO range of 1 to 8.73 mg/l with 

a mean value of 2.439 mg/l and a standard error of 

0.295. Although dissolved oxygen (DO) is essential 

to the survival of aerobic aquatic organisms and the 

ecosystem's general health, lower DO levels at OC3 

might represent a sign of increased organic pollution 

or decreased water mixing, which could result in 

hypoxic conditions [33]. In contradiction to the 

mean EC at OC18 of 30.470 mS/cm, which was 

considerably higher, the mean EC at OC3 was 

11.431 mS/cm.  

The standard errors at OC18 were 4.138 and 0.719, 

respectively, suggesting increased variability. 

Compared to OC3 (4.9 to 20.39 mS/cm), The EC 

range at OC18 (7.71 to 73.26 mS/cm) was 

significantly broader, indicating a higher degree of 

ionic concentration and perhaps higher pollution 

levels at OC18 [32]. As shown in Fig (2), a high EC 

value may indicate dissolved salts and other 

inorganic elements, which can impact aquatic life 

and water quality [34]. The statistical analysis 

demonstrates substantial variations in 

environmental parameters between the two sites, 

with higher standard deviations and longer ranges at 

OC18 for temperature, EC, and DO, indicating 

increased environmental variability and possible 

stressors at this location. The high standard error for 

electrical conductivity (EC) at OC18 is attributed to 

distinct hydrodynamic and anthropogenic 

conditions at the sampling sites. OC3, with limited 

seawater circulation, shows stable but potentially 

degraded water quality, while OC18, with better 

circulation, exhibits more significant variability due 

to mixing and external influences. In addition, 

untreated wastewater discharges further exacerbate 

this variability [35] [36]. SE is a vital metric in 

environmental research for determining the 

precision of sample mean estimations, with a high 

SE indicating increased data variability and 

decreased reliability [35] [36] [37] [38] [7] [39] [40]. 

Considering these statistical techniques generally 

assume consistent variance within the data, the high 

standard error at OC18 shows significant variability 

in EC measurements, which can complicate the 

study using additional techniques like t-tests, 

ANOVA, regression, and PCA. However, low SE 

values imply narrower confidence ranges for the 

mean differences, facilitating t-tests and ANOVA, 

which presuppose normality and homogeneity of 

variances, to identify significant differences 

between groups [41] [42]. Cleaning the data might 

remove substantial variability, which is crucial for 

understanding the actual characteristics of the 

outfall. The variability in EC readings can provide 

valuable insights into the natural fluctuations and 

anomalies in the system [43]. In addition,  
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Table 1. The comprehensive summary of the key statistical measures for each parameter at the Two Outfalls OC3 

and OC18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Compares the Temperature, pH, EC, and DO Measurements for OC3 and OC18 Outfalls. 

Parameter Statistics OC3 OC18 

Temp. (°C) 

 

 

 

 

 

 

Mean 28.856 28.404 

Standard Error 0.712 1.001 

Median 29.1 29.3 

Standard Deviation 3.562 5.005 

Range 11.5 20.1 

Minimum 23 15.7 

Maximum 34.5 35.8 

pH 

  

  

  

  

  

  

Mean 7.767 7.628 

Standard Error 0.055 0.074 

Median 7.82 7.75 

Standard Deviation 0.276 0.372 

Range 0.88 1.22 

Minimum 7.24 6.91 

Maximum 8.12 8.13 

EC (mS/cm) 

  

  

  

  

  

  

Mean 11.431 30.47 

Standard Error 0.719 4.138 

Median 10.98 28.73 

Standard Deviation 3.593 20.689 

Range 15.49 65.55 

Minimum 4.9 7.71 

Maximum 20.39 73.26 

DO (mg/l) 

  

  

  

  

  

  

Mean 2.439 3.837 

Standard Error 0.295 0.41 

Median 2.4 3.01 

Standard Deviation 1.477 2.051 

Range 7.73 8.02 

Minimum 1 2.34 

Maximum 8.73 10.36 
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the primary objective of this study is to analyze the 

raw EC data to understand its natural state and to 

document all potential variables and causes 

influencing the EC at OC18 by retaining the raw 

data. According to a study by Kirchner et al. (2004), 

this approach facilitates a more comprehensive 

analysis and comprehension of the data [44]. Low 

regression analysis standard error (SE) values for the 

independent variables (DO, temperature, pH) result 

in more accurate regression coefficient estimations, 

enhancing the regression model's dependability and 

simplifying the process of identifying essential 

predictors [45]. Similarly, PCA is sensitive to the 

size and variability of the data; low SE values show 

that the data are well-centered and standardized, 

which facilitates the extraction of significant 

principal components and results in more 

trustworthy interpretations of the data structure [13]. 

 

(b) The T-Test comparative analysis 

The comparative analysis of physio-chemical 

parameters between the two sampling sites, OC3 

and OC18, using the T-test in Table (2), revealed 

critical insights into the environmental conditions 

characterizing these locations. There was statistical 

indistinguishability between the mean temperature 

data at OC3 (28.856°C) and OC18 (28.404°C) (p = 

0.7148). The two locations appear to have a 

homogenous thermal regime based on the lack of 

considerable temperature variation, which their 

proximity and comparable climatic factors may 

explain. This temperature homogeneity may also 

suggest that nearby anthropogenic activities or 

natural water bodies do not differently impact the 

thermal parameters of these places. On the other 

hand, with a p-value of less than 0.0001, there was a 

significant difference in the mean Electrical 

Conductivity (EC) values between OC3 (11.43132 

mS/cm) and OC18 (30.4696 mS/cm). The 

noteworthy disparity implies different degrees of 

potential pollution and ionic content due to rising 

sea surface temperatures. The increased EC at OC18 

may indicate higher salinity, increased mineral 

runoff, or industrial effluents; thus, more research is 

needed to pinpoint the precise sources of 

contamination because it is directly proportional to 

the number of contaminants and dissolved salts in 

the water [46] [47].  There was no discernible 

difference (p = 0.1397) in the pH mean values of 

OC3 (7.7668) and OC18 (7.6276) between them. 

The pH values of both locations were in the neutral 

to slightly alkaline range, which is ideal for most 

aquatic life forms. Whereas the absence of a 

significant pH shift suggests that acidification or 

alkalization processes do not affect these sites 

differently, continued monitoring is required to spot 

any changes that could impact natural ecosystems 

[48]. Nonetheless, constant monitoring is needed to 

detect future changes that may harm natural 

ecosystems. When the mean values of OC3 (2.4392 

mg/l) and OC18 (3.8368 mg/l) were compared, there 

was a significant difference in dissolved oxygen 

levels (p = 0.0083), which may be explained by the 

influence of increasing temperatures on lowering 

dissolved oxygen concentrations [46]. The higher 

DO content at OC18 compared to OC3 would 

indicate better aeration or lower levels of organic 

contamination; nonetheless, the regional fluctuation 

of DO, an essential aspect of aquatic life, might 

affect aquatic species' distribution and general 

health [49]. A visual representation of the mean 

temperature values for the OC3 and OC18 datasets 

is provided in the box-and-whisker diagram Figure 

3. The data does not significantly differ between the 

two datasets; nevertheless, OC18 has a slightly 

higher mean temperature than OC3, which could be 

attributed to the two groups of parameters' varying 

environmental conditions. Comparably, a statistical 

analysis of the pH values for OC3 and OC18 

considers no discernible variation; nonetheless, the 

marine environment is more alkaline in OC18 due to 

its higher mean pH than OC3.  

 

Table 2. The T. Test Analysis Results of the Water 

Quality Parameters at the Two Outfalls 

 

Para

meter 

Mea

n 

OC3 

Mea

n 

OC

18 

T -

statis

tic  

P- 

Valu

e 

Concl

usion 

Temp 
28.8

56 

28.4

04 

0.36

7883 

0.71

4765 

Not 

Signifi

cant 

pH 
7.76

68 

7.62

76 

1.50

4242 

0.13

9664 

Not 

Signifi

cant 

EC 
11.4

3132 

30.4

696 

-

4.53

31 

0.00

0125 

Highl

y 

Signifi

cant 

DO 
2.43

92 

3.83

68 

-

2.76

412 

0.00

8305 

Signifi

cant 
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     P-values are two-tailed, and the significant 

result is (p < 0.05) 

 

 
Figure 3. Comparison of Mean Values with 

Standard Error Bars for Temperature, pH, (EC), 

and (DO) between OC3 and OC18. 

 

 

The mean EC varies dramatically between the two 

sites; OC3 has a value of around 30 mS/cm, while 

OC18 has a value of about 11 mS/cm. The observed 

disparities in environmental variables between OC3 

and OC18 could be attributed to various factors, 

including differences in their relative locations, 

water sources, and anthropogenic activities in the 

surrounding areas. Moreover, a higher EC at OC3 

can indicate more dissolved ions or salts in the 

water, possibly due to an increase in inadequately 

treated wastewater effluents in the area [19-20]. 

There is also considerable variation in the average 

DO levels; the average for OC3 is approximately 2.4 

mg/L, and the average for OC18 is 3.8 mg/L. The 

reduced DO levels at OC3, which may be the 

consequence of increased organic matter or nutrient 

loading in that area, could additionally indicate a 

higher biological or chemical oxygen requirement 

[19-20] [28-29] [50]. Significant temporal 

variability, geographical variability, and ecological 

complexity in the system are linked to the 

substantial standard error in ecological complexity 

(EC) measurements at site OC3. Dissolved ions or 

salts from wastewater effluents can cause significant 

regional changes in EC, even in small geographic 

areas [51-53]. The complex and dynamic nature of 

the aquatic environment, where several interacting 

physical, chemical, and biological processes affect 

the distribution and concentration of dissolved ions, 

may also be reflected in the significant standard 

error at OC3 [51-53]. 

 

(c) ANOVA Comparative Analysis 

The mean values of temperature, electrical 

conductivity (EC), pH, and dissolved oxygen (DO) 

were compared between the two groups, OC3 and 

OC18, using an ANOVA single-factor analysis 

(Table 3). The findings shed light on how these 

factors differed, were comparable across the two 

groups, and showed no discernible difference 

between OC3 and OC18's mean temperatures (F 

(1,48) = 0.135, P = 0.715). Considering mean 

temperatures for OC3 and OC18 of 28.856°C and 

28.404°C, respectively, indicated that both groups' 

temperature conditions are statistically comparable. 

Nonetheless, a noteworthy distinction in electrical 

conductivity was noted between OC3 and OC18 (F 

(1,48) = 20.549, P < 0.001). An appreciable 

difference in the ionic content or salinity between 

the two groups was indicated by the mean EC for 

OC18 (30.470 mS/cm) being significantly higher 

than that for OC3 (11.431 mS/cm). The pH levels, 

on the other hand, did not indicate a significant 

difference between OC3 and OC18 (F (1,48) = 

2.263, P = 0.139), with mean pH values of 7.767 for 

OC3 and 7.628 for OC18, indicating that the acidity 

or alkalinity of the environment is equivalent for 

both groups. According to the ANOVA single-factor 

analysis results, there was a significant difference (F 

(1,48) = 7.640, P = 0.008) in the DO levels between 

OC3 and OC18. In contrast, the difference in the DO 

mean value between OC18 (3.837 mg/l) and OC3 

(2.439 mg/l) could be attributed to variations in the 

oxygenation conditions or anthropogenic activity 

levels between the two groups [28] [29] [50]. 

Overall, the ANOVA results  

 

Table 3.  The ANOVA Single Factor Analysis Results of the Water Quality Parameters at OC3 and OC18 

 

0

10

20

30

40

Mean OC3  Mean OC18

Temp pH EC DO

Parameter Group 1 (OC3) Group 2 (OC18) F-Statistic p-Value Conclusion 

Temperature (°C) Mean: 28.856 

Variance: 12.686 

Mean: 28.404 

Variance: 25.054 

0.135 0.715 Not Significant 

pH Mean: 7.767 

Variance: 0.076 

Mean: 7.628 

Variance: 0.138 

2.263 0.139 Not Significant 

EC (mS/cm) Mean: 11.431 Mean: 30.470 20.549 <0.001 Highly Significant 
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P-

values are two-tailed, and the significant results is (p < 0.05) 

 

while temperature and pH levels are similar, there 

are notable changes between OC3 and OC18 

regarding EC and DO levels, which guide future 

research into the biological and environmental 

variables in the coastal water surrounding the beach 

outfalls. 

 

(d) Regression Analysis of OC3 Temperature 

The influence of temperature on chemical reactions, 

physical properties, and biological processes in 

aquatic habitats makes it a crucial factor in studies 

on water quality. Temperature considerably impacts 

the solubility of chemicals, aquatic organisms' 

metabolic rates, and dissolved oxygen levels. [21] 

[46] [48] [54].  The approach's interpretive capacity 

is significantly increased by its highest statistical 

significance, supported further by temperature's 

critical role in impacting other water quality 

indicators and ecosystem health overall. The 

regression study hypothesizes a significant 

relationship between temperature (OC3 and OC18) 

and water quality indices (pH, EC, and DO) [55].  

Temperature was assumed to be the dependent 

variable, and pH, EC (mS/cm), and DO (mg/l) were 

the independent variables in the multiple linear 

regression analyses conducted on the OC3 and 

OC18 datasets. The regression analysis for both 

OC3 and OC18 shows a substantial link between the 

temperatures at each site and the temperature at the 

other location. A comprehensive description of the 

model's performance is provided by the regression 

statistics in Table 4, which show the significant 

insights that the regression analysis for the OC3 

dataset produced regarding the relationships 

between the independent variables OC3 pH, OC3 

EC (mS/cm), and OC3 DO (mg/l) and the dependent 

variable, OC3 Temperature (°C).  

The R Square value of 0.3211 suggests that the 

independent variables in the model can account for 

about 32.1% of the variance in OC3 Temperature. 

At the same time, the Multiple R-value of 0.5666 

shows a moderately positive correlation between the 

predicted and actual values of OC3 Temperature. 

However, the model's explanatory power appears to 

be somewhat low, as indicated by the Adjusted R 

Square of 0.2241, which accounts for the number of 

predictors in the model. Based on the independent 

variables (OC18 pH, OC18 EC, and OC18 DO), the 

model's R Square value of 0.5020 suggests that the 

independent variables may account for roughly 

50.2% of the variability in OC18 temperature. The 

F-statistic of 3.31, with a corresponding p-value of 

0.0399, suggests that the regression model is 

statistically significant at the 5% level in OC3, as 

shown in Table 5, implying that the independent 

variables collectively have a substantial impact on 

the OC3 temperature. However, the F-statistic 

(7.0566) and significance level (p = 0.0018) indicate 

that the total regression model is statistically 

significant. It can be observed that when all 

predictors are zero, the baseline OC3 Temperature is 

not significantly different from zero Table (6) since 

the intercept term is not statistically significant (p = 

0.6144). Among the independent variables, OC3 pH 

has a p-value of 0.0846, indicating that it is 

marginally significant at the 10% level. OC3 EC (p 

= 0.1297) and OC3 DO (p = 0.4644) are not 

statistically significant predictors at conventional 

significance levels. In OC18, the positive and 

significant coefficient (9.7590, p = 0.0016) indicates 

that as pH increases, OC18 temperature tends to 

increase [55], holding other variables constant. EC 

does not appear to significantly affect OC18 

temperature, as the EC coefficient is very modest (-

0.0091) and not statistically significant (p = 0.8738). 

Furthermore, the coefficient is negative (-0.6374) 

but not statistically.  

 

Table 4. Regression Statistics of the Water Quality Parameters at OC3 and OC18. 

Variance: 12.913 Variance: 428.054 

DO (mg/l) Mean: 2.439 

Variance: 2.183 

Mean: 3.837 

Variance: 4.208 

7.640 0.008 Significant 

Statistic OC3 OC18 

Multiple R 0.5666 0.7085 

R Square 0.3211 0.502 

Adjusted R Square 0.2241 0.4309 
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Table 5. The ANOVA 

Results of the Regression Model of the Water Quality Parameters at OC3 and OC18. 

Source of variation df SS MS F Significance F 

OC3 Regression 3 97.75 32.58 3.31 0.0399 

OC3 Residual 21 206.71 9.84   

OC3 Residual 24 304.46    

OC18 Regression 3 301.8549 100.6183 7.0566 0.0018 

OC18 Residual 21 299.4347 14.2588   

OC18 Total 24 601.2896    

 

Significant (p = 0.1827), implying that DO has no 

significant effect on OC18 temperature within the 

measured range. In contrast to the regression 

analysis results for OC3, these results show that the 

predictor factors might have different effects on 

temperature depending on the situation. The data 

structures and contextual elements differ across the 

OC3 and OC18 datasets, resulting in variances in 

predictor significance and degree of effects. 

Notably, even while the model sufficiently meets the 

linear regression assumptions and explains a tiny 

portion of the variance in OC18 temperature, pH, 

EC, and DO don’t seem to be significant predictors 

of the OC18 temperature. The residual plot for OC3 

pH (Fig. 7.a) demonstrates residuals dispersed 

around zero, indicating an adequate fit, albeit some 

outliers highlight possible constraints in capturing 

all pH fluctuations. On the other hand, the random 

scatter around zero in the OC3 EC residual plot (Fig. 

7.b) indicates a robust model fit in the absence of 

any pattern in the residuals. Comparably, the 

residuals in the OC3 DO plot in Fig. 7.c are centered 

around zero, suggesting an efficient model fit with a 

few outliers pointing to possible discrepancies in the 

DO level prediction [53]. The model's validity is 

further supported by the line fit plots (Figs. 7.d, e, 

and f) for pH, EC, and DO, which indicate that the 

model accurately represents the entire set of data 

trends. The normal probability plot (Fig. 7.g) 

verifies that the residuals have an almost normal 

distribution. On the other hand, a robust model fit 

with residuals distributed around zero and slight 

variations that have no discernible impact on the 

overall fit is demonstrated by the OC18 pH residual 

plot (Fig. 8.a). The OC18 EC residual plot (Fig. 8.b) 

shows residuals spread equally about zero with no 

discernible pattern, demonstrating the model's 

ability to match the data [56]. The OC18 EC residual 

plot (Fig. 8.b) reveals residuals evenly distributed 

around zero, with no discernable trend, indicating 

the model's ability to fit the data. The model 

accurately reflects EC behavior, while the residual 

plot for OC18 DO (mg/l) (Fig. 8.c) reveals a decent 

match with minimal outliers. 

As with OC3, the line fit plots (d, e, and f) for OC18 

in Fig. 8 show that the model accurately represents 

the trends in the data. The normal probability plot 

(Fig. 8.g) confirms the residuals' approximate 

normal distribution, which lends credence to the 

suitability of the model. Both OC3 and OC18 

residual plots exhibit residuals centered around zero, 

indicating good model fits for pH, EC, and DO. 

However, OC18 demonstrates slightly fewer 

outliers and more consistent residual distribution 

than OC3. The average probability plots for both 

datasets confirm that the residuals follow a normal 

distribution, validating the models' appropriateness, 

and the models for both OC3 and OC18 effectively 

capture the trends in the data, with OC18 showing a 

marginally better fit. The residuals' behavior 

indicates that the models are robust, with random 

distribution around zero and minimal significant 

outliers. These findings highlight the complexity of 

environmental temperature regulation and 

underscore the need for comprehensive models that 

account for a broader spectrum of influencing 

factors [46] [54] [48] [55]. 

 

Table 6. The Coefficients of the Regression Model of the Water Quality Parameters at OC3 and OC18 and Their 

Corresponding Statistical Significance. 

Predictor Coefficient Standard Error t-Stat P-value Lower 95% Upper 95% 

Standard Error 3.1374 3.7761 

Observations 25 25 
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Intercept -9.8089 19.1787 -0.5114 0.6144 -49.6932 30.0755 

OC3 pH 4.6162 2.5505 1.8099 0.0846 -0.6879 9.9202 

OC3 EC (mS/cm) 0.3182 0.2017 1.5773 0.1297 -0.1013 0.7378 

OC3 DO (mg/l) -0.3384 0.4542 -0.7452 0.4644 -1.2829 0.606 

Intercept -43.3097 19.888 -2.1777 0.041 -84.6691 -1.9504 

OC18 pH 9.759 2.6855 3.634 0.0016 4.1742 15.3438 

OC18 EC (mS/cm) -0.0091 0.0568 -0.1608 0.8738 -0.1273 0.109 

OC18 DO (mg/l) -0.6374 0.4626 -1.3781 0.1827 -1.5994 0.3245 

 

   
 

   
 

    
 

 
Figure 7. a.  OC3 pH Residual Plot. b.  OC3 EC Residual Plot. c. OC3 DO Residual Plot. d. OC3. pH Line Fit 

Plot. e. OC3 EC Line Fit Plot. f. OC3 DO (mg/l) Line Fit Plot. g. OC3 Normal Probability Plot 

 

   



Letters in High Energy Physics 
ISSN: 2632-2714 

Volume 2024 

 

 

946 

 

   
 

   
 

 
 

Figure 8. a.  OC18 pH Residual Plot. b.  OC18 EC Residual Plot. c. OC18 DO Residual Plot. d. OC3 pH Line 

Fit Plot. e. OC18 EC Line Fit Plot. f. OC18 DO Line Fit Plot. g. OC18 Normal Probability Plot 

 

(e) Principal Component Analysis (PCA) 

Principal component analysis (PCA) was employed 

to identify the principal components that account for 

the variance in the observed water quality measures 

and minimize the dataset's dimensionality. The key 

elements were ascertained by computing the 

eigenvalues and eigenvectors using standardized 

data (z-scores), which were used to verify 

consistency across variables. Additionally, a biplot 

was created to show the correlations between the 

parameters and the distinctions between the samples 

that came from OC3 and OC18The eigenvalues 

associated with each principal component are 

displayed in the scree plot (Fig. 9). As shown in 

Table 7, the first principal component (PC1) 

explains 45.2% of the total variance. In comparison, 

the second principal component (PC2) accounts for 

an additional 36.1%. Combining the first two 

significant components yields an 81.3% variance in 

the dataset, indicating that these two components are 

sufficient to represent the majority of the data [50]. 

The eigenvalues of the following two primary 

components (PC3 and PC4) fall considerably, 

indicating that they have minimal influence on 

explaining the variation. This is demonstrated by the 

"elbow" in the scree plot, which appears after the 

second component and reinforces the decision to 

focus on the first two principal components for 

further research. The PCA biplot (Fig. 10) provides 

a two-dimensional representation of the data 

regarding the first two principal components (PC1 

and PC2). The biplot shows unique clustering for the 

two outfalls, OC3 and OC18, thereby rendering it 

more straightforward to distinguish between them. 

The principal component 1 (PC1) axis, which 

accounts for 45.2% of the variance, appears to 

capture the primary distinctions between the data 

from the two outfalls; on the other hand, the second 

principal component (PC2), which accounts for 

36.1% of the variation and suggests additional 
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underlying variability, further separates the samples. 

The biplot (Fig. 10) additionally demonstrated how 

the initial variables (TEMP, pH, EC, and DO) were 

loaded onto the principal components. Variables like 

EC and DO, which have larger vector lengths, had 

more impact determining the main components. The 

potent loading vectors and the distinct distinction 

between the clusters of OC3 and OC18, as shown in 

the biplot, further suggest that the environmental 

characteristics assessed help differentiate between 

the two outfalls. The scree plot and biplot show that 

the top two principal components contain the 

majority of the variance in the dataset, efficiently 

distinguishing between samples from OC3 and 

OC18. The efficacy of PCA in decreasing data 

dimensionality while keeping crucial information is 

highlighted by this analysis, which offers insightful 

information about the critical environmental 

parameters causing the observed variability [25] 

[26] [13]. PC1 and PC2 explain 81.3052% of the 

overall variance, illustrated in Table 7, 

demonstrating that these two components are 

essential in capturing the dataset's variability. The 

eigenvalues indicate the major components' 

variance, whereas the covariance matrix's diagonal 

represents the original variance. These findings 

highlight the significance of PCA in extracting 

valuable insights from complicated environmental 

datasets and guiding future monitoring efforts for 

assessing beach outfall conditions.  

 

 

Table 7. Eigenvalues and Variance: 

 

 

 

 

 

 

 

 
Figure 9. The Scree Plot of the PCA Analysis. 
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Figure 10: PCA Biplot showing the first two principal components and the clustering of the Water Quality 

Parameters at OC3 and OC18. 

4) Conclusion  

The significance of multivariate methods in 

comprehending the intricate dynamics of coastal 

water quality has contributed to shedding light on 

the complex interactions among the significant 

physicochemical factors affecting the water quality 

at coastal beach outfalls. A sophisticated 

understanding of the dynamics of the coastal 

environment was established by utilizing an 

intensive multivariate approach that included 

descriptive statistics, t-tests, ANOVA, regression 

analysis, and principal component analysis (PCA). 

The knowledge acquired can guide wise 

management and policy decisions that safeguard and 

maintain these essential coastal ecosystems in light 

of mounting anthropogenic pressures and changing 

environmental conditions. The primary contribution 

of this research is additionally contributing to the 

scientific literature on coastal water quality 

evaluation. Additionally, it provides a solid 

framework for future studies protecting these vital 

natural resources. The data analysis in this study 

indicated significant regional variability in 

parameters such as temperature, pH, EC, and DO at 

the OC3 and OC18 outfall locations. Significant 

variances in the mean values of these variables, as 

demonstrated by t-tests and ANOVA, highlight the 

coastal environment's heterogeneity and the impact 

of localized influences. The regression analysis 

revealed the interconnectedness of physicochemical 

processes, with water temperature emerging as a 

significant predictor of DO levels at each site, 

emphasizing the vital role of thermal conditions in 

coastal water quality.  This research finding 

emphasizes the sensitivity of coastal ecosystems to 

heat changes and their consequences for other 

crucial water quality indices. The PCA biplot 

effectively visualizes multivariate correlations, 

revealing temperature, pH, and electrical 

conductivity as the key drivers of variability in the 

coastal water quality dataset. The vectors 

representing these factors revealed intricate 

interactions, providing information on their 

correlations and potential synergistic or antagonistic 

effects. While this study offers beneficial insights, it 

is crucial to acknowledge several limitations, such 

as the limited time scope and spatial coverage, 

which are constrained to two distinct outfall sites. 

Future research should address these limitations by 

including long-term monitoring to capture seasonal 

fluctuations and expanding the study to include 

more outfall locations and larger coastal areas for 

better spatial resolution. It will also be vital to look 

into the possible effects of climate change on the 

quality of coastal water, especially concerning rising 

temperatures and altered precipitation patterns. 
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