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Abstract:  In the present work, we investigate the nature of the central singularity arising in the higher 

dimensional dust collapse. To this end, we solve the radial null geodesic equation in higher dimension using the 

null condition. We have developed a mathematical approach to generalize the earlier work in four dimensional 

spacetimes  to the five dimensions.  It is pointed out that the results on the nature of the outgoing radial 

geodesics in 4D case can be extended essentially in the same manner in 5D cases also.  
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 1 Introduction 

 Gravitational collapse is one of the most important and outstanding problems in the classical general 

relativity. Gravitational collapse has two kinds of possible end states. First is the formation of black holes with 

outgoing gravitational radiation and matter, and the second one is the formation of naked singularities. It has 

been proved that, under fairly general hypothesis, solution of the Einstein field equations with physically 

realistic matter can develop into singularities as a result of gravitational collapse.[1] The main open issue is 

whether the singularities which arise as the end product of the collapse can actually be observed. According to 

cosmic censorship hypothesis (CCH) proposed by Penrose,[2] the spacetime singularities produced by 

gravitational collapse must be covered by the event horizon of the gravity. There are two versions for this 

hypothesis. The weak version states that a spacetime singularity arising from a generic non-singular initial data 

is not visible from infinity, whereas the strong version claims that a spacetime singularity developed from non-

singular initial data is invisible for any observer - local or faraway. A singularity censored by the strong version 

is called a naked singularity, while a singularity censored by weal version is called a globally naked singularity. 

A proof or disproof of the CCH remains an unsolved problem in general relativity. Various models[3-10] on 

collapse of dust, radiation, perfect fluid etc. studied in recent years, show that either a black holes or a naked 

singularity form during the gravitational collapse.                   

 The results on the gravitational collapse in higher dimensional spacetimes are important in the view 

of current possibilities being explored by higher dimensional gravity. As a consequence, the study of 

gravitational collapse and CCH in higher dimensional spacetimes has now become essential. Many papers on 

higher dimensional collapse show the occurrence of naked singularities or black holes depending upon the 

nature of the initial data. [11-15] 

In this work, we study the gravitational collapse of Tolman-Bondi spacetime in five dimensions. Patil[16] has 

studied the occurrence of the naked singularity by root equation method described in Ref. [17]. In this letter, we 

analyze the nature of the outgoing radial null geodesics by another approach. To this end, we follow the method 

described in Ref. [18] and solve the radial null geodesic equation using the null condition. 

 2 Tolmann-Bondi Spacetime in Five Dimension 

 To facilitate the discussion, we give a brief summary of the five dimensional Tolman-Bondi solution. 

The inhomogeneous spherically symmetric dust cloud in five dimensional spacetime is given by[16, 19] 

 ds2 = −dt2 +
R′2

1+f(r)
dr2 + R2( dθ1

  2 + sin2 θ1 dθ2
  2 + sin2 θ1 sin2 θ2 dθ3

  2), (1) 
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where f(r) is an arbitrary function of comoving coordinate r, satisfying f > −1, R(t, r) is the physical radius at 

a time t of the shell labeled by r in the sense that 4πR2 is the proper area of the shell at time t. Here a prime 

denotes partial derivative with respect to r. 

The energy momentum tensor is given by 

  Tij = ε δt
iδt

j
  , (2) 

where 

  ε(t, r) = 3F′/(2R3 R′ )  . (3) 

The function R(t, r) is the solution of  

  Ṙ2 = F(r)/R2  + f(r) , (4) 

where the functions F(r) and f(r) are arbitrary and known as mass and energy functions respectively. The over 

dot denotes partial derivative with respect to t, and here we have set up  8π G c4⁄ = 1. 

We consider the marginally bound case, i.e. f(r) = 0. The time t = ts(r) corresponds to the value R = 0, where 

the area of the shell of a matter at a constant value of coordinate r vanishes. Thus, the ranges of the coordinates 

for the metric (1) are  

  0 ≤ r < ∞,     − ∞ < t ≤ ts(r). (5) 

Since we are concerned with the gravitational collapse, we require that Ṙ(t, r) < 0, hence Eq. (4) yields 

  Ṙ = −√F/R . (6) 

After integrating the above equation and using the scaling freedom R(0, r) = r, we obtain 

  R2 = r2 − 2√F t . (7) 

As ts(r) gives the time at which area radius R becomes zero,  

  ts(r) = r2/(2√F)   . (8) 

The Kretschmann scalar K = RabcdRabcd for the metric (1) is given by[16], 

  K =
AF′

R6R′2 +
B F F′

R7R′

7

+
C F2

R8   , (9) 

where A, B, C are some constants. It can be seen from Eqs. (4) and (9) that the energy and the Kretschmann 

scalar both diverge at the shell labeled r, indicating the presence of a scalar polynomial curvarure singularity at 

r. 

Singularities in this solution are classified as shell-crossing[20] and shell-focusing[21] singularities. The 

singularities characterized by R′ = 0 for R > 0 are known as shell-crossing singularities and the one 

characterized by R = 0 are known as shell-focusing singularities. Newman[22] has shown that the shell-crossing 

singularities are gravitationally weak through which the spacetime may sometimes be extended. 

Christodoulou[21] has shown that the non-central shell-focusing singularities (R = 0, r > 0) are not naked; 

therefore, we concentrate on the central (r = 0, R = r) shell-focusing singularities only. 

It follows from the Eq. (4) that the function F(r) becomes fixed once the initial density distribution ϵ(0, r) =

ρ(r) is given,  i.e. 

  F(r) = (2/3) ∫ ρ(r)r3 dr . (10) 

We assume that the initial density profile ρ(r) has the series expansion[23] 

  ρ(r) = ρ0 + ρ1r +
ρ2r2

2!
+ ⋯ +

ρnrn

n!
+ ⋯, (11) 

near the center r = 0,  which on substitution in Eq. (10) yields 

  F = F0r4 + F1r5 + F2r6 + ⋯ + Fnrn+4 + ⋯,  (12) 

where  

  Fn =
2

3
(

ρn

n!(n+4)
) . (13) 

ρn being the nth derivative of density at the center and n = 0, 1, 2, ⋯. Here we are considering that density 

function decreases as one moves away from the center. Hence the first non-vanishing derivative in the series 

expansion (11) should be negative. 

 The nature of the singularity at the center can be understood by analyzing the behavior of radial null 

geodesics at the center. The singularity is naked if there exists future directed radial null geodesics in the 

spacetime with their past end point at the singularity (i.e. at r = 0). 

Let  u = rα,     α > 1.  Then 
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dR

du
=

1

α rα−1 (Ṙ
dt

dr
+ R′) ,  

 i.e.                                       
dR

du
=

R′

α rα−1 (1 −
√F

R
) =

R′

α rα−1 (1 −
Λ

X
) = U(X, u),   (14) 

where  Λ = √F/u  ,      X = R/u .  

Let us consider the limit X0 of the tangent along the null geodesic terminating at the singularity at R = 0,    u =

0 . Thus  

  X0 =  lim
R→0
u→0

  
R

u
  =   lim

R→0 
u→0

dR

du
  =   lim

R→0
u→0

  U(X, u) . (15) 

If a positive real value of X0 satisfies the above equation the singularity could be naked[16, 17]. If the singularity is 

naked, some α exists such that at least one finite value of X0 exists which satisfies the algebraic equation 

  V(X0) = 0 , (16) 

where  

  V(X0) = U(X, 0) − X . (17) 

The above root equation method picks up only the geodesic behaving as X = R/rα = constant. However, there 

may be the possibility of existence of geodesics which have different behaviors than are assumed. To find such 

geodesics, we must solve the null geodesic equation[24] using the null condition 

  | (dt/dr)/R′| = 1 . (18) 

For a particular initial data set to develop either in a naked singularity or a black hole, one has to analyze the 

behavior of outgoing radial null geodesics, coming from the central singularity R = 0,    r = 0.  The outgoing 

radial null geodesics for the metric (1) are given by 

  dt/dr = R′ . (19) 

 

3 Occurrence of the Naked Singularity 

  Following Ref. [18], we now discuss the nature of the outgoing radial null geodesics in five-dimensional 

inhomogeneous dust collapse by considering another approach. 

Let us define R(r) as  

  R(r) = a rα1  ,      (α1 > 1). (20) 

We assume, the expression for mass function F(r) has the form 

  F(r) = F0r4 + Fnr4+n + higher order terms, (21) 

where Fn is the first non-vanishing term in the series expansion for F(r) given by Eq. (13). 

As we are assuming that the density is decreasing away from the center, the first non-vanishing derivative of the 

density at the center is negative. Integrating Eq. (6) we obtain 

  R2/2 = −√F  t + k , (22) 

where k is a constant of integration. Using the scaling freedom R(0, r) = r, above equation yields 

  R2/√F = r2/√F − 2t . (23) 

Differentiating the above equation with respect to r and rearranging the terms, we obtain 

  R′ =
R F′

4F
+ (1 −

r F′

4F
)

r

R
  . (24) 

Using Eqs. (20) and (21) into Eq. (23) we get, 

  t =
r2−a2r2α1

2√F0r4+Fnrn+4
  , (25) 

which on simplification yields 

  t = (
1

2√F0
) − (

Fn

4F0
3/2) rn − (

a2r2α1−2

2√F0
) + (

a2Fn

4F0
3/2) rn+2α1−2 . (26) 

Differentiating the above equation with respect to r and keeping only two lowest order terms we get, 

  
dt

dr
= − (

nFn

4F0
3/2) rn−1 − (

a2(α1−1)

√F0
) r2(α1−1)−1. (27) 

Inserting the functions R(r) and F(r) into Eq. (24) and simplifying further we obtain 
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  R′ = arα1−1 + [(
nFn

4F0
) rn − (

(n+4)Fn
2

4F0
2 ) r2n] (arα1−1 −

1

arα1−1) ,  

i.e. 

  R′ = arα1−1 − (
nFn

4aF0
) rn+1−α1, (28) 

where we have considered only two lowest ordered terms. 

Inserting Eqs. (27) and (28) into Eq. (18), we find that the conditions for the geodesics to be null as r → 0 is that  

  |

−(
nFn

4F0
3/2)rn−1−(

a2(α1−1)

√F0
)r2(α1−1)−1

arα1−1−(
nFn
4aF0

)rn+1−α1
| = 1. (29) 

It can be observed that the above null condition will be valid when the numerator and denominator have the 

equal power of r. This is possible only when n = 2  and  α1 = 2. 

Thus when  n = 2  and  α1 = 2 we have, 

  |
(

dt

dr
)

R′ | = |
(

−F2

2F0
3/2) − 

a2

√F0

a − 
F2

2aF0

| = 1. (30) 

Setting a/√(F0) = x  and  F2/F0 = ξ,  Eq. (32)  becomes 

  2x3 + 2x2 + ξx − ξ = 0. (31) 

If the above equation has a real and positive root, then it could ensure the existence of the outgoing radial null 

geodesics emanating from the central singularity, and in this case the singularity could be naked. If this equation 

has no real and positive root, then it would indicate the absence of outgoing radial null geodesics. In this case, 

singularity will be covered and the collapse ends into a black hole. Therefore, for the singularity to be naked, 

Eq. (31) must have a real and positive root. Here we emphasize that, the Eq. (31) is the same equation which has 

already been obtained in Ref. [16] by another approach. 

Numerical evaluation shows that Eq. (31) has a real and positive root if 

  ξ ≤ −22.18033 . (32) 

Thus, for ξ ≤ −22.18033, the central singularity is naked, it is covered for ξ > −22.18033. In the analogous 

four-dimensional case, one gets a quartic equation and the central singularity is naked if and only if ξ ≤

−25.9904.[17]  Table 1 shows the real and positive roots of Eq. (31) corresponding to different values of  ξ. 

ξ Root x1 Root x2 

-23 1.4398 1.8583 

-24 1.3723 2.0000 

-25 1.3292 2.1157 

-26 1.2976 2.21157 

-27 1.2727 2.3131 

-28 1.2523 2.4020 

-29 1.2352 2.4863 

-30 1.2205 2.5670 

Table 1.  Roots of the Eq. (31) 

When n < 2  i.e.  n = 1 (as n can have only integral values) we can have two cases either α1 = 2   or  α1 = 1 +

n/2 = 3/2. 

Case 1:  α1 = 2.   In this case,  Eq. (30) becomes 

  |
(

dt

dr
)

R′ | = |
(

−F1

4F0
3/2) − 

a2

√F0
 r

ar − 
F1

4aF0

| = 1, (33) 

In the limit of the central singularity (i.e. r → 0), above equation reduces to | a/√F0 | = 1 ,  i.e.  

    a = √F0 . (34) 
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Therefore Eq. (20) becomes  R = √F0 r2.   Hence at the central singularity, we get  R2/F = 1,   i.e.  

   R2 = F. (35) 

Thus, in the limit of central singularity, the radial null geodesics obey the law R2 = F. But it can be seen from 

Eq. (14) that, the equation of apparent horizon (i.e. outer most boundary of the trapped surface) is given by R2 =

F. Hence one can assert that, in the limit of the central singularity, null geodesics have a similar behaviour to 

that of apparent horizon. 

Case 2:  α1 = 3/2.  In this case, Eq. (29) becomes 

  |
(

dt

dr
)

R′ | = |

−F1

4F0
3/2 − 

a2

2√F0

(a − 
F1

4aF0
)√r

| = 1, (36) 

which implies  
F1

4F0
3/2 +

a2

2√F0
= 0,     

i.e.  a2 = −F1/2F0. (37) 

Thus, for this value of a, the null condition (29) is satisfied and hence the singularity is naked. Here we note that 

as F1 is the first non-vanishing derivative in the expansion for F, it is negative. It should also be noted that the 

Eq. (37) is similar to the root equation, which has already been obtained in Ref. [16] 

For all other values of α1, we can observe that the numerator and the denominator in Eq. (29) have unequal 

powers of r. In addition to this, two terms in R′ and two terms in dt/dr have different powers. So, for other 

values of α1, null condition (29) cannot be satisfied and hence we cannot have singular null geodesics. 

4 Discussion on Entire Family of Singular Geodesics 

 We follow the method described in Ref. [18] to check whether a family of outgoing null geodesics terminates at 

the singularity in the past with given root X0 as tangent. If there is only one outgoing radial null geodesic which 

terminates at the singularity in the past, then the singularity appears naked only instantaneously to a distant 

observer. On the other hand, if there is an entire family of radial geodesics then the singularity is to be naked for 

a finite period of time[25]. 

Let us assume that, the area radius R(t, r) has the following form.    

  R = X0rα +  K h(r), (38) 

where  K is constant and  h(r) is a function of r, which decides the behavior of radial null geodesics.  

Consider   𝛼 = 1 + 𝑛/2 .  From Eq. (38) we get    

  
𝑑𝑅

𝑑𝑟
= 𝛼 𝑋0𝑟𝛼−1 +  𝐾

𝑑ℎ(𝑟)

𝑑𝑟
   ,  

which can be written as  

  
𝑑𝑅

𝑑𝑟
= 𝑅′ + 𝑅̇

𝑑𝑡

𝑑𝑟
    

i.e.  
𝑑𝑅

𝑑𝑟
= 𝑅′ (1 −

√𝐹

𝑅
) (39) 

Using Eq. (20) and (38) with  𝛼 = 1 + 𝑛/2 ,  Eq. (28) becomes 

  𝑅′ = 𝑋0𝑟𝑛/2 +  (
𝐾ℎ(𝑟)

4
) − (

𝑛𝐹𝑛

4𝐹0𝑋0
) 𝑟𝑛/2 + (

𝑛𝐹𝑛𝐾 ℎ(𝑟)

4𝐹0𝑋0
2 𝑟

).   (40) 

Also, using the binomial theorem, one may write 

  1 − (
√𝐹

𝑅
) = 1 − (

√𝐹0

𝑋0
) 𝑟1−𝑛/2 + (

√𝐹0

𝑋0
2 ) 𝐾ℎ(𝑟)𝑟−𝑛              (41) 

Inserting the above two equations in Eq.(39), we obtain 

𝛼 𝑋0𝑟𝛼−1 +  𝐾
𝑑ℎ(𝑟)

𝑑𝑟
= [𝑋0 𝑟

𝑛/2 +  (
𝐾ℎ(𝑟)

𝑟
) − (

𝑛𝐹𝑛

4𝐹0𝑋0
) 𝑟𝑛/2 + (

𝑛𝐹𝑛𝐾 ℎ(𝑟)

4𝐹0𝑋0
2 𝑟

) 𝐾 ℎ(𝑟)] × 

  [1 − (
√𝐹0

𝑋0
) 𝑟1−𝑛/2 + (

√𝐹0

𝑋0
2 ) 𝐾 ℎ(𝑟) 𝑟−𝑛] (42) 

Thus, after satisfying the root of Eq. (31) the differential equation for ℎ(𝑟) becomes 
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  𝐾
𝑑ℎ(𝑟)

𝑑𝑟
=

𝐾 ℎ(𝑟)

𝑟
[1 +  (

𝑛𝐹𝑛

4𝐹0𝑋0
2) − (

𝑛𝐹𝑛

2√𝐹0  𝑋0
3 

) 𝑟1−𝑛/2] (43) 

It can be easily proved from Eq. (17) that the expression in the bracket of the above equation is the same as   

(1 +
𝑛

2
)

𝑑𝑈(𝑋,0)

𝑑𝑋
|
𝑋=𝑋0

.   So, we can write 

  𝐾
𝑑ℎ(𝑟)

𝑑𝑟
= 𝐾

ℎ(𝑟)

𝑟
(1 +

𝑛

2
)

𝑑𝑈(𝑋,0)

𝑑𝑋
|
𝑋=𝑋0

  

i.e.   𝐾
𝑑ℎ(𝑟)

𝑑𝑟
 = 𝐾

 ℎ(𝑟)

𝑟
(1 +

𝑛

2
) [1 +

𝑑𝑉

𝑑𝑋
]

𝑋=𝑋0

. (44) 

We define  

  𝑃0 = 1 +
𝑑𝑉

𝑑𝑋
|
𝑋=𝑋0

. (45) 

Let us first consider  𝑛 < 2, 𝑖. 𝑒.  𝑛 = 1   𝑎𝑛𝑑  𝛼 =  3/2 ∶ 

From Eq. (37), the root of Eq. (31) is given by  

  𝑋0
2 = −𝐹1/(2𝐹0 ) . (46) 

So from Eq. (43), in the limit of central singularity, i.e.  𝑟 → 0, we get 

  𝐾
𝑑ℎ(𝑟)

𝑑𝑟
= 𝐾

ℎ(𝑟)

𝑟
[1 +  

𝐹1

4𝐹0𝑋0
2]   

i.e.   𝐾
𝑑ℎ(𝑟)

𝑑𝑟
= 𝐾

ℎ(𝑟)

𝑟
 , (47) 

which after integration yields 

  ℎ(𝑟) ∝ 𝑟1/2.    (48) 

This shows that ℎ(𝑟)  goes to zero slower than 𝑟. So we have only one radial null geodesic (𝐾 = 0) coming out 

along this direction. Hence the singularity is visible for an infinitesimal amount of time along this direction. 

Eq. (48) can be written in terms of  𝑢 and 𝑃0 as   ℎ(𝑟) ∝ (𝑟3/2)
1/3

 , i.e. 

  ℎ(𝑟) ∝ 𝑢𝑃0, (49) 

where  𝑢 = 𝑟𝛼 = 𝑟3/2   and   𝑃0 = 1/3. 

Thus, using this method, we have obtained the value of 𝑃0 which is the same as obtained in Ref. [16]. 

Next consider 𝑛 = 2,  i.e.  𝛼 =  2: 

In this case, for the naked singularity, we have two positive roots to Eq. (31). So after cancelling the terms 

satisfying the root of equation and retaining the lowest power of ℎ(𝑟),  we get  

  
𝑑ℎ(𝑟)

ℎ(𝑟)
=

𝑑𝑟

𝑟
[1 +  (

𝑛𝐹𝑛

4𝐹0𝑋0
2) − (

𝑛𝐹𝑛

2 √𝐹0𝑋0
3)] , (50) 

which on integration gives 

  𝑙𝑜𝑔 ℎ(𝑟) = [1 +  (
𝑛𝐹𝑛

4𝐹0𝑋0
2) − (

𝑛𝐹𝑛

2 √𝐹0𝑋0
3)] 𝑙𝑜𝑔 𝑟 (51) 

i.e.    ℎ(𝑟)  ∝   𝑟
[1+ (

𝑛𝐹𝑛

4𝐹0𝑋0
2)−(

𝑛𝐹𝑛

2 √𝐹0𝑋0
3)]

 . (52) 

In terms of  𝑢 and  𝑃0 , we write the above equation as  

  ℎ(𝑟)  ∝  𝑢𝑃0, (53) 

where  𝑢 = 𝑟2   and 

  𝑃0 =
1

2
[1 +  (

𝐹2

2𝐹0𝑋0
2) – (

𝐹2

√𝐹0𝑋0
3)] . (54) 

Hence for 𝑃0 > 1 there will be a family of radial null geodesics coming out from singularity. With some 

algebra, it can be shown that  

  𝑃0 = −
1

4𝑥3
(𝜉 + 2𝑥2) . (55) 

Here  𝑥 = 𝑋0/√𝐹0   and  𝜉 = 𝐹2/𝐹0
2 , and we have used the result that 𝑥 satisfies the cubic Eq. (31). 

Since 𝑉(𝑋) = 0 has two positive real roots, it follows that the value of its derivative 𝑃0 − 1 would be negative 

along one of the roots and positive along the other. Hence in this situation, family of radial null geodesics will 

come out from the singularity for which 𝑃0 > 1,  while along the other a single will escape. In particular for 

 𝜉 =  −30 , (satisfying the condition (32)), there are two positive roots to Eq. (31), namely  𝑥1 = 1.2205  and  

𝑥2 = 2.5670.   
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From Eq. (55), we see that  [𝑃0]𝑥=𝑥1
= 3.7156   and  [𝑃0]𝑥=𝑥2

= 0.2486.  Thus along 𝑥1,   𝑃0 − 1 > 0  and 

therefore we have an entire family of radial null geodesics coming out along this direction,  whereas along 𝑥2,

𝑃0 − 1 < 0  and we have only one radial null geodesics coming out along this direction with (𝐾 = 0). The 

above results are in agreement with the results in Ref. [16].  

In the analogous 4𝐷 case, it has been shown in Ref. [23] that, when the singularity is naked and the parameter  

𝛼 < 3, 𝑖. 𝑒.  𝑛 = 1, 2,  there is only one radial null geodesic terminating at the singularity with root 𝑋0 as a 

tangent. The values of 𝑃0  for  𝑛 = 1 and 𝑛 = 2 were found as 2/5 and 1/7 respectively.   For 𝑛 = 3 (in 4D 

case),  𝑃0 is given by [23] 

  𝑃0 = −
1

6𝑥4
(𝜉 + 2𝑥3) ,  

where  𝜉 =  𝐹3 𝐹0
5/2⁄   and   𝑥 =  𝑋0 √𝐹0⁄   , satisfies the quartic equation 

2𝑥4 + 𝑥3 + 𝜉𝑥 − 𝜉 = 0. 

It has also been shown[23] that, if the above quadratic equation has two real and positive roots, the family of 

geodesics will always terminate along one of the root for which 𝑃0 > 1, while along the other, only single 

geodesic would escape. 

5 Discussion on Apparent Horizon 

According to Hawking and Ellis,[1] apparent horizon is the boundary of the trapped region. It is known that 

apparent horizon forms in the region of sufficiently strong gravitational field. An apparent horizon seems to play 

an important role in deciding the nature of the singularity. It is believed that the formation of the central 

singularity earlier than apparent horizon is necessary condition for a singularity to be naked. A singularity 

cannot be naked if it occurs after the formation of an apparent horizon. It has been shown in Ref. [23] that the 

absence of apparent horizon formation prior to the central singularity does not necessarily imply nakedness. In 

the present work, we generalized this result to the five dimensional spacetime.  

As the density grows without bound, trapped surfaces develop within the collapsing cloud. These can be traced 

out via the outgoing null geodesics, and the equation of the apparent horizon, 𝑡 = 𝑡𝑎ℎ(𝑟) which makes the outer 

boundary of the trapped 3-sphere (in 5D case). 

For our five-dimensional spacetime it follows from Eq. (14) that trapped surfaces are given by, 

  𝑅(𝑡𝑎ℎ(𝑟), 𝑟) = 𝐹1/2. (56) 

Inserting above equation into Eq. (7) we get  

  𝑡𝑎ℎ(𝑟) =
𝑟2

2√𝐹
−

√𝐹

2
,  

i.e.  𝑡𝑎ℎ(𝑟) = 𝑡𝑠(𝑟) −
√𝐹

2
 . (57) 

𝐹(𝑟) is strictly positive for 𝑟 > 0,  at 𝑟 = 0, however 𝑡𝑠(0) = 𝑡𝑎ℎ(0)  and the singularity could be naked. 

Let   

  𝐹 = 𝐹0𝑟4 + 𝐹𝑛𝑟4+𝑛 , (58) 

where 𝐹𝑛 is the first non-vanishing term beyond 𝐹0 (note that 𝐹𝑛 is negative).  

Substituting the expression for 𝐹 into the Eq. (57) we get, 

  𝑡𝑎ℎ(𝑟) = 𝑡𝑠(0) − (
𝐹𝑛

4𝐹0
3/2) 𝑟𝑛 − (

𝐹0
1/2

2
) 𝑟2, (59) 

where we have kept only the leading order terms. Eq. (59) determines the behaviour of the apparent horizon in 

the vicinity of the central singularity in five-dimensional spacetime. 

Now we consider the different cases according to the first non-vanishing derivative of the density at the centre. 

Case (i): Let 𝜌1 ≠ 0  i.e. the first non-vanishing derivative of the density at the centre is 𝜌1, then keeping the 

leading order term in (59) we obtain, 

  𝑡𝑎ℎ(𝑟) = 𝑡𝑠(0) −
𝐹1

4𝐹0
3/2  𝑟 . (60) 

Since 𝐹1 is negative, above equation shows 𝑡𝑠(0) < 𝑡𝑎ℎ(𝑟), which means central singularity will form earlier 

than the formation of an apparent horizon. Hence the singularity could be naked in this case. 
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Case (ii): If the first non-vanishing derivative of the density at the centre is 𝜌2 , then we find from Eq. (59) that 

𝑡𝑠(0) < 𝑡𝑎ℎ(𝑟), if 

  𝐹2/𝐹0
2  <  −2 (61) 

i.e.   𝑡𝑠(0) < 𝑡𝑎ℎ(𝑟) ,  if  𝜉 < −2.  (62) 

Thus the central singularity forms earlier than apparent horizon if 𝜉 < −2. But according to our previous 

analysis, singularity is naked if 𝜉 < −22.18033. Thus, there is a range of 𝜉:  −22.18033 < 𝜉 < −2  in which 

even though the central singularity forms earlier than apparent horizon, it is not naked. 

Case (iii): If the first two derivatives of the density are zero (𝜌1 = 0,   𝜌2 = 0) then 𝑛 ≥ 3.  So the Eq. (59) 

becomes (to the leading order) 

𝑡𝑎ℎ(𝑟) = 𝑡𝑠(0) −
√𝐹0

2
𝑟2 , 

which implies       𝑡𝑎ℎ(𝑟) < 𝑡𝑠(0),  

i.e. the apparent horizon forms earlier than the central singularity. Therefore, radial null geodesics cannot escape 

from the singularity; hence the singularity will appear covered. 

We compare the expression  𝑡𝑎ℎ(𝑟) − 𝑡𝑠(0)  in 4D[23] and 5D cases in Table 2. 

𝑛 
𝑡𝑎ℎ(𝑟) − 𝑡𝑠(0) 

𝑖𝑛 4𝐷 

𝑡𝑎ℎ(𝑟) − 𝑡𝑠(0)  

𝑖𝑛 5𝐷 

𝑛 = 1 −
1

3
(

𝐹1

𝐹0
3/2

)  r −
1

4
(

F1

F0
3/2

)  r 

n = 2 −
1

3
(

F2

F0
3/2

) r2 − [
1

4
(

F2

F0
3/2

) +
√F0

2
] r2 

n = 3 − [
1

3
(

F3

F0
3/2

) +
2

3
F0] r3 

 

Table 2.  Comparison of   tah(r) − ts(0)  in 4D and 5D 

It can be observed from the table that, the difference  tah(r) − ts(0)  is less in 5D spacetime than the 

corresponding 4D case. It is quite obvious that, if the apparent horizon forms sufficiently later than the central 

singularity, then there are maximum chances for radial null geodesics to escape from the singularity. If this 

difference is reducing then naturally there will be less chances for null geodesics to escape, this may cause 

decrease in naked singularity spectrum with increase in dimensions. 

6 Conclusion 

In summary, for the 4D case,[23] there is a range of ξ: − 25.9904 <  ξ <  −2, in which even though central 

singularity forms earlier than apparent horizon, it is not naked. In case of 5D this range reduces to  

−22.18033 <  ξ <  −2 ; (ξ = F2/F0
2 ).  Reduction of this range shows that naked singularity spectrum gets 

somewhat covered as compare to 4D. 

We have discussed the nature of the outgoing radial null geodesics in the vicinity of the central singularity in the 

five dimensional Tolman-Bondi collapse. To investigate the nature of central singularity, we have solved the 

radial null geodesic equation using null condition. Assuming that the initial data i.e. F(r) to be finitely 

differentiable, we have shown that the only first two derivatives of the density function at the centre play the 

role of deciding the nature of the singularity in the gravitational collapse. We have shown that: 

(i) When the first non-vanishing derivative of the density at the centre is ρ1 (i. e. n = 1), there are two 

possible values of α1(in the expression for R(r)) i.e. α1 = 2  or  3/2.   For  α1 = 3/2  and  n = 1 the 

singularity is naked, whereas for  α1 = 2 and n = 1 the radial null geodesics have apparent horizon type 

(i.e. R2 = F ) behavior. 
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(ii) When the first non-vanishing derivative of the density at the centre is  ρ2 (i. e. n = 2), the central 

singularity is naked if  ξ = F2/F0
2   =   2ρ2/ρ0

2   ≤ −22.18033.  If this inequality is not satisfied, the 

collapse ends into a black hole. These results are in agreement with the results in Ref. [16]. 
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