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Abstract: 

Audio classification incurs unique difficulties in speaker recognition and human emotion detection, which have 

applicable relevance to the real world. This paper introduces a novel multimodal solution to the two challenges of 

speaker verification and sentiment detection in a customer service call centre setting. For speaker recognition, 

utilizing a small subset of the LibriSpeech Library, features are extracted via Mel-frequency cepstral coefficients 

(MFCCs). A three-layer Long Short-Term Memory (LSTM) architecture using triplet loss for training produces 

an Equal Error Rate (EER) of 6.89%, demonstrating efficacy and precision. Simultaneously, we also conduct  

emotion detection on the RAVDESS dataset via CNN to classify eight feelings the emotions proposed by Ekman, 

plus neutral and relaxed resulting in an F1 score of 0.85. This contribution demonstrates that such deep learning 

approaches can be applied in the real world for telephone speaker authentication and help centers, as speaker 

verification and emotion detection provide additional meaning to what is being conveyed. 

Keywords: Convolutional Neural Network (CNN), Equal Error rate, Speaker Authentication, MFCC, LSTM. 

1. Introduction 

The significance of speaker recognition and emotion 

detection pertains to multiple use-case scenarios. 

These features are necessary where advancements in 

real-time and human-computer interaction 

occur[1][2]. From security access to empathetic 

response, the need for speaker identification and 

emotion detection extends across various sound 

processing functions. As society becomes more 

digitally advanced and voice interactive from 

customer service numbers to security access to 

voice-activated smart home devices these two 

developments have additional functional 

opportunities for machine learning[3][4]. In 

addition, the research compilation notes that prior 

research using MFCC features for speaker 

identification has positive outcomes and that LSTMs 

can appropriately learn time-variant speech features 

over time[5]. Other research notes that CNNs 

correctly identify when a person is attempting to 

express emotion through their voice[6]. However, 

with such progress on either side, much of the 

research delves into experimentation on either 

speaker identification or emotion classification 

without consideration of both and without 

acknowledging the conversion process in the real 

world, like hearing a known person speaking to you 

happily when they sound like themselves[7][8]. 

However, despite the advancements in speaker 

recognition and emotion detection, very few studies 

exist that attempt to utilize them simultaneously in 

one system. Either researchers independently 

attempt to increase the stand-alone recognition rates, 

or they attempt to create an extremely advanced 

emotion detection system[9][10]. In addition, while 

the speaker recognition systems hold up relatively 

well across most environments, there is still research 

lacking in multimodal and noisy environments 

where there are too many persons and where one 

person can exhibit multiple emotions. This research 

evaluates a deep learning multimodal system for 

speaker and emotion recognition to solve the issues 

discussed in varying emotional and acoustic 

environments. Therefore, the importance of this 

study comes from practical implementation, for a 

system that needs speaker and emotion recognition 

simultaneously, and from a field where such 

integration is goal-oriented and beneficial, as doing 

both speaker recognition and emotion recognition is 

feasible and practically useful. This research aims to 

develop and evaluate a multimodal system that 

combines speaker identification and emotion 

recognition. to solve the issues presented by varying 

emotional and acoustic environments. Therefore, the 

importance of this study comes from practical 

implementation, for a system that needs speaker and 

emotion recognition simultaneously, and from a 

field where such integration is goal-oriented and 

beneficial, as doing both speaker recognition and 
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emotion recognition is feasible and practically 

useful. The proposed system employs MFCCs as 

acoustic features for speaker recognition and a three- 

layer LSTM network for speaker identification 

trained with triplet loss to improve speaker 

differentiation accuracy. The system yielded a 

6.89% EER score, which denotes acceptable 

reliability across different sound environments. 

Simultaneously, the author employed CNN for 

emotion recognition trained on RAVDESS, a dataset 

containing recordings of eight different emotional 

states. This model yielded an F1 score of 0.85, which 

signifies accurate emotional recognition that would 

greatly benefit customer service interactions. The 

structure of the paper is as follows. The Introduction 

section outlines the importance of both speaker and 

emotion recognition. The literature review includes 

related works as well as the omission of both 

recognition tasks. The methodology includes the 

datasets, models Used, and training process. The 

results and discussion section presents the 

performance of the system and how it compares to 

other approaches. Finally, the Conclusion highlights 

the study’s key findings and suggests future research 

directions. 

2. Literature review 

The advancements in acoustic feature extraction and 

processing merely in the past year for text- 

independent speaker recognition and speechemotion 

recognition show that features created now are 

already cutting edge, and the accuracy of 

performance for systems over the past several years 

has shifted many systems. For speaker recognition, 

for instance, text-dependent systems have adjusted 

beyond mere access to where they've been restricted 

in the past. System accuracy has increased using 

MFCC with LSTM networks[11], 3DCNN networks 

with LSTM architecture, and LPC with Log-Mel 

spectrum to derive acoustic features that are 

processed through an LSTM architecture[12]. 

Where the architectures differ, however, are pre- 

trained weights, performance, and sequential 

pooling. For example, a wav2vec2-based 

architecture for speaker recognition, where either a 

single-utterance classifier or an utterance-pair 

classifier achieves better results than the traditional 

approaches[22]. Where many approaches leverage 

other networks, AutoSpeech takes VGG-Net and 

ResNet, operating from examined classical 

features[23], to determine the most effective 

operation of neural cells to establish a custom CNN 

architecture for speaker recognition. The Additive 

Margin MobileNet1D (AM-MobileNet1D) is based 

on portability, meaning its resource footprint is 

small[24]. For example, this architecture requires 

only 11.6MB of space, while SincNet and AM- 

SincNet need 91.2MB; it runs 7 times faster and with 

1/8 of the parameters, advantageous for mobile 

applications where processing capabilities are 

limited. As for speaker recognition, we constructed 

an LSTM model with MFCCs through a three-layer 

structure with triplet loss and achieved a surprisingly 

low Equal Error Rate. Such a stable, effective model 

makes it suitable for deployment. The range of 

models utilized for speech emotion recognition tasks 

spans from parallel CNNs to Transformer encoders 

applied to different means of data entry and 

processing[13]. For instance, one group of 

researchers uses known findings about MFCCs, 

chromagram, mel-scale spectrogram, Tonnetz 

representation, and spectral contrast to input 1D 

CNNs and create emotion detection through audio 

alone without any additional visual aids[14]. 

However, these results demonstrate that non- 

specialized CNNs do not acquire large emotional 

features on a wide scale adequately. Thus, the 

Global-Aware Multi-scale (GLAM) neural network 

uses convolution kernels of scale to acquire multi- 

scale feature representation, while the global-aware 

fusion module acquires globally salient emotional 

features[25]. Where new advancements in Speech 

Emotion Recognition (SER) exist, they sidestep an 

analogous progression but rather position emotions 

as discrete occurrences with beginnings and endings 

addressing the predicament of "When does a certain 

emotion occur?" Ours is effective and efficient [26]. 

It takes in audio sound bytes with the intent of a 

CNN-based architecture replicating the appropriate 

higher-order temporal and frequency patterns for 

emotional detection. There exist 2 Conv1D layers 

with ReLU activation, dropout (0.2), and Softmax 

classification output these layers are known for 

highly accurate classification with relatively 

simplistic composition. 

3. Methodology: 

In this section, we present the methodology 

employed to conduct our multimodal addressing two 

critical tasks: First, for Speaker Recognition, we take 

the LibriSpeech dataset and extract MFCC for our 

audio features. Second, for Speech Emotion 

Recognition, we take the RAVDESS dataset and use 

the original audio files as our input. We use a three- 

layer LSTM architecture for our Speaker 

Recognition task, which was optimally trained via 

hyperparameter tuning using triplet loss. We use a 

CNN-based architecture for our emotion recognition 
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task. The following subsections explain our process 

for each task—from data acquisition to architecture 

to evaluation. 

3.1 Feature Extraction: 

To prepare the sound waves being input into the 

neural network, they would need to be processed and 

conditioned into a feature set. Thus, we would be 

looking for the extraction of Mel Frequency Cepstral 

Coefficients (MFCCs) features as this is the most 

common and their relevance is to speech signals 

more so than phonetic information. Figure 1 shows 

the extraction of MFCC features from a speech signal 

and notates each block entry to the right of it for 

what it accomplishes in the degradation. 

 

 
 

 

 

Fig. 1 MFCC block diagram 

 

 

a) Pre-emphasis: The initial step involves 

applying pre-emphasis to the audio signal, achieved 

through a first-order high-pass filter. This filter is 

 

Y[n] = x[n] * w[n] 
 
 

(2) 

 

typically implemented using a straightforward 

difference equation: 

Here, w[n] represents the window function applied 

to the signal. 

 

 

y[n] = x[n] - α⋅x[n−1] 

 
 

In this equation: 

 
 

(1) 

 

d) Fast Fourier Transform: FFT is a method 

used to transform a signal from the time domain into 

the frequency domain. This transformation allows us 

to obtain the magnitude frequency response of each 

 

y[n] is the output signal after pre-emphasis. 

x[n] is the input audio signal. 

α is the pre-emphasis coefficient where 0.9 < α < 1.0. 

 

This equation, in effect, raises the amplitude of the 

high-frequency parts of the signal. It does so by 

taking the current sample, x[n], and subtracting a 

percentage of the previous sample, x[n−1], from it 

so that higher frequency changes between samples 

are more pronounced. 

frame. The output of this process is a frequency 

spectrum. 

 

e) Triangular band pass filters: To obtain a 

smoother magnitude spectrum and reduce the 

dimensionality of features, we multiply the 

magnitude frequency response by a set of 20 
triangular bandpass filters. These filters are typically 

based on the Mel scale, and the Mel frequency can 

be calculated using the formula: 

 

 
b) Framing: This implies that the speech 

signal is contained in 20-30 ms windows with 
overlapping successive frames of N (N>M) where 

 

Mel(f) = 1125 * ln(1 + f/700) 
 
 

(3) 

 

typical M=100 and N=256. This framing is 

necessary because speech is a time-varying signal, 

but over short time intervals, its properties remain 

fairly constant, allowing for short-time spectral 

analysis. 

 

c) Windowing: To maintain signal continuity, each 

of the frames mentioned above is multiplied by a 

Hamming window. This windowing process minimizes 
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spectral distortion by gradually reducing f is the frequency in Hertz that you want to convert 

to the Mel scale. 

 

f) Discrete cosine transform: We apply 

Discrete Cosine Transform (DCT) [16] to the 20 log 

energy values (E_k) obtained from the triangular 
bandpass filters, which results in L mel-scale 

cepstral coefficients. The DCT formula is as follows: 
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the signal to zero at both the beginning and end of 
each frame. The operation is expressed as: 

𝑁 

Cm = ∑
𝑘=1 

cos [𝑚 ∗ (𝑘 − 0.5) ∗ 𝜋/𝑁] ∗ Ek , 

m=1,2……L (4) 
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In this formula, N represents the number of 

triangular bandpass filters (usually 20), and L is the 

number of mel-scale cepstral coefficients (typically 

12). DCT transforms the frequency domain into a 

time-like domain known as the quefrency domain. 

These features are referred to as the mel-scale 

cepstral coefficients (MFCCs). 

 

For speech recognition, MFCCs alone can be used, 

but to improve performance, the log energy can be 

added, and delta operations can be performed on 

these features. This enhanced feature set is 

commonly employed for more accurate speech 

recognition. 

 

1. Log energy: This feature calculates the 
energy content of the audio signal within a frame. 

 

2. Delta cepstrum: These derivatives, 
calculated as velocity and acceleration, provide 

information about how the energy and MFCC values 
change over time. 

ΔCm(t) = [ ∑𝑖 = −MM Cm (t+τ) τ] / ∑𝑖 = −M M τ2
 

with this type of sequential learning and have the 

potential to understand long-term dependencies 

inherently found in such time series data used for this 

audio-based, time-dependent task. Therefore, 

LSTMs excel at retaining information over extended 

time intervals, allowing them to better capture the 

contextual details within sequential data [17]. We 

implemented triplet loss for enhanced accuracy of 

the model, which gives feedback to the model to 

lower embeddings of the same speaker by one 

distance while raising the distance for any other 

embeddings found within the same feature space. 

While this is an extra step for the model to calculate, 

in the long run, it provides much better learned 

differentiation for speakers. LSTM does not have the 

vanishing gradient problem, allowing it to learn 

gradients for much longer sequences than a 

traditional RNN; therefore, it is a better trained 

model over longer sequences. 

The architectural design of an LSTM cell as shown 

in figure 2, forms the basis of its four essential 

components, i.e., the input gate, the forget gate, the 

𝑐 𝑐 
(5) cell state, and the output gate. Among them, the 

 
Here, "M" typically has a value of 2. When we add 

velocity as a feature, the total feature dimension 

becomes 26. If we include both velocity and 

acceleration, the feature dimension increases to 39. 

 

3.2 Speaker Recognition Model 

The architecture of our speaker recognition model is 

LSTM-based. LSTMs are effective for this type of 

learning because speaker recognition is based on 

sequential information, such as audio waveforms 

and phoneme information. LSTMs function well 

input gate determines how much of the current input 

should be allowed to be added to the cell state and 

the forget gate [18] decides what portion of the old 

cell state will influence our new cell state. The cell 

state itself functions as long-term memory and stores 

information that has been repeatedly used in the 

LSTM circuit. The output gate decides what parts of 

the cell state will be passed to the next layer in the 

network. These gates are expressed using through 

sigmoid neural network layers, which have values 

between 0 and 1 that act as information flow 

regulators for each gate. 

 

 
 

Fig. 2 LSTM cell architecture 

 

An LSTM cell operates in such a way that, first, an 

input gate determines how much of the current input 

should be contributed to the cell state. Next, a forget 

gate determines how much of the last cell state 

should be kept in memory or, instead, intentionally 

"forgotten." Subsequently, the cell state is either added to 

or subtracted from based on the previously 
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made determinations of the input and forget 

gates. Finally, the output gate determines how 

much of this updated cell state will be passed on 

to the subsequent layer. 

The following equations [5] describe the 

architecture of an LSTM cell: 
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(9) 

 
 
 
 
 

bc) 

They transform an audio signal into a frequency 

domain while simultaneously capturing the temporal 

domain by segmenting the audio signal into small, 

overlapping "windows." As for the spectral 

dynamics, these are observed as the shape of the 

MFCCs; they show where energy is present in 

certain frequency bands, which helps differentiate 

among certain speakers. As for the temporal 

Cell state: ct = ft * ct-1 + it * c̃t (10) 

Output: ht = ot * tanh (ct) (11) 

 

it = represents input gate. 

ft = represents forget gate. 
ot = represents output gate. 
σ = represents sigmoid function. 
wx = weight for the respective gate(x) neurons. 
ht-1 = output of the previous lstm block (at timestamp 
t - 1). 
xt = input at current timestamp. 
bx = biases for the respective gates(x). 

ct = cell state (memory) at timestamp(t). 
c̃t   = represents candidate for cell state at 
timestamp(t). 

 

But in addition to these main components, LSTM 

cells also feature what's called a hidden state, which 

is a vector of data concerning what has been learned 

about the sequence up until that point and, similar to 

the cell state, it is transmitted to subsequent 

timestamps. The power of LSTMs is that they can 

encode and assess such long-term dependencies 

across temporally separated sequences. We execute 

speaker recognition using LSTM cells as shown in 

Fig. 3. We apply Mel-frequency cepstral coefficients 

(MFCCs) to the audio streams. The MFCCs are 

applied to the audio sample as they best capture the 

spectral and temporal dynamics of the audio sample. 

dynamics, these are observed over time as the person 

is speaking; they help differentiate different accents, 

differences in intonation, and speed of speech, which 

are all unique to certain speakers. Furthermore, 

MFCC features must acknowledge the temporal 

characteristics of speech. These features are a blend 

of spectral and temporal information, thus making it 

more likely for the model to distinguish between 

subtle differences in how each speaker may sound 

and, subsequently, learn their inherent speech 

patterns. Therefore, this creates a more effectively 

trained feature set for speaker recognition that 

operates in conjunction with its capacity to learn 

persons by voice despite variations in accents, 

quality, or presentation. Following this process, the 

MFCC characteristics are sent to a 3-layer LSTM 

network. LSTM networks are particularly effective 

for sequential data, which is essentially what time- 

dependent spoken data is. Three layers are effective 

due to accelerated training, and this layer 

arrangement gives excellent speaker identification 

results. These layers identify all the subtle 

distinctions required for accurate identification. We 

implement a triplet loss function to train our model, 

whereby intra-speaker variance reduces (distance 

between anchor and positive) while inter-speaker 

variance increases (distance between anchor and 

negative). Therefore, our LSTM-based solution is 

not only holistic but incredibly efficient for speaker 

recognition. 

 
 
 

 
 

Fig. 3 Proposed Model for Speaker Recognition. 

Input gate: it = σ (Wi [xt, ht-1] + bi) (6) 

Forget gate: ft = σ (Wf [xt, ht-1] + bf) (7) 

Output gate: ot = σ (Wo [xt, ht-1] + bo) (8) 

Candidate cell state: c̃t = tanh (Wc [xt, ht-1] + 
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3.2.1 Speaker Authentication: 

There are various components of authentication for 

security and accuracy in use across multiple 

dimensional applications. For example, one step 

involved with authentication is speaker recognition, 

which enables speaker verification and speaker 

identification based on distinct features of a voice. 

Our speaker authentication model implements a 

basic audio matching technique to assess whether the 

claim of the test sample speaker is that of the 

enrolled speaker's claim versus that of the test 

sample's claim. In short, we are trying to match audio 

from the enrolled speaker with that of the test sample. 

It all starts with enrollment. Enrollment happens with 

the user's specific voiceprint during the first use. The 

enrolled speaker reads a fixed prompt, which is 

MFCC feature extracted and LSTM modeled. The 

audio file generated from the enrollment process is 

the system's adjusted version of the user's voice at 

that point in time. From then on, the LSTM turns 

those features into a d-vector, which is stored for 

accurate recognition the next time. Yet at enrollment 

and for testing, a different audio is used for testing. 

This testing audio is, 

however, associated with the person trying to verify 

his identity to see if he is who he claims to be. Some 

MFCC features are taken from this testing audio and 

input into the same LSTM network to create a d- 

vector [19] for this person's identity. The intention is 

to analyze whether this d-vector from the testing 

audio is comparable to the d-vector from the enrolled 

speaker. We evaluate this using a cosine similarity 

metric [20]. We compute the cosine similarity of the 

d-vector for the test sample and the d-vector of the 

enrolled speaker. The output value indicates how 

similar two voices are. If the value is greater than our 

threshold of 0.8, we accept this speaker as the 

enrolled speaker. This threshold is set to yield the 

greatest accuracy without excessive false reject and 

false acceptance rates. Should the threshold be 

higher, authentication is stricter, meaning only those 

who match up exactly will be let in; however, it will 

false reject those speakers who are slightly different, 

but still reputable. If the threshold is lower, excess 

people are let in (both good and bad) because the 

system gives them access with slight different 

allowances. 0.8 is the Goldilocks value of basically 

everything. 

 

 

The results of the tests (1 to 3) are shown below in Fig. 4, Fig. 5 and Fig. 6: 
 

 

Fig. 4 Test: 1 

 
 

 

Fig. 5 Test: 2 
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3.3 Speech Emotion Recognition 

Fig. 6 Test 3   Softmax(Z[L])i  = e^Z [L] / ∑𝑐 
e^Z [L] 

i 𝑗=1 j 

(15) 

In our research framework, we employ a 

Convolutional Neural Network (CNN) as shown in 

Fig. 7 to tackle the task of emotion classification 

based on audio features. Our baseline model consists 

of one-dimensional convolutional layers, integrated 

with crucial components such as dropout layers, 

batch normalization, and activation functions. The 

input layer of our CNN is designed to accept 40 × 1 

 
arrays, corresponding to the audio feature 

representations extracted from sound files. 

Following this, the network initiates with an initial 

convolutional layer featuring 64 filters, each with a 

kernel size of 5 and 'same' padding. This layer 

employs the Rectified Linear Unit (ReLU) activation 

function and includes dropout with a rate of 0.2 to 

mitigate overfitting. The convolution operation can 
be mathematically represented as: 

 

Z[1] = X * W[1] (13) 

 

where Z[1] is the output feature map at the first 

convolutional layer, X is the input feature map, and 

W[1] is the convolutional filter at the first layer. The 

ReLU activation is applied as: 

 

A[1] = max(0, Z[1]) (14) 

 

A subsequent convolutional layer follows, 

comprising 128 filters and mirroring the 

configurations of the preceding layer. It alsoemploys 

ReLU activation and dropout at the same rate, 

contributing to the model's resilience. Upon the 

convolutional layers, a flattening layer transforms 
the output into a one-dimensional tensor for further 

processing. Subsequently, a fully connected layer 

adapts its size according to the number of distinct 

emotion classes, serving as the output layer. This 

layer incorporates a softmax activation function to 

compute class probabilities: 

 
where Softmax(Z[L])i is the probability of class i, and 

Zi 
[L] is the logit (pre-activation) for class i. In terms 

of model training, we configure it with categorical 
cross entropy loss: 

 

L(y, ŷ ) = - ∑𝑐 yi log(ŷ i) (16) 

𝑖=1 

 

where C is the number of classes, yi is the true label 

(one-hot encoded), and ŷ i is the predicted probability 
for class i. We use the Adam optimizer and accuracy 
as the evaluation metric. 

 

 
 

Fig. 7 Proposed Model for Speech Emotion 

Recognition 
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The accuracy is used as the evaluation metric and the 

Adam optimizer. Training occurs for 50 epochs with 

a batch size of 16 and real-time validation on the 

validation set. The metrics used to assess the model 

to see if it can predict emotions from audio are 

confusion matrices and classification reports. 

3.3.1 Speech Emotion Recognition (SER) 

for Customer Service: 

 
One of the most practical applications of these SER 

systems in the realm of customer service is customer 

engagement. Since these systems are based on the 

detection and classification of emotions expressed 

via vocalization, it stands to reason that they would 

work best assessing how customers feel and react 

emotionally over virtual communication. Thus, for 

instance, our system shows high levels of accuracy 

across the board for all emotional classifications 

from happy, joy, and satisfaction to frustration, 

anger, confusion, and surprise. A more holistic 

schema of emotion detects issues more effectively in 

online customer service situations. Take customer 

service, for example. The use of SER makes 

customer problems more visible, sooner, and with a 

more collaborative approach to resolution. An 

ongoing evaluation and check-in of feelings create 

better interpersonal relationships with customers and 

a more customer-oriented attitude of the big 

company since customer service is there for on- 

demand access and cross-collaborative integration of 

all—emotional and practical. Furthermore, as so 

much customer service is rendered online these days, 

an active customer facilitating their existence in an 

SER world is more likely to receive empathetic, on-

the-spot, and successful customer service that 

simultaneously solves the emotional aspect of the 

purchase. 

 
 

 
 

Fig, 8 Emotional States Detected by SER 
 

3.4 Multimodal Architecture: 

 
Our unique contribution is a robust multimodal 

architecture, detailed in Fig. 9, which combines 

Speaker Recognition and Speech Emotion 

Recognition for better processing of audio, as it 

identifies the speaker and, at the same time, 

identifies his/her emotional state. This is beneficial 

for call centers with privacy and operational needs 

and for customer service speaker recognition that 

accommodates real-time, nuanced emotion 

recognition during online meetings. The system 

includes Speech Emotion Recognition(SER) [21] 

along with Speaker Recognition in the sample audio 

assessment. Thus, it functions on a dual level of 

knowing who is speaking and at the same time, how 

they're feeling. Thus, it's a more comprehensiveview 

of client needs. 
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Fig. 9 Proposed multimodal approach 
 

4. RESULTS & DISCUSSIONS: 

This chapter presents and analyzes the results of the 

speaker recognition and speech emotion recognition 

models, respectively. It begins with a speaker 

recognition ablation study that demonstrates how the 

LSTM-based method developed in this text proves 

superior to all other architectural baselines set as 

control. The LibriSpeech corpus is utilized for all 

testing, which is a large, diverse speaker database for 
the most comprehensive testing atmosphere. Next 

are the results of the SER experiments using a CNN- 

based approach. These were done using the 

RAVDESS database to determine whether the model 

accurately predicted what the final emotional state 

would be for a given spoken word. This is a 

quantitative assessment of the two models for 

accuracy and feasibility of integration for future 

speaker recognition and realistic applications of 

emotion detection. 

 

4.1 Experimental Setup 

An NVIDIA GeForce RTX 3060 GPU, 6144 MiB (6 

GB) VRAM was utilized for training and testing. 

The experimental platform was Ubuntu 22.04 LTS. 

Both models are developed under Python 3.10.12. 

The speaker recognition model was developed using 

PyTorch, while the speech emotion recognition 

model was developed using TensorFlow. 

 

4.2 Datasets 

The speaker recognition model was evaluated on the 

LibriSpeech corpus. LibriSpeech is an English 

corpus containing approximately 1,000 hours of 

audio spoken at a sampling rate of 16 kHz. It is 

derived from LibriVox audiobooks and contains 

naturally occurring segmentation and alignment. 

The proposed model was developed on chunks of 

LibriSpeech—train-clean-100, train-clean-360, and 

train-other-500—with SpecAugment during training 

to ensure model development efficacy and 

generalization. The evaluation of the model occurred 

on the LibriSpeech test-clean chunk. Table 2 

illustrates the developed and evaluated corpuses. 

The RAVDESS database was used to train the 

speech emotion recognition task. The RAVDESS 

database contains 7,356 audio and video files created 

by 24 professional actors (12 female, 12 male). Each 

actor recorded his or her voice saying two lexically 

matched sentences and one neutral sentence. All 

actors use a neutral North American accent. The 

emotionally rendered stimuli include: calm (spoken 

and sung), happiness (spoken and sung), sadness 

(spoken and sung), anger (spoken and sung), fear 

(spoken and sung), surprise (spoken only), and 

disgust (spoken only)—the latter two also have two 

lexically matched songs. Each emotion has a neutral 

face and is performed at a mean and strong level of 

intensity. In the experimental setup, we used three 

types of files: (1) audio-only files in .wav format (16-

bit, 48kHz), (2) audio-video files in .mp4 format 

(720p H.264 video with AAC 48kHz audio), and (3) 

video-only files without sound. The dataset was 

split, with 65% used for training and 35% for testing. 
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Table 1: Splits of LibriSpeech used in experiments 

 

LibriSpeech 

datasets 
Hours 

Per-speaker 

minutes 

Female 

Speakers 

Male 

Speakers 

Total 

Speakers 

test-clean 5.4 8 20 20 40 

train-clean-100 100.6 25 125 126 251 

train-clean-360 363.6 25 439 482 921 

train-clean-500 496.7 30 564 602 1166 

TOTAL 966.3 88 1148 1230 2378 

 
 

4.3 Speaker Recognition Results: 

This section provides an in-depth analysis of the 

speaker recognition experiments using the proposed 

LSTM-based model. Where accuracy is critical for 

speaker recognition, identifying a different speaker 

can compromise the intention and security of voice- 

based user verification systems. Therefore, refer to 

Table 1 for results of accuracy from various 

architectures via EER and Table 2 for speaker 

recognition architecture comparison within the field. 

The proposed architecture for LSTM with 

processing via MFCC features contains an EER of 

6.89%, the lowest, which not only means it 

essentially recognizes speakers at a high rate but also 

makes it the preferred architecture for any such 

application with a need for speaker verification and 

security. In comparison, LPC EER with the LSTM 

model is 9.14%, and Log-Mel EER with the LSTM 

model is 7.89%. Thus, the features related to 

distinguishing between human-generated voices 

suggest how critical feature representation is for 

speaker recognition. The ability to outperform the 

others suggests that the effectiveness of the proposed 

model was due to MFCC features and LSTM 

processing for speaker recognition. The practical 

relevance of the LSTM-based model further 

demonstrates that this approach would work in 

practical, real-world settings where speaker 

recognition exists for increased security and 

authentication. 

Table 2: Comparison of Speaker Recognition 

Performance 

 

Architecture EER in % 

Proposed Model (LSTM + 

MFCC) 
6.89 

LSTM + LPC 9.14 

LSTM + Log-Mel 7.89 

4.4 Speech Emotion Recognition Results: 

This study is pertinent to Speech Emotion 

Recognition (SER), which has been gaining 

popularity across various applications like customer 

service, sentiment analysis, and human-machine 

interaction. The subsequent sections presentfindings 

from the emotion recognition experiments utilizing 

a CNN approach. The confusion matrix (Table 3) 

demonstrates how well the model was ableto classify 

the eight overall emotion categories like Angry, 

Happy, Neutral, Unhappy, Relaxed, Fearful, 

Disgusted, Surprised. There is a way to measure 

such classification effectiveness from the confusion 

matrix. For instance, rage was assessed correctly in 

the first cell of the confusion matrix 173 times; it was 

assessed incorrectly, however, as Happy,Unhappy, 

and Neutral. It had a decent time assessingRelaxed 

and Fearful but an ineffective time assessing Happy 

and Surprised. Table 4 assesses theeffectiveness and 

accuracy of the model. 

 

 

Table 3: Confusion Matrix 

Angry [[173 8 1 7 1 0 1 1] 

Happy [1 102 7 4 2 2 4 1] 

Neutral [0 18 212 3 11 7 7 6] 

Unhappy [3 7 9 227 5 14 2 8] 

Relaxed [1 1 9 5 216 10 4 6] 
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Fearful [3 4 7 17 3 200 1 6] 

Disgusted [0 5 1 4 7 7 171 2] 

Surprised [0 0 7 1 3 4 10 165]] 

 Angry Happy Neutral Unhappy Relaxed Fearful Disgusted Surprised 

 

Table 4: Performance of the model on the test set for each class. 

 

Emotion precision recall F1-score support 

Angry 0.96 0.9 0.93 192 

Happy 0.7 0.83 0.76 123 

Neutral 0.84 0.8 0.82 264 

Unhappy 0.85 0.83 0.84 275 

Relaxed 0.87 0.86 0.86 252 

Fearful 0.82 0.83 0.82 241 

Disgusted 0.85 0.87 0.86 197 

Surprised 0.85 0.87 0.86 190 

Accuracy   0.85 1734 

Overall avg 0.84 0.85 0.84 1734 

Weighted avg 0.85 0.85 0.85 1734 

 

The total weighted average F1 score across the entire 

dataset was 0.85, providing a true representation of 

how the model functioned in the grand scheme. In 

the end, there was 85% efficiency across all emotion 

categories. These findings about the Speech 

Emotion Recognition (SER) model validate its 

performance and effectiveness in identifying 

different emotions via vocal intonation. 

Furthermore, the model scored high on F1 for 

"Angry," "Relaxed," and "Disgusted," which means 

that by knowing when people are angry and relaxed 

(more than some of the other categories), this 

sentiment analysis can be applied in professional 

settings like customer service, where emotional 

concerns need to be addressed immediately—and 

with quality service. The weighted average F1-score 

of 0.85 suggests that the model performs reliably 

across the various categories of emotion, which 

makes applicability and feasibility across various 

environments. Such an accurate real-world 

application would mean that nothing would be lost 

in translation down the line when people use their 

words motivated by emotion, and it needs to be 

understood precisely. The consistent decrease in the 

loss function over the 50 epochs of training, 

illustrated in Figure 10, indicates that prediction error 

was decreasing consistently. Simultaneously, 

accuracy was increasing, as shown in Figure 11, 

meaning that relative to its defined parameters, the 

model was making more appropriate predictions. 

Therefore, the smoothing of the loss function 

depicted in Figure 10 and the increase in accuracy 

demonstrated in Figure 11 suggest that this model 

transfers successfully on a micro scale during 

training and successfully generalizes on a macro 

scale to accurately determine speaker identity 

through emotion recognition for real-world 

application in call center environments. 

 

 

Fig 10. Model loss trajectory over the span of 50 

epochs. 
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Fig 11. Accuracy trajectory over the span of 50 

epochs. 

The terminal output that confirms multimodal is 

shown in Figure 12. The program received two audio 

files—one TEST UTTERANCE and one 

UTTERANCE that enrolled since it was from the 

same speaker—and noted that TEST UTTERANCE 

sounded like ENROLLED UTTERANCE because it 

had access to both. It exceeded the 0.8 threshold for 

cosine similarity calculated beforehand and stated 

that speaker verification was successful. All of this 

occurred within a 0.10 second timeframe. In 

addition, it evaluated the emotion, as well, correctly 

identifying the emotion of the test audio as "happy" 

during a 0.19 second emotion detection challenge. 

Where the quasi-experiment had only one tester 

involved, though, the model was meant to havemany 

testers and can authenticate one tester and identify 

emotion while concurrently trying toauthenticate the 

speech of other authenticatedtesters. 

 
 

 

Fig. 12 Authentication and Emotion Detection Results. 
 

5. Conclusion 

 
By combining multimodal speaker recognition and 

speech emotion recognition, the paper presents a 

novel framework capable of training for 

generalization for speaker verification in security 

and positive/negative emotion detection in customer 

service. The speaker recognition module employs a 

three-layer LSTM network trained by a triplet loss 

function and obtains an Equal Error Rate (EER) of 

6.89% after training and validation on the 

LibriSpeech database; therefore, it has suitable 

trustworthiness and precision for voice 

authentication and security. The trained emotion 

recognition module employs CNNs for emotion 

detection and successfully recognizes eight different 

emotions in RAVDESS with an F1-Score of 0.85; 

therefore, it has excellent efficiency for telehealth, 

sentiment analysis, and customer service. Where this 

multimodal model could be expanded upon is 

speaker identification and sentiment analysis; 

however, the audio component is bolstered by more 

contextualized details. Where this will go for future 

research is in real-time applications, multilingual 

applications, applications with ethical/privacy 

concerns, and more generalizability of HRI beyond 

this study to other fields. 
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