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Abstract 

Introduction: Disaster relief operations face significant challenges in assessing and responding to emergencies in 

hazardous environments. Traditional methods often struggle due to limited access, power constraints, and operational 

risks. Autonomous drones offer a promising solution, but their reliance on battery power limits their operational 

duration. 

Objectives: This study focuses on developing a novel Solar Sentinel-Disaster Drone X (SS-DDX) equipped with a 

solar power system and an intelligent deep learning model for efficient human detection in disaster areas. 

Methods: The SS-DDX utilizes an ArduPilot Mega flight controller for autonomous navigation, a 3500mAh Lithium-

Ion battery for power, and a 50W flexible solar panel for extended flight endurance. The drone employs a GoPro Hero 

10 camera to capture high-resolution images of disaster zones. A Relief Vision Deep Convolutional Neural Network 

(RVDCNN) model integrated with the Intelligent Zebra Optimization (IZO) algorithm (IZ-RVDCNN) is developed to 

detect humans in the captured images. Data preprocessing techniques, including Min-Max normalization and 

Histogram of Oriented Gradients (HOG) feature extraction, enhance model performance. 

Results: The IZ-RVDCNN model demonstrates high accuracy (91%), precision (91.70%), and recall (98%) in human 

detection, significantly outperforming existing methods. 

Conclusions: The SS-DDX represents a significant advancement in disaster relief operations, offering increased 

autonomy, extended flight duration, and enhanced human detection capabilities. The study highlights the potential of 

solar-powered drones and intelligent deep learning algorithms in improving response efficiency and saving lives in 

disaster situations. 

Keywords: Disaster Relief Operations, Relief Vision- Deep Convolutional Neural Net (RV-DCNN), Solar Sentinel-

Disaster Drone X (SS-DDX), Solar-Powered Drone, Camera Data. 

 

1. Introduction 

It is very important to respond appropriately and 

quickly following natural disasters to minimize loss of 

life and damage. This is just but the area of operation 

of the disaster which weather, a wider area, or 

restricted access to the affected region is among the 

many challenges that are usually faced by the 

traditional modes of disaster aid (ElSayed et al., 2023). 

So, institutional-owned autonomous drones have 

emerged as a plausible solution that can offer the 

capability to quickly and efficiently assess disaster 

areas deliver required goods and services, are capable 

of helping with the search and rescue missions (Chu et 

al., 2021). Some of the weaknesses include the fact that 

conventional drones can only work for some time in 

large or isolated disaster areas due to the reliance on 

restricted energy sources. 

The development of an independent flying machine 

charged with the solar system is suggested to be a 

significant contribution to the organization of disaster 

relief to solve this issue. These drones may provide 

coverage of disaster areas for more extended periods 

using solar power to enhance the operational autonomy 

and flight endurance of drones (Saravanan et al.,2024). 

This innovation removes the necessity of battery 

replacement or recharging which is mostly 

unamenable during an emergency, in circumstances 

where there are power blackouts or breakdown of 
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physical transportation infrastructure Lin et al., (2024). 

Solar-powered drones with self-guidance capability 

allow for constant surveillance missions in real-time 

without having to be physically operated by 

man.Dispatch of vital data on vital statistics to 

emergency response units, large area aerial surveys, 

transportation and delivery of food, water, and medical 

supplies to the storm-ravaged or difficult terrains, and 

other such operations are accomplished using these 

drones (Hima and Thampatty, 2023). They can also 

accommodate complex sensors and imaging apparatus 

that facilitate the dispensation of aid by helping to map 

out the area, assess the extent of the disaster as well as 

identify people who might have been alive throughout 

the disaster (Alawad et al.,2023). 

The aspects, operating energy, and construction of the 

self-governing solar-powered drone for disaster relief 

are deliberated. It highlights how the endurance of the 

drones and their ability to navigate and carry loads can 

be enhanced through the integration of solar energy 

systems with self-regulating algorithms Cai and Liang, 

(2023). There is great potential in the use of this 

technology because while minimizing the 

environmental impact of disasters, it also enhances the 

efficacy of relief operations. Solar-powered drones 

remain the most sustainable solution, and in many 

cases, they address some of the most significant issues 

in disaster management through the use of autonomous 

systems and renewable energy (Kamal et al., 2023). 

In this work, we design a new concept SS-DDX with 

an integrated ArduPilot Mega flight controller. 

Specifically, this controller relies on the mission 

planner 2 configuration. 1. 101 to effectively organize 

flight courses as well as utilize is known as IZ-

RVDCNN for identifying human presence in the 

disaster area. 

In Section 2, a list of literature reviews is provided. In 

Section 3, the approach is explained. The Findings 

include a mention of Section 4. In Section 5, the 

conclusion is provided. 

2. Related works 

A hexcopter for surveillance and monitoring purposes 

has been built and presented by (Hassan et al., 2021). 

A highly versatile and adaptable platform was offered 

by the technology for uses such as aerial imagery and 

surveillance. Governmental organizations, military 

uses, disaster relief efforts, and other purposes were all 

eligible for utilizing equipment. 

As an efficient remedy for communication loss after a 

natural disaster, Padilla et al.,(2020) created an aerial 

communication relay platform. Signal quality 

improved as compared to the non-optimized situation, 

according to the results of the optimal flight path 

simulation. 

A solar-powered unmanned aerial vehicle (UAV) 

exploring several safety and recovery locations in a 

mountainous area faced a path planning difficulty that 

was investigated by (Huang and Savkin, 2021). The 

procedure was meant for a single UAV. Another area 

of research was creating techniques for many UAVs to 

further enhance the time it takes to locate a target. 

(Chaudhary et al., 2021) investigated the possible 

application of drones in natural disaster situations such 

as floods, cyclones, earthquakes, and volcanic 

eruptions, not just for searching victims, animals, and 

significant items. They attempted to decrease the 

number of obstacles that prevent UAVs from being 

deployed effectively and to extend the flying time for 

the rescue mission. 

A model for organizing an inspection trip was 

proposed by (Huang and Savkin, 2021) solar-powered 

UAV takes off from its base, travels to a predefined 

route, and then returns to the storage while preserving 

its remaining energy and avoiding collisions with 

mountains. The proposed route planning technique 

first identified a suitable inspection path based on 

quickly exploring random trees (RRT) that enabled the 

UAV to complete its task. 

The design and development of an autonomous drone 

system was the main purpose of the investigation by 

(Kalta et al., 2024) which showed how it has the 

potential to transform several industries and enhance 

sustainability, efficiency, and safety when applied 

morally and responsibly. Successful autonomous 

flying demonstrations that highlight the drone's 

capability to finish challenging missions would be 

among the outcomes. 

Bibliometric evaluation of post-disaster building 

damage evaluation and inspection methods was 

conducted by (Al Shafian and Hu, 2024) on the key 

advances and problems in the critical issue. The 

outcomes showed notable improvements in data 

gathering and processing techniques, highlighting the 

value of machine learning and remote sensing in 

augmenting assessments of disaster damage. 
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3. Methods 

The images gathered in disaster regions and to improve 

data quality, images were normalized using Min-Max 

normalization. The HOG approach, which prioritized 

edges and gradients for efficient human identification, 

was used to extract features. During search and rescue 

operations, this procedure enhanced the IZ-RVDCNN 

performance. 

3.1. Data collection 

To achieve optimal performance in disaster relief 

missions, components had to be chosen and integrated 

throughout the hardware design process for the SS-

DDX. First, the ArduPilot Mega flight controller was 

integrated. It was set up to use Mission Planner 2.1.101 

to operate the drone's autonomous navigation. The 

drone was able to fly over disaster zones precisely due 

to this configuration.Brushless DC motors were linked 

to 30-amp electronic speed controllers (ESCs) for 

reliable flight and propulsion. These motors were 

picked because they were effective and were put 

through testing to make sure could generate the thrust 

required to maneuver across difficult terrain. An 

integrated 3500mAh Lithium-Ion battery functioned as 

the drone's main power source. A 50W flexible solar 

panel was added to this to enable in-flight recharging 

and increase operating duration. The efficacy of the 

solar panel in maintaining the drone's electricity 

throughout prolonged missions was verified by testing 

in a range of sunshine situations.The GoPro Hero 10 

camera was set up to collect data by taking high-

definition images and videos of the disaster region. The 

camera was put to the test to see how well it captured 

images in various lighting and debris-filled 

environments. The SS-DDX was particularly 

successful for search and save operations in disaster-

affected situations because of its hardware 

configuration, which guaranteed its ability to operate 

for extended periods and capture images efficiently. 

3.2. Data pre-processing using min-max 

normalization 

By removing scale biases during processing, Min-Max 

normalization modifies input variables to improve 

model performance and provide consistency across 

features for identifying persons in disaster zones. 

This is the most straightforward normalization method 

that not only gets the scores into the standard numerical 

range of [0, 1] but also keeps the original distribution 

shapes aside from a scaling factor. For each matcher, 

let 𝑊 represent the set of raw matching scores. 

Afterwards, 𝑤′represents the normalized score for 𝑤. 

The maximum and minimum values of the raw 

matching scores are represented by max (𝑊) and 

min(𝑊), respectively. Following that, the normalized 

score is determined as equation 1. 

 𝑤′ = (𝑤 − min (𝑊)/max (𝑊) − min (𝑊))  

     (1) 

This approach is not robust since it is extremely 

susceptible to outliers in the estimation data. The 

majority of the data only concentrates on a smaller 

range due to the existence of outliers. 

3.3. Feature extraction using  HOG 

Focusing on human-specific characteristics in the 

chaotic environment, these extracted features aid 

algorithms in differentiating persons from other 

objects or particles, increasing search and saving 

mission effectiveness. 

The field of computer vision has effectively employed 

the HOG descriptor. It has mostly been applied to the 

identification of objects, people, and pedestrians. 

Magnitude and orientation are used to calculate HOG. 

The input image's horizontal and vertical gradients are 

calculated using the following equations, 2 and 3. 

𝐻𝑤 = 𝐽𝑒 ∗ [−1, 0, 1]    

     

 (2) 

 𝐻𝑧 = 𝐽𝑒 ∗ [−1, 0, 1]𝑆    

                 

(3) 

Using equations 4 and 5, gradients thus generated are 

then used to determine gradient magnitude and angular 

orientations. 

𝑛(𝑤, 𝑧) = √ℎ𝑢
2 (𝑤, 𝑧) + ℎ𝑔

2(𝑤, 𝑧)   

     (4) 

𝜃(𝑤, 𝑧) = 𝑡𝑎𝑛−1 (
ℎ𝑢(𝑤,𝑧)

ℎ𝑔(𝑤,𝑧)
)    

     (5) 

The image is divided into cells by it. A block made up 

of different cells is generated, and the blocks are 

convolved to create features. 

There is an overlap between these blocks. Quantized 

orientations about the same cell are combined into the 

final histogram bins. After sorting, these histogram 

bins are combined to create the final histogram. The 
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total amount of features computed using the HOG 

descriptor is represented by𝑆ℎ𝑜𝑔_𝑓𝑠. Block size is 

expressed by 𝐴𝑡, while the number of bins used is 

indicated by 𝑀𝑎.  𝐴𝑖𝑚𝑔stands for blocks per image. 

The total amount of features can then be calculated 

using the formula found in Equation 6. 

𝑆ℎ𝑜𝑔_𝑓𝑠 = 𝐴𝑖𝑚𝑔 ∗ 𝐴𝑡 ∗ 𝑀𝑎   (6) 

Recognizing the humans in the disaster area 

This model improves detection performance and 

efficiency by fusing a Deep Convolutional Neural 

Network (RVDCNN) depending on Relief Vision with 

the Intelligent Zebra Optimization (IZO) algorithm. 

This is especially important in disaster situations 

because survivors must be found quickly and adaptably 

amid the chaos and wreckage. To achieve fast 

convergence towards the best solution, the IZO 

algorithm simulates zebra herd intelligence and 

improves the learning process. Meanwhile, the 

algorithm makes sure that only the most pertinent 

features are chosen, eliminating noise and unnecessary 

data in the process.The RVDCNN architecture is 

particularly effective at extracting meaningful patterns 

and identifying human forms amidst chaos or rubble in 

catastrophe settings when complex visual cues and 

barriers can make detection more difficult.This model 

improves accuracy and efficiency in human detection 

amidst disaster-related complications by combining 

the IZO method with a fine-tuned RVDCNN. This 

allows the model to make use of the resilience of zebra-

inspired optimization and the power of deep learning. 

The hybrid model, IZ-RVDCNN, performs 

particularly well in real-time human recognition during 

disaster relief efforts. It offers improved detection 

accuracy, shorter reaction times, and reliable 

performance in difficult environments where standard 

models struggle. 

RVDCNN 

RVDCNN architecture improves the accuracy of 

detecting survivors by effectively capturing features 

from a variety of environmental circumstances. 

Identify humansin disaster region more quickly and 

effectively with the help of this creative strategy, 

which ultimately saves lives. 

The input image size is set to 224 × 224 × 3 based on 

the experience and computational power of the 

machine. It is composed of many depth-directed slices. 

Numerous neurons are represented by a single slice, 

and the convolution kernel (CK) a square filter can be 

compared to the number of neurons, such as 16 x 16, 9 

× 9, or 5 × 5. The purpose of these neurons is to extract 

the feature of the immediate area in the image that they 

each belong to. Assuming that the input image size 

is 𝑋, the CK size is 𝐸, and the mobile stride of the CK 

is 𝑇 (usually 𝑇 = 2), we can calculate the dimension of 

the image after convolution as (𝑋 −  𝐸 +  2𝑂)/𝑇 +

 1. Padding 𝑂 is used to complete the boundary of the 

supplied imageoften 𝑂 = 0. The output tensor is then 

obtained. 

• DCNN 

Three convolutional layers make up the hierarchical 

architecture of DCNNs. Different low-level 

characteristics, such as edges, lines, and corners, are 

extracted from the input image using the first 

convolutional layer. High-tier features are available to 

the other two figure 1 shows the architecture of DCNN. 

 

Figure 1: Architecture of DCNN 

Every output map features convolutional mixes of 

many input maps. In general, the output can be 

represented by the formula that follows in equation 7. 

 𝑤𝑖
𝑘 = 𝑒(∑ 𝑤𝑖

𝑘 ∗ 𝑙𝑗𝑖
𝑘 + 𝑎𝑖

𝑘 
𝑗∈𝑁𝑖

)   

     (7) 

Here𝑎𝑖 stands for bias, 𝑙𝑗𝑖for CK for the 𝑙𝑡ℎ layer, and 

𝑁𝑖 for a collection of input maps. In the technical 

implementation of DCNNs, an additive bias can be 

introduced in addition to sigmoid or 𝑡𝑎𝑛ℎ functions. 

The amount of the unit at the place, for instance, 

(𝑤, 𝑧)in the 𝑗𝑡ℎlayer, and the feature map, designated 

as𝑢𝑗𝑖
𝑤𝑧, is provided by equation 8. 

𝑢𝑗𝑖
𝑤𝑧 = 𝑠𝑖𝑔𝑛𝑚𝑜𝑖𝑑 (𝑎𝑗𝑖

 +

∑ ∑ 𝑥𝑗𝑖
𝑜𝑟𝑢(𝑗−1)

(𝑤+𝑜)(𝑧+𝑟)𝑅𝑖−1
𝑟=0

𝑂𝑗−1

𝑜=0 )   

  (8) 

Where 𝑂𝑗and 𝑅𝑖are the kernel's height and width, 

sigmoid (·) is the sigmoid function, 𝑎𝑗𝑖is the feature 

map's bias, and 𝑥𝑗𝑖
𝑤𝑧 is the kernel weight (KW) number 

at the point (𝑜, 𝑟)associated with the layer. DCNN 

variables, such as bias𝑎𝑗𝑖and KW 𝑥𝑗𝑖
𝑜𝑟, are often 

learned by unsupervised methods. 
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• Stochastic pooling layer (SPL) 

In DCNNs, replace the sub-sampling layer with an 

SPL. The SPL, which may calculate a feature's 

maximum value across an area of the image, is used to 

lower variation. Even if there are slight differences in 

the image features, the outcome will remain the same. 

Stochastic pooling avoids over-fitting in addition to 

combining the benefits of max-pooling and meaning-

pooling. It is crucial for the disaster relief operations. 

To begin with, it must use Equation (9) to calculate the 

probability 𝑜 for every region 𝑖 in stochastic pooling. 

𝑜𝑗 =
𝛼𝑗

∑ 𝛼𝑙𝑙∈𝑄𝑖

     

     

 (9) 

Here 𝑖 is the index of every component within it and 𝑄𝑖  

is the pooling region 𝑗 in feature map𝑑,to choose a 

location 𝑘 inside the region, then sample from the 

multinomial distribution depending on 𝑜stochastic (𝑠) 

which stands for the stochastic pooling operation, 

defined as follows for each feature map 𝑑. 

𝛼𝑜,𝑟
𝑘,𝑙 = 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐(𝑛,𝑚,𝑗,𝑖)∈𝑜 (𝛼𝑛,𝑚

𝑘−1,𝑙𝑣(𝑗, 𝑖))  

     (10) 

Here 𝑣(𝑗, 𝑖) is the weighting frame variable, and 𝛼𝑜,𝑟
𝑘,𝑙

 is 

the neural activation at the location (𝑜, 𝑟)in feature 

map 𝐿 in the 𝑘𝑡ℎ layer. 

The solution offers the benefit of an SPL, which 

accelerates DCNN convergence and enhances their 

capacity for generalization when handling superior 

invariant information. 

• Softmax regression 

When solving multi-class classification problems, 

softmax regression is used. The form that the 

hypothesis functions takes equation 11. 

 𝑔𝜃(𝑤) =
1

1+exp (−𝜃𝑆𝑤)
    

     

 (11) 

To minimize the cost function 𝐼(𝜃)by training 𝜃 

𝐼(𝜃) = −
1

𝑛
[∑ ∑ 𝑘{𝑧(𝑗) = 𝑖}𝑙𝑜𝑔𝑜(𝑧(𝑗) =𝑘

𝑖=0
𝑛
𝑗=1

𝑖|𝑤(𝑗); 𝜃)]    

 (12) 

𝑧𝑗 ∈ {1,2, … . , 𝑙} for the training 

dataset{𝑤(1), 𝑧(1), … … , (𝑤(𝑛), 𝑧(𝑛))}. The possibility 

that 𝑤 will be classified as a category 𝑖 in Softmax 

regression is equation 13. 

𝑜(𝑧(𝑗) = 𝑖|𝑤(𝑗);𝜃) =
𝑒𝜃𝑖

𝑆𝑤(𝑗)

∑ 𝑒
𝜃𝑘

𝑆𝑤(𝑗)𝑙
𝑘=1

   

     (13) 

A technique for supervised learning is used for 

developing the connection. The similarity between 

training samples is reflected in the internal 

representation. To identify a person's maximal 

activation neurons reflect the known human, and this 

knowledge is necessary to understand the feature 

representation acquired by the DCNN. Finally, by 

averaging image patches connected to the neurons in a 

higher layer with stochastic responses, we visualize the 

image features. 

• Training algorithm 

Furthermore, train DCNNs with the back gradient-

descent method. There are two feedforward pass (FFP) 

stages and one back propagation pass(BPP) stage in it. 

We discuss an FFP stage multiclass issue with 𝑑 

categories and 𝑀 training instances. Equation 14 can 

be used to find the squared error value. 

 𝐹𝑀 =
1

2
∑ ∑ (𝑠𝑙

𝑚 − 𝑧𝑙
𝑚)2𝑑

𝑙=1
𝑀
𝑚=1    

     (14) 

The 𝑙𝑡ℎcomponent of the corresponding label for 

the𝑚𝑡ℎsequence is denoted by 𝑠𝑙
𝑚 and the quantity of 

the 𝑙𝑡ℎoutput layer unit in reaction to the 𝑚𝑡ℎinput 

sequence is represented by𝑧𝑙
𝑚. 

Let 𝑘 stand for the current layer(CL), 𝐾 for the output 

layer(OL), and 𝑙 for the input layer(IL). The CLs 

output is specified as equation 15. 

𝑤𝑘 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑋𝑘𝑤𝑘−1 + 𝑎𝑘)   

     (15) 

Here 𝑎 stands for bias and 𝑋 for the weight value 

matrix. 

When moving from the upper to the lowest layers in 

equation 16, the back-propagated mistakes can use a 

subsequent recurrence function around the BPP stage. 

𝛿𝑘 = (𝑋𝑘+1)𝑆𝛿𝑘+1⨀𝑒′(𝑋𝑘𝑤𝑘−1 + 𝑎𝑘)  

     (16) 

Where⨀ stands for the multiplication of elements, it 

will update the weight using the equations 17and 

18below. 
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𝜕𝐹

 𝜕𝑋𝑘 = 𝑤𝑘−1(𝛿𝑘)𝑆    

     

 (17) 

∆𝑋𝑘 = −𝜂
𝜕𝐹

𝜕𝑋𝑘     

     (18) 

IZO 

IZO enhances situational awareness and expedites 

rescue operations by optimizing parameters for 

algorithms that evaluate visual data and quickly 

identify people in difficult-to-reach environments. 

Beginning individuals of tent chaotic mapping 

The Zebra Optimization Algorithm (ZOA) generates 

entirely random individuals of zebras when the 

individuals are initially established. During the 

subsequent resolution analyze, the ZOA is expected to 

decrease into a local optimal resolution because the 

majority of the initial zebra locations are probably 

going to be far from the ideal outcome. The initial 

group of zebras may be distributed unevenly as an 

effect of this conventional initiation technique. 

Therefore, to determine the zebra individuals and 

create more uniformly distributed individuals in the 

search space, tent chaotic map is employed. The 

modified initialization equation is as follows in 

equations 19 and 20. 

𝑤𝑗 = 𝑞𝑗. (𝑣𝑎 − 𝑘𝑎) + 𝑘𝑎    

     (19) 

𝑞𝑗 = {

𝑞𝑗−1

𝛽
𝑞𝑗−1 ∈ [0, 𝛽]            

1−𝑞𝑗−1

1−𝛽
𝑞𝑗−1 ∈ [𝛽, 1]

 

   

                  

(20) 

Where 𝑞𝑗represents the generated chaotic sequence, 

𝑤𝑗represents the individual zebra following tent chaos 

startup, 𝑣𝑎 , and 𝑘𝑎indicate the generable zebra places' 

top and bottom boundaries, and 𝛽 is a chaotic 

parameter that can be changed. 

• Sine cosine approach (SCA) 

To improve the ZOA's ability to explore globally, the 

SCA was used during the hunting stage to modify the 

location modify equation 21 of zebra individuals in 

compliance with the SCA. Following the development 

of the sine cosine strategy, the following is the revised 

formula for foraging behavior. 

 𝑤𝑗,𝑖
𝑚1 =

𝑤𝑗,𝑖 + 𝑎1. sin 𝑎2. |𝑎3. 𝑌𝑖
𝑜 − 𝑏2. 𝑤𝑗,𝑖|) 𝑟𝑎𝑛𝑑 < 0.5

𝑤𝑗,𝑖 + 𝑎1. sin 𝑎2. |𝑎3. 𝑌𝑖
𝑜 − 𝑏2. 𝑤𝑗,𝑖|) 𝑟𝑎𝑛𝑑 ≥ 0.5

 

    (21) 

𝑎1 = [1 − (
𝑠

𝑆𝑚𝑎𝑥
)

𝑙

]
1/𝑙

    

     

 (22) 

Where 𝑎2   𝑎𝑛𝑑   𝑎3are random values generated 

between[0,2𝜋], 𝑙 is the modification coefficient, 

and𝑙 ≥ 1. 

• Innovative customizable weight 

component 

The inclusion of a weight component enhances ZOA's 

defensive approach by supporting the algorithm's 

ability to automatically balance its local exploring and 

global searching abilities. The weight component 

decreases quickly in the early iterations, aiding in the 

improvement of each zebra's ability to search globally, 

while in the intermediate and late iterations, it 

decreases gradually and softly to reflect the zebras' 

local exploring in the search space. Below is the 

dynamic adaptive weight factor (𝑥, 𝑦) and updated 

position update formula for the zebra imperial 

approach in equations 23 and 24. 

 𝑊𝑗,𝑖
𝑚2 =

{
𝑁1: 𝑥2. 𝑤𝑗,𝑖 + 0.01. (2. 𝑟𝑎𝑛𝑑 − 1). (1 −

𝑠

𝑆𝑚𝑎𝑥
) . 𝑤𝑗,𝑖(𝑏3 ≤ 0.5)

𝑁2: 𝑥2. 𝑤𝑗,𝑖 + 𝑟𝑎𝑛𝑑. (𝑌𝑖
𝐵 − 𝑏2. 𝑤𝑗,𝑖)(𝑏3 > 0.5)
 

                 (23) 

𝑥2 = − [1 + cos (
3

2
𝜋 +

1

2
𝜋.

𝑠

𝑆𝑚𝑎𝑥
)]   

     (24) 

The unique optimization procedure of the IZOA, tent 

chaos mapping is used to initialize IZOA, and iterative 

optimization is achieved by combining the defensive 

formula with a dynamic weighting factor and the 

foraging equation with a SCA. 

• Establish the IZOA population variables, 

such as the maximum amount of iterations, 

dimensionality, and zebra count. 

• Use tent mapping to start the zebra 

population. 

• Determine each zebra's fitness value 

individually and note the ideal zebra 

locations. 
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• Update each zebra's position by applying the 

SCA foraging equation 

• Create the random number𝑏3, and then 

choose the defensive strategy based on 𝑏 3. 

If𝑏3 ≤ 0.5, the zebra updates its location 

using approach𝑁1in the modified equation 

(32) and adds weightscomponents if𝑏3 > 0.5, 

the zebra updates its location using 

approach𝑁2. 

• Determine each zebra's fitness value, to 

update its position, and record the globally 

optimal solution. 

• Ascertain if the criterion for the iteration's 

termination has been met. If the requirements 

are satisfied, the global maximum strategy is 

generated and the IZOA is completed. The 

loop iterates if the termination condition is not 

met. 

 

4. Results 

The experimental environment and setup, as well as the 

effectiveness of the suggested approach displayed in 

Table 1, are covered in this section. Compared with the 

existing approaches which areYou Only Look Once 

(YOLO) (Sarosa et al., 2021), Table 2 shows the 

overall performances.  

Table 1: Experimental setup 

Experimental 

Setup 
Details 

Model IZ-RVDCNN 

Task 

Autonomous Solar-Powered 

Drone for Disaster Relief 

Operations 

Hardware Laptop running Windows 11 

Processor Intel i7 12th Gen 

RAM 16 GB 

Software 

Environment 
Python 3.10.1 

Evaluation 

Metrics 
Accuracy, precision, recall 

 

Table 2: Overall result comparison 

Methods Accurac

y % 

Precisio

n % 

Recal

l % 

YOLO(Sarosa et 

al., 2021) 

89% 90.82% 97.8

% 

IZ-

RVDCNN[Propose

d] 

91% 91.70% 98% 

4.1 Overall processing time  

Subsequently categorize and identify people to 

guarantee prompt and precise detection. For prompt 

response and successful search, these processes must 

be optimized.Figure 2 shows the output of overall 

processing time. 

 

Figure 2: Output of overall processing time 

While the RVDCNN achieved 7minutes (m) 

respectively, our proposed IZ-RVDCNN methodology 

achieved (4m). The outcome indicates that our 

suggested approach outperforms. 

4.2 Accuracy 

It assesses how well detection systems work, which is 

important for rescue operations since it guarantees 

accurate identification and reduces false 

negatives.Figure 3 shows the result of accuracy. 

 

Figure 3: Result of accuracy 

While the existing methods YOLO achieved 89% 

respectively, our proposed IZ-RVDCNN methodology 

achieved (91%). The findings demonstrate that our 

suggested approach outperforms existing methods 

substantially. 
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4.3 Precision  

To ensure that true positives are increased and false 

positives are minimized for efficient rescue operations, 

it assesses the recognition system's performance. 

Figure 4 shows the result of precision. 

 

Figure 4: Result of precision 

The IZ-RVDCNN technique accomplished a precision 

of (91.70%), which is admirable to the memory of the 

traditional methods YOLO (90.82%). The findings 

indicate that our suggested method outperforms the 

current techniques by a significant margin in terms of 

precision. 

4.4 Recall  

To minimize missed individuals and ensure successful 

rescue attempts, it computes the ratio of true positive 

detections to the total number of actual 

positives.Figure 5 shows the result of the recall. 

 

Figure 5: Result of recall 

The IZ-RVDCNN technique accomplished a recall of 

(98%), while traditional methods YOLO achieved 

(97.8%). The findings indicate that our suggested 

method outperforms the current techniques by a 

significant margin in terms of recall. 

5. Conclusion  

The paper effectively illustrates how the SS-DDX was 

developed and put into use as a cutting-edge way to 

improve disaster relief operations. Through the 

integration of cutting-edge technology, including the 

IZ-RVDCNN and the ArduPilot Mega flight 

controller, the SS-DDX demonstrates its potential for 

efficiently evaluating and handling situations in 

dangerous environments. The GoPro Hero 10 records 

and produces high-quality images and videos from 

disaster zones. This visual information is essential for 

identifying people and evaluating situations. The data 

processing methods used,Min-Max normalizationand 

HOG for feature extraction, have helped the RV-

DCNN model achieve remarkable performance 

metrics, including 91% accuracy, 91.70% precision, 

and 98% recall. Its drawbacks include the possibility 

of overfitting because of its intricate design, the need 

for high-quality training data, sensitivity to changes in 

the environment, high processing costs, and difficulties 

with real-time processing, all of which could impair 

performance during crucial disaster relief 

operations.Future plans call for improving the 

effectiveness of the model, integrating it with edge 

computing for real-time analysis, expanding into other 

disaster scenarios, incorporating multi-sensor data 

fusion, and enhancing autonomous navigation to 

maximize to identification of humans in disaster. 
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