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Abstract: In the present paper, we construct Bianchi-type VI  cosmological model filled with perfect fluid and 

dark energy (DE) in ( ),f R T theory of gravitation. To obtain the determinate solution of the field equations, the 

deceleration parameter (q) is assumed to be a function of cosmic time. The proposed work introduces a transitional 

model that shows the transition from decelerating to accelerating. It is observed that our model reassembles with

CDM model. We have also examined the features with cosmic redshift z which are found very close to recent 

observational data. Additionally, the geometric and physical properties of the cosmological model are discussed. 

Keywords: Bianchi type VI model, two fluid, time-dependent deceleration parameter. 

1.  Introduction: 

In recent years, cosmological observations have uncovered that our universe is in the midst of a swift 

and accelerating expansion, often described as an accelerated expansion. The recent detection of type Ia 

Supernovae (SNe Ia) [1-8], fluctuations in Cosmic Microwave Background Radiation (CMBR) [9-10], the study 

of large–scale structures (LSS) [11], data from the Sloan Digital Sky Survey (SDSS) [12-13], Observations from 

the Wilkinson Microwave Anisotropy Probe (WMAP) [14], data from the Chandra X-ray observatory [15], 

gravitational lensing [16-17] have collectively offered significant evidence supporting the phenomenon of cosmic 

acceleration. The phenomenon of cosmic acceleration, which refers to the observed expansion of the universe at 

an accelerating rate, is one of the most significant and intriguing questions in modern cosmology. To explain this 

acceleration, several theories and concepts have been proposed. The leading explanation for cosmic acceleration 

is the existence of a mysterious form of energy called “Dark Energy”. The Cosmic Microwave Background (CMB) 

anisotropy and LSS of the universe provide compelling evidence that DE is the dominant component of the present 

universe and is responsible for cosmic acceleration. The WMAP data explains that only 4% of the universe 

consists of regular matter (Baryonic Matter) and the light it emits, such as stars, planets and gas, approximately 

23% is dark matter, a mysterious and invisible substance that doesn’t emit light but exerts gravitational forces and 

the remaining 73% is composed of DE, an enigmatic force responsible for the universes cosmic accelerated 

expansion. 

DE is an enigmatic factor accountable for the fast expansion of the universe, among other things, 

cosmological constants [18], quintessence [19-20], equation of state (EoS) parameter [21-24], and interacting dark 

energy models [25-30] are used by cosmological models to describe the nature of dark energy and the accelerating 

expansion. The EoS parameter for a perfect fluid in cosmology is defined by a dimensionless quantity denoted as 

ω, representing the ratio of its pressure to its density 
p




=  which is closely related to both the thermodynamics 

equation of state and the ideal gas. According to current theories, the equation of state parameter  1  −  and at 

1 = − , it represents CDM model while for 1  −  is represents the quintessence model and 1  −   

represents the Phantom model. This parameter does not have to remain constant. It can be expressed as a function 

of time, the scale factor(a) or redshift (z), indicating its dynamic nature that changes over these varying conditions. 

An alternative explanation for DE involves modifying the theory of gravity. These modified theories of gravity 

provide natural explanations for the phenomenon of DE and seek to rationalize the observed cosmic acceleration. 

The various modified theories are f(R), f(T), f(G), f(Q), and f (R, T) etc. 

In this research, we investigated the EoS parameter associated with DE within the spatially homogeneous 

and anisotropic Bianchi type- VI  space-time. This study focused on a configuration involving both a perfect fluid 

and dark energy, with particular attention given to the impact of a variable deceleration parameter. The f(R) theory 

suggested that cosmic acceleration can be attained by substituting a general function Ricci scalar f (R), for the 

Einstein-Hilbert action of general theory relativity. The unification of early-time inflation and late-time 
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acceleration is demonstrated by feasible f (R) gravity [31].  An extended form of the f (R) gravity theory is 

presented in the f (R, T) theory, initially proposed by Harko et. al. [32]. In this theory, the gravitational Lagrangian 

is given by an arbitrary function of the scalar curvature R and the trace T of the energy tensor. The correlation with 

the trace (T) may arise due to the influence of exotic imperfect fluids or quantum effects within the theoretical 

framework. The equations of motion for the test particle and the gravitational field equations in the metric 

formalism are obtained by the author from the energy tensor's covariant divergence of stress. The function f (R,T) 

has several explicit formulations that correlate with the field equations for the different models that have been 

presented. Houndjo [33], studied the reconstruction of modified f (R,T) gravity and described the matter-

dominated phase and accelerated phase. The FLRW cosmological model has been examined by using the phase 

space analysis within the framework of f (R, T) gravity by Shabani et.al. [34], Katore et.al. [35] studied in Lyra 

geometry, anisotropic dark energy cosmological models from early deceleration parameter to late time 

acceleration. Yadav et. al. [36] investigated a dark energy model within a Bianchi type-III universe characterised 

by a constant deceleration parameter and in this scenario, EoS parameter is a time-dependent factor. Binary 

mixture of perfect fluid and dark energy in Bianchi type -I universe was studied by Tade et. al. [37]. Cosmological 

model Bianchi type VI in the presence of perfect fluid in Branc-Dicke theory studied by Nimkar et. al. [38]. 

Kaluza-Klein string universe in f (R,T) gravity has been studied by Pawar et.al. [39] 

   Over the past two decades, extensive research has been conducted on cosmological models with variable 

deceleration parameters [40-50] and the dynamics of two-fluid systems within the framework of the general theory 

of relativity, as well as in alternative and modified theories of gravitation. Within the framework of an open FRW 

space-time containing barotropic and bulk viscous dark fluid the evolution of the DE parameter, has been 

examined by Amirhaschi, et. al. [51]. The anisotropic behaviour of the accelerating universe in Bianchi V space-

time was investigated by Mishra et.al. [52]. Tiwari, et. al. investigated the EoS parameter for DE in a spatially 

homogeneous and anisotropic Bianchi type-III space-time in the presence of barotropic fluid and DE with variable 

deceleration parameter [53]. Garg et.al. has presented a transit cosmological model in FRW theory with two fluid 

scenarios [54]. Two fluid cosmological models investigated by Hatkar, et. al. [55] in scale covariant theories of 

gravitation.  With a non-linear equation of state in the general theory of relativity, Roy et. al. [56] studied a general 

framework of the emerging universe scenario in interacting and non-interacting fluids. 

Given the context discussed above, our aim in this paper is to investigate the Bianchi type-VI

cosmological model with variable deceleration parameter, considering non-interacting and interacting scenarios. 

This paper is organised as follows: Section 1 has been carried out with a foundational overview of the subject 

matter. Section 2 contains the metric and field equation. The solution of field equations is contained in Section 3. 

We have discussed various physical and kinematical parameters with non-interacting and interacting cases of the 

model discussed in Section 4, Section 5 discusses the jerk parameter to explore the validity of our model and 

Section 6 describes the outcome in brief.  

2.  The Metric and Field Equations: 

We consider the Bianchi Type VI  metric as 

                                             2 2 2 2 2 2 2 2 2 2x xds dt A dx e B dy e C dz−= − + + +                                           (1) 

Where A, B and C are functions of cosmic time t. 

For two fluids, the energy-momentum tensor is defined as 

                                                          (M) (D)

i i i

j j jT T T= +                                                                 (2) 

Where the energy-momentum tensor for perfect fluid is (M)

i

jT   and (D)

i

jT is the energy-momentum tensor of DE 

These can be written as 

                                  (M) , , , 1, , ,i

j M M M M M M M MT diag p p p diag    = − = −                                 (3) 

                                  (D) , , , 1, , ,i

j D D D D D D D DT diag p p p diag    = − = −                                     (4) 
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Where, M , Mp  and M

M

M

p



=  are energy density, isotropic pressure and equation of state (EoS) parameter of 

matter components resp. and D , Dp and D

D

D

p



= are energy density, isotropic pressure and EoS parameter of 

DE resp. Here we assume the four-velocity vector ( )1, 0, 0, 0iu = satisfying 1i

ju u = − . 

The general gravitational field equation in ( ),f R T gravity with ( ) ( ), 2f R T R f T= + , ( )f T T=  being 

constant [32], is given by 

                                           ( ) ( )
1

8 2 2
2

ij ij ij ijR Rg T p T g   − = − + + +                                         (5) 

In the field equation (5), T is the trace of energy-momentum tensor and p is isotropic pressure in the term 

( )2 p T +  and According to [57] and [58], 3T p= − . 

The above field equation (5) for the metric (1) with the stress-energy momentum tensor (2) gives the following 

differential equations: 

                                 ( ) ( ) ( )44 44 4 4

2

1
8 2 M D M M

B C B C
p p p

B C BC A
   + + + = − + + + −                           (6) 

                                ( ) ( ) ( )44 44 4 4

2

1
8 2 M D M M

A C A C
p p p

A C AC A
   + + − = − + + + −                            (7) 

                                ( ) ( ) ( )44 44 4 4

2

1
8 2 M D M M

A B A B
p p p

A B AB A
   + + − = − + + + −                            (8) 

                               ( ) ( ) ( )4 4 4 4 4 4

2

1
8 2 M D M M

A B B C A C
p

AB BC AC A
     + + − = + + + −                          (9) 

                                                              4 4

2

1
0

B C

B CA

 
− + = 
 

                                                     (10) 

Here, suffix 4 denotes the differentiation to time. The law of energy-conservation equation ( ); 0ij

jT =  gives, 

                                      ( ) ( ) 4

,4
3 1M M M

a

a
  + + + ( ) ( ) 4

,4
3 1 0D D D

a

a
  + + =                                                     (11) 

Where a is the average scale factor which is defined with spatial volume as 

                                                      3a ABC=  and 3V a=                                                             (12) 

The Hubble Parameter 

                                                ( )
3

1 2 3

1

1 1

3 3
i

i

H H H H H
=

= = + +                                                     (13) 

With the help of (12) and (13) we obtain the expansion scalar, shear scalar and mean isotropy respectively as  

                                                      4 42 3
A B

H
A B

 = + =                                                                (14) 

                                                     
3

2 2 2

1

1

2
i

i

H 
=

 
= − 

 
                                                               (15) 
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2
23

1

1

3

i

m

i

H H
A

H=

 −
=  

 
                                                               (16) 

3.  Solutions of the Field Equations: 

We have five non-linear differential field equations and seven unknowns namely A , B , C , M , Mp , D  and 

Dp . Firstly, on solving equation (10), we get 

                                                             B = k C                                                                      (17) 

Where k is the constant of integration but without loss of generality, we take k = 1. The ratio of shear σ to Hubble 

constant H in today's neighbourhood of our Galaxy is place the limit 0.3
H


  based on studies of the velocity-

red-shift relation for extragalactic sources. Collins et. al. [59] have shown that the normal congruence to the 

homogeneous expansion for a particularly homogeneous metric satisfies the condition that 



 is a constant. To 

obtain exact solutions we assume the expansion scalar and shear scalar are directly proportional to each other i.e. 

  . This condition leads to [60] 

                                                              1n
A B=                                                                       (18) 

Where 1n
 
is constant.                                                             

Now, following Chawla et. al. [41], we have considered the time-dependent deceleration parameter (DP) of the 

form 

                                                    44

2

4

(t)
a a

q b
a

= − =                                                                    (19) 

Where a is the average scale factor defined by (10), So the expression of q given in an equation (19) can be written 

as  

                                                           

2

44 4

2
0

a a
b

a a
+ =                                                                  (20) 

By assuming b = b(a) or b = b(a(t)), the general solution of (20) is given as 

                                                          

b
da

ae da t d


= +                                                                 (21) 

Where d is a constant of integration. Without loss of generality, we choose log (a)
b

da f
a

= , equation (21) can 

be written in the form                  

                                                          (a)f da t d= +                                                                 (22) 

In equation (22), f(a) the arbitrary function can be taken in such a form that, it will give a physically viable and 

observationally consistent cosmological model. Thus f(a) is considered as  

                                                             ( )
1

21

n

n

n a
f a

a

−

=
+

                                                          (23) 

Where 
 
is an arbitrary constant & n is a positive constant. Using (23) in (22) with d = 0, we get 

                                                             ( ) ( )( )
1

Sin na t h t=                                                           (24) 

Now, by using (10), (16) and (24) we obtained the metric components as follows 
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( )( ) ( )
1

1

3

2Sin
n

n nA h t +=  

 
( )( ) ( )1

3

2Sin n nB C h t += =  

Hence the given metric can be written in the form 

                             ( )( ) ( ) ( ) ( )( ) ( )
1

1 1

6 6
2 2 2 2 2 2 22 2Sin Sin

n
x xn n n nds dt h t dx e dy e dz h t −+ += − + + +                 (25) 

4.  Calculations and interpretations of other physical and kinematic parameters  

For the assumed model the Hubble parameter H , the deceleration parameter q , the expansion scalar  , the shear 

scalar 2 , volume scale V and the average anisotropy parameter mA  are calculated as follows: 

                                                     ( )( )
3

Sin nV h t=                                                                    (26)  

                                                     ( )CotH h t
n


=                                                                    (27) 

                                                       
( )3 otC h t

n

 
 =                                                                 (28) 

                                               
( )

( )
( )

2 2

12

22

1

3 1
ot

2

n
C h t

n n


 

−
=

+
                                                         (29) 

                                              
( ) ( )

2

2

11

2(n 1)3
1

22
m

n
A

nn

−
= − +

++
= Constant                                        (30)     

                                                     ( )2ec 1q n S h t= −                                                                (31)                                                                                                                            

Equation (26) – (30) observed that at t = 0, the spatial volume (V) vanishes while the other parameters as Hubble 

parameter (H), expansion scalar (θ) and shear scalar (σ) diverge, shows the model begins with a big bang 

singularity. Since the anisotropic parameter mA is constant and non-vanishing, our model maintains its anisotropy 

as the cosmos expands. Also, the directional scale factors A (t), B (t) and C (t) disappear at the beginning time, 

this singularity is of the point type (Callum, 1971 [61]). 

                                                                                                                                                                                        

 

 

 

 

 

Fig. 1(a) The plot of deceleration parameter versus time t      Fig. 1(b) The plot of deceleration parameter versus 

               with 0.09804 = and n = 1.5                               redshift z with 0.09804 = and n = 1.15                                                                    

Fig.1 and Fig. 2 shows the behaviour of deceleration parameter q with respect to time and redshift. According to 

SNe Ia’s cosmic observations, it too exhibits a phase transition from positive to negative. Moreover, we note that 

when t → , 1q →− and stays negative (accelerating universe) at late times. The cosmos is transitioning from a 
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decelerating phase (q >0) to an accelerating phase (q <0), as seen by the monotonic decline of the deceleration 

parameter from a positive value to a negative one. Thus, the latest observations agree with our model [54].  

4.1    Non-Interacting Two-Fluid Model 

Here, we assume that two fluid models which do not interact with each other. Hence from equation (11), we can 

write the conservation equation as follows 

                                                              ( ) ( ) 4

,4
3 1 0M M M

a

a
  + + =                                                              (32) 

And,                                                        ( ) ( ) 4

,4
3 1 0D D D

a

a
  + + =                                                            (33) 

On integrating (32), we obtain the value of M as follows 

                                                
( ) ( )

( )3 1
3 1

sin ( t)
M

M n
M a h




   
− +

− +
= =                                            (34) 

Where  is an integrating constant. 

Since M

M

M

p



= , Here we consider M as constant as considered in [21-22]. So, the pressure for matter is obtained 

as, from (34), we get 

                                                      ( )
( )3 1

sin ( t)
M

n
M Mp h



  
− +

=                                                  (35) 

So, the energy density, isotropic pressure and EoS parameter for DE is defined as follows 

   
( )

( )
( ) ( ) ( )( ) ( )

( )1

1

2 2 3 16
1

2
22

1

9 2 1 cot h1
sin ( t) 3 8 sin ( t)

8 2 2

Mn

n n n
D M

n t
h h

n n

 
      

 

− +
−

+

 +
 = − + − −
 + + 

       (36) 

( )

( )

( )

( )

( )

( )

( )
( ) ( )

( )( ) ( )( )
( )

1

1

2 2 2 2 6
1 1 1 12 2

2
22

1 11

3 1

9 1 3 1 cot ( t) 3 1
cot ( ) sin ( t)

1 2 22
8 2

1 3 8 sinh
M

n

n n

D

n
M M

n n n h n
h t h

n n n nn np

t


  
  

 

     

−

+

− +

 + + + +
 − + − +

+ + +=
 +
 
 + − − 

  

                                                                                                                                               (37) 

( )

( )

( )

( )

( )

( )
( ) ( )

( )( ) ( )
( )

( )

( )
( ) ( ) ( )( ) ( )

( )

1

1

1

1

2 2 2 2 6
1 1 1 12 2

2
22

1 11

3 1

2 2 3 16
1

2
22

1

9 1 3 1 cot ( t) 3 1
cot ( ) sin ( t)

2 22

1 3 8 sin ( t)

9 2 1 cot h
sin ( t) 3 8 sin ( t)

2

M

M

n

n n

n
M M

D
n

n n n
M

n n n h n
h t h

n n n nn n

h

n t
h h

n n





  
  

     


 
     

−

+

− +

− +
−

+

 + + + +
 − + − +

+ + +
 
  + − − 

=
 +
 − + − −
 + 

 

                                                                                                                                               (38)    

The following figures illustrate how energy density, pressure, and the EoS parameter change with cosmic time. 

The energy density in Figure 2(a) decreases positively with time and goes to zero as t → . Figure 2(b) shows 

that greater redshift z values correspond to a larger universe age. The change in dark fluid pressure Dp  as a 

function of cosmic time and redshift is shown in Figures 3(a) and 3(b), respectively. Pressure Dp  is increases and 

vanishes for the large cosmic time while for redshift z it decreases in negative. The fact that Dp  is negative which 

means the universe is in expanding nature. The transitional behaviour of the EoS parameter with time has been 

shown in Figure 4(a). The behaviour of D  at 0.5M =  shows that it began with the quintessence era and 

eventually approached the cosmological constant model ( 1D = − ). It is observed that our model reassembles 
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with CDM model. The EoS parameter changes with redshift parameter z are shown in Figure 4(b), which 

provides the reliability of the model.      

The expression for the matter-energy density parameter and the dark energy density parameter is given by 

                                                          
( )

( )

( )

3 1
2

2 2

Sin ( t)

3 Cot

M

n

M

n h

h t



 

 

− +

 =                                              (39) 

    

( ) ( )

( )
( )( ) ( ) ( )( ) ( )( )

( )

( )

1

1

2 2 3 12 6
1 2

22

1

2 2

9 2 1 Cot h
Sin 3 8 Sin

8 2 2

3 Cot

Mn

n n n
M

D

n tn
h t h t

n n

h t

 
     

 

 

− +
−

+

 +
 − + − −
 + + 

 =   (40)                                                                                 

We obtain the total energy density parameter by adding equations (38) and (39), 

M D =  +  

        

( )

( )
( ) ( ) ( ) ( )

( )

( )

1

1

2 2 3 16
1 2 2

2
2

1

2 2

9 2 1 Cot h
Sin ( t) 1 Sin ( t)

2

3 8 2 Cot ( t)

Mn

n n n
M

n t
n h n h

n

h

 
    

   

− +
−

+

 +
 − + −
 + 

 =
+

 .               (41) 

 The variation of Ω as a function of cosmic time and redshift is shown in Figures 5(a) and 5(b), respectively. It is 

observed that Ω is a decreasing function of time.  

                                                                                              

 

 

 

 

 

 

Fig. 2(a) The plot of energy density versus time t                  Fig. 2(b) The plot of energy density versus redshift z 

                                          with 10.09804, 1.15, 5, 13, 0.5, 0.001Mn n   = = = = − = =       

                                                                                                                                                                                           

 

 

 

 

 

Fig. 3(a) The plot of isotropic pressure versus time t      Fig. 3(b) The Plot of isotropic pressure versus redshift z  

10.09804, 1.15, 5, 13, 0.5, 0.001Mn n   = = = = − = =  
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 Fig. 4(a) The plot of EoS parameter verses time t               

 

 

 

Fig. 4(a) The plot of EoS parameter versus cosmic time t     Fig. 4(b) The plot of EoS parameter versus redshift z    

10.09804, 1.15, 5, 13, 0.5, 0.001Mn n   = = = = − = =  

                                         

 

 

 

  

 

 

 

Fig. 5(a) The plot of total energy density versus time t  Fig.5(b) The plot of total energy density versus redshift z 

10.09804, 1.15, 5, 13, 0.5, 0.001, 0.02Mn n    = = = = − = = =  

4.2 Interacting Two fluid Model: 

When two fluids interact with each other the energy conservation equation becomes 

                                     ( ) ( ) ( ) ( )4 4

,4 ,4
3 1 3 1M M M D D D

a a

a a
     

 
+ + = − + + 

 
                            (42) 

Consider,  

                                                    ( ) ( ) 4

,4
3 1M M M

a
Q

a
  + + =                                                  (43) 

And thus,                 

                                                   ( ) ( ) 4

,4
3 1D D D

a
Q

a
  

 
+ + = − 

 
                                              (44) 

Here, the interaction between the dark components is expressed by the quantity Q >0. Assuming a positive value 

of Q, we are considering the scenario where there is a transfer of energy from DE to the matter components and 

Q >0 guarantees fulfilment of the second law of thermodynamics [62]. Here, it is emphasized that the continuity 

equations (43) and (44) suggest a proportional relationship between the interaction term (Q) and a quantity 

possessing units inversely related to time i.e. 
1

Q
t

 . Therefore, a first and natural candidate can be Hubble factor 

H multiplied by the energy density. In our model, from Amendola et.al. [63] and Guo et.al. [64], we consider    

                                                                     3 MQ H=                                                          (45) 
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Where  is coupling constant and it has been found from collaborative analysis of CMB, BAO and SNLS that 

0.08 0.03−   , at 95% CL [64]. 

Here assuming M

M

M

p



= =  Constant. 

Using, (45) in (43) and after integrating, we obtain 

                                                     ( )( )
( )3 1

Sin
M

n
M c h t

 

 
− + −

=                                                      (46) 

Now using equation (46), we have 

                                               ( ) ( )( )
( )3 1

Sin
M

n
M Mp c h t

 

  
− + −

= −                                               (47) 

Now using (25), (46) and (47) in (9), we have 
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+
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 = − − − + +
 + + 

(48) 

Now, subtracting (8) from (9) and then using equations (25), (46), (47) and (48), we obtain 
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     (49)                                                                                                                              

Using (48) and (49), the EoS parameter of dark energy is given by 
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       (50) 

The matter-energy density parameter and Dark energy density parameter are defined as 
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Adding (51) and (52), we get 
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Fig. 6(a) The plot of total energy density versus time t  Fig.6(b) The plot of total energy density versus redshift z 
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Fig. 7(a) The plot of EoS parameter versus time t                 Fig. 7(b) The plot of EoS parameter versus redshift z 

10.09804, 1.15, 5, 13, 0.5, 0.001, 0.02Mn n    = = = = − = = =  

 

5.  The jerk parameter ( j ): 

              The third derivative of the scale factor to cosmic time, or Jerk Parameter in cosmology, determines the 

rate at which the acceleration of the universe's expansion varies over time [65, 66]. It is defined as, 

                                                      ( )
( )2 2

3 22

a Ha
j t

aH H



= =                                                    (54) 

Here, dots represent the derivatives with cosmic time and primes represent the derivatives with scale factors. The 

jerk parameter appears in the fourth term of a Taylor expansion of the scale factor around 
0a  

               
( )

( ) ( ) ( ) ( )
2 3 42 3

0 0 0 0 0 0 0 0 0

0

1 1
1

2 6

a t
H t t q H t t j H t t O t t

a
 = + − − − + − + −
 

                (55) 

Where the subscript represents the present value. Equation (54) can be written in the form 

                                                            ( ) 22
q

j t q q
H

= + −                                                     (56) 
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From equation (31) and (56), we write  

                              ( ) ( ) ( )
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2 3
2 3 ec 1 1

1
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n

n n
j t n n S h t

z


−

= − + = +
 

+  
+ 

                                    (57) 

The cosmic jerk parameter in Fig. 8 emphasizes the universe’s motion. According to ΛCDM, the universe transits 

from a decelerated to an accelerated phase in a cosmic jerk j with positive value i.e. j = 1 and negative value of q. 

Initially, at z = 0, the jerk parameter attends a positive value less than 1 and approaches 1 in late times. 

                                                 

 

 

 

 

 

Fig. 8 The plot of jerk parameter versus redshift z                  

6. Conclusions: 

In this paper we have constructed the Bianchi-type- VI cosmological model with two fluid sources i.e. 

perfect fluid and dark energy source within the framework of f (R, T) gravity. To obtain the deterministic solution 

we consider the shear–expansion scalar proportionality relation and variable deceleration parameter which 

represents the transit model for appropriate choices of constants. Also, some physical and kinematical parameters 

of the constructed model are discussed and from equation (31) it is notice that anisotropic parameter never 

vanishes so the current model is anisotropic.   

Also, it is observed that Current observations and hypotheses are fully consistent with physical 

parameters like the matter energy density and dark energy density, as well as the pressure in the present model.  

In both cases i.e. non-interacting and interacting, for 1M  , the variation of D begins from the quintessence 

region and eventually approaches to cosmological constant region ( )1D = −  meaning that it never crosses the 

phantom dividing line. As a result, our model approaches to CDM model and it concluded that, the model 

exabits a transition from deceleration to acceleration at low redshift values [67]. In both non-interacting and 

interacting two-fluid scenarios, the total energy density parameter (Ω) approaches zero after some time, as 

predicted by current measurements. Moreover, the evolution of energy density, pressure, equation of state 

parameter and total energy density parameter to redshift parameter z is represented in Fig. 2(b), 3(b), 4(b), 5(b), 

6(b) and 7(b) respectively and it is found that the present values are consistent with the observational values. A 

phase of transition occurs in the universe's expansion from decelerating to accelerating, as predicted by the values 

of the jerk parameter (j = 1) and deceleration parameter (q = −1). This transition phase suggests that the model 

aligns with the ΛCDM model at late times. 
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