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Abstract- Cardiovascular disease and other non-communicable illnesses have been on the rise in recent years.
Despite innovations in computer-aided diagnosis (CAD) and clinical decision systems, unlike vision-based e-
healthcare practices, heart-disease prediction requires learning over the different bio-physiological parameters
related to the heart’s health. The limitations of the datasets including class-imbalance, redundant computation and
the threat of local minima and convergence, and resulting low-accuracy confine real-time significance of the at
hand cardiovascular disease prediction (CDP) systems. In this paper a robust intrinsically modified bio-
physiological parameters driven heterogenous ensemble learning based CVD prediction model is proposed. We
focused on both feature optimization as well as computational efficacy to achieve a robust CAD solution towards
CVD diagnosis. Our proposed method applies age, gender, cholesterol, protein profiles, body mass index
information, stoke profile or history, electro-cardiogram information etc. from the benchmark dataset to enable a
scalable CVD prediction model. To ensure semantic feature driven learning, the aforesaid features were processed
for Word2Vec embedding, which was followed by resampling by using synthetic minority over-sampling
technique (SMOTE) and its variants, SMOTE-Boundary Line and SMOTE-ENN which helped to alleviate any
probability of class-imbalance. Subsequently, Principal Component Analysis (PCA), Cross-Correlation Analysis
(CCRA) and Significant Predictor Test (SPT) methods were applied distinctly to retain the optimal feature sets.
The selected feature instances were normalized by applying Min-max Scalar Normalization method. The
normalized features were taught using a mixed-method ensemble learning strategy that comprised Base Classifier
(RF), Decision Tree (DT), Support Vector Machine (SVM) variations, Naive Bayes (NB), Logistic Regression
(LOGR), Linear Regression (LR), Random Forest (RF), and Extra Tree Classifier (ETC) as foundational
classifiers. It used the maximum voting ensemble (MVE) method to determine if each individual was CDV-
Positive or CVD-Negative. The results show that the proposed method is resilient for application in real-world
CDS scenarios, as it surpasses all prior state-of-the-art approaches in terms of CVD prediction accuracy (99.93%),
precision (99.69%), recall (99.53%), and F-Measure (99.60%).

Keywords— Heart Disease Prediction, Data Mining, Machine Learning, SMOTE-ENN, Significant Predictor
Test, Heterogenous Ensemble Learning, Computer Aided Diagnosis.

I, INTRODUCTION diversity, complex symptoms and I_imited annotated
. . . dataset [2]. In fact, medical diagnosis turns out to be
Software Innovations, decentralised  gecisive yet challenging task due to aforesaid

computing, and affordable hardware have all seen  cpajlenge that becomes even more complex over data
meteoric rises in the past few years, opening up @ gjversity and hence serving automated diagnosis
world of possibilities for new applications that might  pecomes more trivial [1]. On the contrary, the low
help enterprises make better, more timely decisions. availability of physicians and inability to assess
Amongst the major demands, healthcare sector has  glectronic  details make clinical decisions difficult.
always remained the dominant due to high-pace rising ;s as a result requires automated CAD solution is
global population and allied stress on at hand manual  jnevitable [1]. Undeniably, the last few years have
clinical decisions. The mounting stress on human  yitessed computer-driven information-based CDS

resource-based  clinical ~ decisions has triggered  {qyards cost-effective and timely diagnosis decisions
academia-industries to achieve more effective and and allied medical care. In conjunction with these

scal_al_ole computer aided diagnosis (CAD) and clinical motivations, the majority of hospitals these days use
decision systems (CDS) so as to cope up global  cpgs to manage patient, diagnosis details and allied
demands [1]. Despite aforesaid motivations,  jnformation. Unfortunately, aforesaid —techniques
guaranteeing optimality of an e-healthcare tool  goyerely form humongous volume of data, which are
remains a challenge, especially due to symptomatic rarely employed to inform CDS purposes [3]. This
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information facilitates a large volume of esoteric
information which have not been exploited
significantly and has been mostly disregarded [4]. On
the other hand, the majority of the at hand CDS
systems or CAD systems have been applied to exploit
visual details (say, vision computing) to perform
diagnosis details for instance, brain tumor detection,
cancer detection, diabetic retinopathy detection, etc.
However, there exists numerous other healthcare
challenges which demands multivariate feature’s
analysis to perform healthcare diagnosis such as
cardiovascular disease (CVD) detection [5][6].

The matter of fact is that the
noncommunicable diseases (NCDs) and resulting
mortality rate is rising with an alarming pace.
According to a recent study, noncommunicable
diseases (NCDs) account for about 71% of all fatalities
worldwide, with a shockingly high percentage (over
80%) in poor and middle income nations [7].

Contemporarily, cardiovascular disorders (CVDs) are
amongst the dominant illnesses in the world [8]. A
recent study by World Health Organization (WHO,
2019) revealed that heart disease has taken more than
17.9 million people, causing almost 32% of the global
death [9]. A number of organizations functional in
medical domain have applied data mining and pattern
analysis models extensively to perform CVD
prediction. Yet, ensuring optimal set of physio-
biological patterns and symptoms remains challenge
for accurate clinical decisions. Nearly 45 percent of all
fatalities occur from cardiovascular diseases (CVDs),
which include hypertension, heart disease, and stroke,
according to a World Health Organization research.

Conversely, by 2030, low and middle-income nations
are projected to have a prevalence of NCDs of about
50% [8][10].

Literatures also indicate that the annual mortality rate
due to the CVDs can reach up to from 17.5 million in
2012 to 22.2 million in 2030 [9]. It alarms industry to
design robust and accurate CAD solution for scalable
heart disease detection.

Noticeably, heart disease represents an
extensively used term signifying the varied conditions
impacting arteries, blood vessels and other organs,
resulting malfunction. Human respiratory systems
around the globe have been impacted by the SARS-
CoV-2 virus, according to recent studies.

As a result, people's lungs release insufficient oxygen,
which can negatively affect heart health and
potentially lead to heart failure [11][12].

However, heart disease is typically the outcome of
atheromatous plaques, abnormal lipid metabolism, and
the buildup of lipids and other liquids within the
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coronary arteries. This can lead to a constriction of
blood vessels, which in turn can cause myocardial
ischemia, oxygen shortage, or tissue death. Chest pain,
chest tightness, myocardial infarction, and other
symptoms are common outcomes of these occurrences
[13].

The aforesaid patterns as cumulative phenomenon has
been causing 12 million deaths globally [14]. The
complexity involved in heart disease diagnosis and
remedial have been resulting severe death and hence
high mortality rate [15]. On the other hand, considering
a smaller fraction of human ecosystem the medical
(diagnosis and remedial) expenses involved are
expected to rise 41% in the US, mounting almost
$177.5 billion by 2040 [5]. Unfortunately, affording
such huge cost can’t be easier for the low-income
countries [15] and allied households and therefore there
is a need to design more efficient and robust CAD
solution for heart disease detection and diagnosis
[16][17].

Unlike vision-based CAD solutions, heart
disease detection and prediction model require
learning a large number of bio-physiological patterns
pertaining to the functional aspects of the heart
mechanism [18]. In this reference, numerous efforts
have been made by deploying machine learning
methods over the aforesaid bio-physiological
parameters to perform heart disease prediction or
cardiac disorder analysis [18]. However, merely
applying over redundant data can’t guarantee
reliability of the solution [16][18]. Despite the fact that
clinically assessed and specialized bio-physiological
parameter’s analysis can enable data mining-based
CVD prediction; yet, monitoring the most recent
patterns and its relevance towards human heart
functionality is decisive. In addition, learning a
machine learning model over the suitable feature set is
equally important. It infers that a machine learning-
based model can be effective only with the optimal set
of data, intrinsically optimal features and improved
learning environment. The depth assessment has
revealed that there exists certain set of bio-
physiological parameters including gender, insulin,
cholesterol, lips profiles, body mass index (BMI),
stroke details, fasting blood sugar, electro-cardiogram
patterns (ECG) etc. which can be used as features for
multivariate learning. It can achieve heart disease of
CVD disease prediction; yet, as stated earlier it
requires data optimality and computational efficacy.
Despite several previous attempts, most of the state-of-
the-art methods (see Section II) are either too
inaccurate or too unreliable to reliably forecast the
occurrence of heart disease. Machine learning models
have been fed sparsely characterized input data in the
majority of previously published methods.

Interestingly, in almost all datasets available and used
the number of data-elements (say, instances)
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pertaining to the normal heart functions are more in
comparison to the heart malfunction. It signifies the
presence of class-imbalance and hence the likelihood
of skewed learning can’t be ignored. Machine learning
models trained on biased data are more likely to
produce inaccurate predictions due to false positives
and negatives. Furthermore, there are some literatures
suggesting that training a machine learning model over
selected high-significant features can improve
accuracy [10]. However, there has been little effort to
evaluate the effectiveness of various feature selection
models in predicting heart disease.

It broadens the horizon for researchers to design a
robust feature model which could address both class-
imbalance as well as feature optimality to tune learning
models for accurate heart disease prediction. The depth
assessment of literatures indicate that the major state-
of-arts have applied machine learning algorithm as
standalone classifier, where many machine learning
models have demonstrated diverse levels of
performance on the same dataset. It could be
challenging to generalize a solution in this situation.
An ensemble learning model could be a game-changer
in resolving this issue [10].

Though, in the past a few researches have applied
ensemble learning methods like RF, AdaBoost,
XGBoost methods which are homogenous in nature.
For instance, RF ensemble applies bootstrapped
Decision Tree (DT) algorithm to constitute voting-
based ensemble classification. Heterogeneous
ensemble approaches, which include basic classifiers
from several machine learning algorithms (e.g.,
regression, neuro-computing, pattern learning,
decision tree, etc.), can outperform homogenous
ensemble methods in terms of accuracy.

Considering it as motivation, in this paper the focus is
made on improving both feature as well as
computational aspects. In other words, the proposed
model intends to exploit improved features from the
input benchmark bio-physiological inputs, while it
intends to use heterogenous ensemble model to achieve
improved and reliable heart attack prediction solution.

In light of the aforementioned knowledge
gaps and related areas of study, this work proposes a
new model for heart disease prediction that makes use
of heterogeneous ensemble learning and incorporates
intrinsically changed physiological features. The many
benchmark datasets that include bio-physiological
inputs relevant to heart disease were especially taken
into account in this study.

Unlike traditional approaches where the authors have
directly passed inputs to the machine learning
classifier(s), to exploit latent or semantically enriched
features we at first transformed input datasets into the
semantic embedded feature vector by applying

Word2Vec method. Here, the key motive behind the
use of Word2Vec embedding method was to improve
intrinsic features which could enhance overall learning
efficacy. So, to prevent class imbalance, the suggested
model uses SMOTE, SMOTE-BL, and SMOTE-ENN,
which provide an ideal distribution of samples without
resorting to hotspot generation.

The resampled data is then processed for feature
selection by applying three different feature selection
methods, including PCA, CCRA and Mann Whitney
SPT methods. The primary goal in this case was to find
the optimal combination of features and
methodologies for accurate prediction of heart disease
using the aforementioned repeated resampling and
feature selection techniques. After we picked the
perfect set of features, we mapped each data instance
in the range of 0 to 1 using the Min-Max scaler
normalisation method, which prevented over-fitting
and convergence.

In conclusion, the suggested heterogeneous ensemble
learning model was trained using the normalised data.
Support vector machine (SVM) variations, decision
tree (DT), Naive Bayes (NB), Logistic Regression
(LOGR), Linear Regression (LR), Random Forest
(RF), Artificial Neural Network Levenberg Marquardt
(ANN-LM), and Extra Tree Classifier (ETC) were all
part of this model's foundation classifiers. In order to
arrive at a final prediction about cardiovascular illness,
the proposed model utilized the aforementioned
machine learning (base) classifiers to carry out
maximum voting ensemble (MVE).

In this case, generalisable performance is achieved

through the usage of MVE ensemble, which
guarantees higher reliability compared to the
standalone classifier(s). The suggested model

performs better than existing state-of-the-art models in
predicting cardiac illness, with scores of 99.93% for
accuracy, 99.69% for precision, 99.53% for recall, and
99.60% for F-Measure, proving its suitability for real-
world CAD applications.

What follows is a breakdown of the remaining sections
of this manuscript. In Section 11, we cover the relevant
literature; in Section Ill, we formulate the problems.
The study questions are presented in Section 1V,
followed by the suggested methodology and its
execution. Sections V and VI present the findings and
conclusions from the simulations, correspondingly. At
the end of the manuscript, you will find the references
that were used.

Il.  RELATED WORK

Heart disease (CVD) prediction model
proposed by Parija et al. [19] is based on machine
learning. In a similar vein, Shadman et al. [10] used a
variety of ML models for predicting cardiac problems,
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including as ANNSs, Simple Logistics (SL), RF, SVM,
and NB. The results showed that a heart disease
prediction accuracy of 97.53% was achieved by the
SVM classifier using 10-fold cross-validation.

Noticeably, to perform aforesaid heart disease
prediction, the authors designed sensors for collecting
the parameters like blood-pressure, temperature,
humidity, and heartbeat. The dataset from the
repository of University College London (UCI) was
used by Durairaj et al. [20] to predict cardiac illness
using artificial neural networks (ANNSs) based on
multilayer perceptrons (MLPs). With an accuracy of
96.30 percent, their model was the most accurate. To
forecast the occurrence of coronary heart disease using
UCL clinical datasets, Hisham et al. [21] implemented
a number of machine learning models, including as
LR, SVM, K-Nearest Neighbor (KNN), and MLP
ANN. In order to enhance the accuracy of heart disease
prediction, the authors used a pre-processing method
based on K-Means clustering, a Genetic Algorithm
(GA), and recursive feature selection. They also
employed the Synthetic Minority Oversampling
Technique (SMOTE) algorithm.

Yet, the highest accuracy obtained was 86.6% [21].
Nancy et al. [22] on the other hand found that
ANOVA-based feature selection could achieve higher
accuracy with RF classifier for CVD prediction. In
order to forecast the occurrence of heart disease using
the UCI heart disease dataset, the authors [23]
employed various deep learning and machine learning
algorithms.

To enhance prediction accuracy, they applied Isolation
Forest algorithm to drop insignificant features. The
depth assessment revealed the heart disease prediction
accuracy of 94.2% by using deep learning method. In
[24], RF classifier was applied to perform CVD
prediction where it exhibited prediction accuracy of
98%. Applying the RF classifier to the Kaggle heart
disease dataset, the authors [25] achieved a maximum
accuracy of 86.9% in detecting CVD in a patient.
Using RF ensemble learning, Yongyong et al. [26]
were able to predict CVDs. The risk of cardiovascular
disease (CVD) was estimated in this study using the
following variables: age, BMI, TG, and DBP.

The authors [27] designed an intelligent heart
disease prediction system (IHDPS) by applying
machine learning-based models like NB, ANN and DT
algorithms. The simulation revealed that NB algorithm
exhibited accuracy of 86.12%, while ANN and DT
exhibited accuracy of 85.68% and 80.40%,
respectively. In [28] applied k-NN, NB, DT algorithms
where it exhibited heart disease prediction accuracy of
45.67%, 52.33% and 50.00%, correspondingly. In
their work on cardiac disease prediction, the authors
[29] utilized J48 DT in conjunction with bagging
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algorithms. In their study, the authors found that using
a Gain ratio decision method in conjunction with
voting  discretization improved the accuracy,
sensitivity, and overall performance by 72.01% to
77.90% and 78.90% to 84.10% by J48 DT and
bagging, respectively. The several supervised machine
learning techniques used to forecast the occurrence of
cardiovascular disease are detailed in [30], among
them are NB, k-NN, and DT. The usage of an ANN
algorithm was shown to obtain a prediction accuracy
of 100% in a simulation using 10-fold cross validation.
However, a CVD prediction accuracy of 99.20% was
achieved by combining DT and GA feature selection.
One study used artificial neural networks (ANN) to
forecast the occurrence of cardiovascular disease
based on thirteen bio-physiological variables, such as
gender, blood pressure, cholesterol, obesity, and
smoking habits [31]. Similarly, a combined method
using ANN and GA for CVD classification was
suggested in [32], and it achieved an impressive 89%
accuracy. Likewise, in [33] DT, Classification and
Regression Tree (CART) and Iterative Dichotomized
3 (ID3) were utilized. The best CVD prediction
accuracy of 83.40% was achieved using the CART
approach using 10-fold cross-validation. The
combined Information Gain and Adaptive Neuro-
Fuzzy Inference  System  (ANFIS)  models
demonstrated a 98.24% accuracy rate in the prediction
of CVD inreference [34]. In a similar vein, with a total
of eleven attributes including gender, age, dummy
values, heart rate, chest pain, cholesterol, blood sugar,
blood pressure, cardiogram, alcohol consumption, and
smoking behavior as input features, the authors of [35]
utilized REPTREE, NB, Bayes Net, J48, and CART
for the purpose of cardiovascular disease prediction. |
found it interesting that it showed the CVD prediction
accuracy of J48 (99%), REPTREE (99.07%), CART
(99.07%), Bayes Net (98.15%), and NB (97.22%).

Similarly, in [36] 13 features where NB exhibited
CVD prediction accuracy of 85.03%, while DT
exhibited an accuracy of 84.01%. in [37], the authors
applied k-NN, DT, Sequential Minimal Optimization
(SMO), J48 and NB classifier that in conjunction with
10-folds cross-validation exhibited CVD prediction
accuracy of 82.77%, 82.77%, 83.732% and 81.81%,
respectively. The machine learning algorithms
including ANN, DT and NB were applied in [38]
where the last (i.e., NB) exhibited the highest CVD
prediction accuracy of 82.91%. In the same manner,
the authors [39] applied machine learning algorithms
including C5.0 DT, k-NN, SVM and ANN, where DT
exhibited the prediction accuracy of 93.2%, while
ANN, SVM and k-NN exhibited CVD prediction
accuracy of 80.20%, 86.05% and 88.37%,
correspondingly. To forecast CVD, the authors of [40]
developed a hybrid approach that uses C4.5, MLP,
MLR, and FURIA, an algorithm for unpredictable rule
induction. When predicting CVD, the scientists used
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K-Mean clustering techniques in conjunction with
particle swarm optimization (PSO) and correlation-
based feature subset (CFS) (feature selection).

Training their hybrid model over a total of 26 features,
MLR was found exhibiting the highest CVD
prediction accuracy of 88.40%. In [41], NB, DT, k-
NN, Memorial network, and 1D3 algorithm were
applied to perform CVD prediction. Regardless of the
computational drain on input features such as age,
gender, cholesterol, and blood pressure, the best
prediction accuracy was 80.60%.

In [42], multiple kernel learning (MKL) with ANFIS
to perform CVD prediction. They could achieve the
highest CVD prediction specificity and sensitivity of
98% and 99%, correspondingly on KEGG metabolic
reaction network dataset. In [43] MLP-NN with
backpropagation (BP) algorithm was applied to
perform heart disease prediction. Optimisation of GA
using support vector machines was suggested in [44].
The authors discovered that the extracted feature
produced an accuracy of 88.34% and SVM an
accuracy of 83.70%.

In [45] DT and ANN models were applied, where 10-
fold validation with pruned data exhibited the CVD
prediction accuracy of 78.14%, while each standalone
method exhibited the accuracy of 77.40% and 76.66%
by using ANN and C4.5, correspondingly. In [46], the
authors applied ejection fraction and serum creatinine
as the vital features to perform CVD prediction. In
[47], GA and PSO were applied altogether to perform
feature selection that in conjunction with RF
performed CVD prediction. To execute CVD
prediction, the writers [48] utilized a variety of
machine learning techniques, including as Kk-NN,
AdaBoost (AB), DT, and RF.

The simulation results confirmed that the applied
machine learning models exhibited CVD prediction
accuracy of k-NN, AB, DT, and RF algorithms which
achieved an accuracy of 100%, 100%, 96.10% and
99.03%, correspondingly. With Cleveland dataset, k-
NN and RF exhibited accuracy of 97.83% and
93.437%, correspondingly.

In their study, Narain et al. [49] used quantum
ANN in conjunction with the Framingham risk score
(FRS) to predict CVD. The results showed an
impressive accuracy rate of 98.57%. The Cleveland
heart disease dataset, which contains 17 features, was
utilized by Shah et al. [50] for the purpose of CVD
prediction. The authors used k-NN, NB, DT, and RF
as s-learner algorithms; k-NN achieved a prediction
accuracy of 90.8%.

Drod et al. [51] performed the significant risk variable
selection to improve CVD prediction. More
specifically, they applied metabolic-related fatty liver
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disease (MAFLD) systems with the blood biochemical
analysis and subclinical atherosclerosis assessment to
perform CVD prediction. Technically, they applied
LR classifier, univariate feature ranking, with PCA to
perform feature selection followed by classification.
The authors applied hypercholesterolemia, plaque
scores, and duration of diabetes as the parameters to
perform CVD prediction, where the highest accuracy
was obtained as 85.11%. Alotalibi [52] applied the
Cleveland Clinic Foundation dataset to perform
machine learning-based CVD prediction. More
specially, the authors applied DT, LR, RF, NB, and
SVM, where the 10-fold cross-validation resulted the
highest of 93.19% CVD prediction accuracy by using
DT, which was followed by SVM (92.30%). Hasan
and Bao [53] focused on identifying the optimal
feature selection method towards CVD prediction.
Along with RF, SVM, k-NN, NB, and XGBoost, it
used a Boolean process-based common ‘True"
condition to apply various feature selection methods,
such as filtering, wrapping, and embedding. Among
the three methods tested here, XGBoost classifier with
wrapper-based feature selection had the best CVD
prediction accuracy (73.74%), while SVC came in
second with 73.18% and ANN third with 73.20%.The
Hybrid Random Forest with Linear Model (HRFLM)
was developed by Senthilkumar et al. [54] to ensure
accurate CVD prediction using thirteen distinct
features.

The highest accuracy obtained was 88.7%.
Ramalingam et al. [55] designed an alternating DT
model with PCA, where the later enabled suitable
feature selection. Despite SVM used with Ant Colony
Optimization (ACO) feature selection, the allied
complexity can’t be ruled out. Rajdhan et al. [56]
stated that the RF algorithm can yield accuracy of
90.16 % for CVD prediction over the UCI Cleveland
heart disease dataset. On the contrary, LR, NB, and DT
exhibited accuracy of 85.25%, 85.25%, and 81.97%,
correspondingly. Khourdifi et al. [57] too applied RF,
k-NN, and ANN to perform heart disease prediction.
They inferred that the use of hybrid approach with
PSO and ACO-based feature selection can achieve
better prediction accuracy. Applying aforesaid feature
selection methods, they achieved prediction accuracy
of 99.65% (PSO), and 99.6% (ACO) by using RF
algorithm. While Jagtap et al. [58] used SVM, LR, and
NB algorithms, their scalability is limited by the
highest stated accuracy of 64.4%. To predict CVD,
Haq et al. [59] employed a combination of ANN, k-
NN, SVM, LR, DT, RF, and NB, as well as Lasso
feature selection. At its peak, SVM achieved 88%
accuracy, LR 87%, and ANN 86%. For cardiovascular
disease prediction, Jindal et al. [60] used k-NN, LR,
and RF. They achieved an accuracy of 87.5% using a
wide range of features, including age, cholesterol,
fasting sugar, chest discomfort, sex, and blood
pressure.
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I1l. PROBLEM FORMULATION

This is the matter of fact that the cases of
cardiovascular diseases (CVD) are on rise globally
where the alarming morality rate has been triggering
both academia as well as industry to achieve more
efficient diagnosis measure for earlier heart disease
prediction solution. On the other hand, coping with the
exponentially rising global population and resulting
pressure on at hand healthcare infrastructures too have
forced industries and government to achieve and apply
varied computer-aided diagnosis solutions to make
earlier diagnosis decisions and allied medication.
Though, in the past varied vision-based computing
models are developed towards e-healthcare purposes;
however, heart disease prediction turns out to be more
challenging and trivial due to the lack of direct
symptoms. Moreover, the dependency or associations
amongst the different indirect symptoms including
biological parameters and the physiological patterns
make heart disease prediction more challenging.
Though, training over the different (aforesaid) bio-
physiological parameters can lead a better and reliable
heart disease prediction solution; yet, most of the state-
of-arts data mining-based approaches are limited in
certain terms such as low-accuracy, lack of the ability
to address class-imbalance, vulnerability towards local
minima and convergence etc. Consequently, it makes
major at hand solutions confined towards real-world
CVD prediction solution. To enable a robust CAD
solution towards CVD prediction, guaranteeing both
feature optimality as well as computational efficacy is
inevitable. Realizing the fact that the majority of the at
hand CVD prediction models (including both machine
learning as well as deep networks) have applied local
features from the input bio-physiological parameters
to train a model for prediction. However, such methods
often lack in the ability to address long-term
dependency (say, training contextual details) over the
consecutive  hio-physiological ~ patterns.  Such
inabilities can be better addressed by applying
semantic features or the latent features obtained over
the sequential bio-physiological test patterns.
Considering it as motivation, in this work Word2Vec
word-embedding method was applied over the
different bio-physiological features encompassing age,
gender, cholesterol, lipid profile, stroke history, ECG
profile etc. This approach converts input sequential
patterns into the equivalent embedded (numeric)
matrix. It not only addresses the problem of long-term
dependency but also achieves computational efficacy.
In addition to the aforesaid issue, the matter that the
number of instances pertaining to the normal person is
relatively higher than the heart disease patients. It
gives rise to the serious issue of class-imbalance and
hence training a model over such skewed data can
impact training efficiency and hence can show false
positive or negative performance. To address this
problem performing resampling can be of great
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significance. In this reference unlike under-sampling
and over-sampling methods, which can give rise to the
iterative hotspot issue, the improve methods like
SMOTE or SMOTE-ENN can be the viable approach.
Considering this fact, in this work SMOTE-ENN
method (along with the other SMOTE variants) has
been applied over the embedded matrix data. Here, the
key motive was to assess and identify the optimally
performing resampling method so as to perform
scalable and reliable heart disease prediction. Indeed,
resampling can enhance sample (distribution)
optimality; but, it comes with a price: additional
computation. To get around this, it's important to keep
only the features that can provide better accuracy with
less computational load. This work's motivation was to
find the best set of features for further learning and
classification using three feature selection methods:
principal component analysis (PCA), clustering, and
WRST significant predictor tests. The datasets that
were resampled were SMOTE, SMOTE-BL, and
SMOTE-ENN. To make heart disease prediction stand
out, the various resampled datasets were subjected to
the aforementioned feature selection approaches.
Next, the features that were chosen were subjected to
Min-Max normalization. This method assigned a value
between 0 and 1 to each data instance, reducing the
chances of over-fitting and convergence. First, the
input features were processed for the aforementioned
feature optimization measures. Then, they were passed
on to a novel and robust heterogeneous ensemble
learning classifier for two class classification. This
approach differs from traditional machine learning-
based CVD prediction models, which directly feed the
input data to standalone machine learning classifiers.
Notably, traditional approaches have used independent
machine learning classifiers to learn and classify input
data, which yields varying degrees of accuracy even
when using the same dataset. The solution's
generalizability is limited by this performance
variation. The suggested model uses a HEL learning
framework with SVM, DT, NB, LOGR, LR, ANN-
LM, RF, and ETC as basic classifiers to conduct MVE
ensemble-based prediction, thus resolving this issue.
Therefore, the heart disease prediction (i.e., CVD-
Positive or CVD-Negative) for the various
characteristics, resampling strategies, and proposed
compositions is accomplished with the suggested
HEL-MVE ensemble learning framework. To
guarantee better and more generalizable performance
towards heart disease prediction, it is crucial to
determine the best data-resampling strategy, feature
selection approach, classification environment, and
feature set. In order to evaluate the effectiveness of the
model(s) that have been proposed, we use MATLAB
to build them and then collect confusion metrics for
accuracy, precision, recall, and F-measure. By
comparing the suggested model to state-of-the-art
methods for CVD prediction, as well as to other
models, we are able to characterize its performance.
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IV. RESEARCH QUESTIONS

This work establishes a set of research
questions that, when answered, will lay the
groundwork for a scalable and reliable model for
predicting the occurrence of heart disease, in line with
the  overarching  research  objectives and
methodological scopes. Here are the research
questions:

RQ1: Can the strategic amalgamation of bio-
physiological parameters including genders,
age, cholesterol, lipid profile, stroke history,
ECG pattern, etc. enable machine learning
methods performing scalable and reliable heart
disease prediction (or CVD prediction) model?
Can the use of use of improved SMOTE
resampling (SMOTE-ENN), Wilcoxon Rank
Sum Test (WRST) Significant Predictor Test,
and Min-Max Normalization and proposed
heterogenous ensemble learning (HEL) method
be effective towards reliable CVD prediction
model?

RQ3: Is it possible that the HEL ensemble learning
model outperforms and is more trustworthy than the
conventional machine learning approaches that
operate independently?

RQ2:

A solid, trustworthy, and extensible CVD
prediction system can be built upon the results of these
research questions, which can be proven through
quantitative means.

Table I. Heart disease prediction dataset

V. SYSTEM MODEL

The general approach and related sequential
implementation are the main topics of this section.
Here are the steps that make up the total method:

1. Data Acquisition and Pre-processing

2. Semantic Feature Modelling

3. Feature Resampling

4. Feature Selection

5. Data Normalization

6. Heterogeneous Ensemble Learning based
Maximum Voting Ensemble for CVD
Prediction

The detailed discussion of the sequential

implementation is given as follows:

A. Dataset Acquisition and Pre-Processing

Realizing the clinical associations amongst the
different bio-physiological parameters and heart
disease probability, in this work we intended to exploit
maximum possible features so as to enable better
training and hence (CVD) prediction. In light of this,
we used the Cleveland dataset, housed in the machine
learning repository at the University of California,
Irvine (UCI), which consisted of 303 examples across
13 distinct feature sets. Table I provides an excerpt of
the data that was considered together with the linked
feature significances.

SN. Attribute Icon Attribute name Description
1. Age Age Patient Age
Males -1,
2. Sex Gender Female -0.
. . Male -1,
3. Chest pain type Chest Pain type Female-0.
4 Resting blood Rest state blood Resting blood pressure upon hospital admission,
' pressure pressure (mm/Hg) measured in mm/Hg
5. Serum cholesterol ~ Serum cholesterol (fat) Blood cholesterol level measured in mg/dL
If the blood sugar level is over 120 mg/dL, after a
6 Fasting blood Fasting blood sugar (not  fast of not eating overnight, it is considered to be
' sugar eating) high (1-high). In case, it is below 120 mg/mL, it is
stated to be normal (0-false).
An ECG test result can be categorised as follows:
7 Resting ECG Rest ECG test 0 for a normal resylt, 1 for the presence (_)f ST-T
wave abnormality, and 2 for left ventricular
hypertrophy.
8 Maximum heart Max. h_eart rate Max. heart rate during exercise
' rate achieved ' '
Angina occurred by a workout:
9. Exercise angina  Exercise induced angina 0 for No;
1 for Yes.
10. Old-peak ST depression (ECG ST depression due to exercise relative to relaxation

test)
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will observe in the ECG test.
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11. ST slope Slope (ST depression)
12. Ca No. of vessels (0-3)

. Thalassemia
13. Thai (Haemolytic disease)
14, BMI Body Mass Index
15. Target Heart failure class

attribute

Maximum workout:
1-Upsloping;
2-Flat;
3-Down sloping.
The number of major
Thalassemia is a blood disorder caused by
abnormal haemoglobin production with a score of
3- Indicating normal production,
6-Permanent deficiency,
7- Signifying temporary impairment.
It signifies body mass index presenting patient’s
specific body structure and mass value.
No heart disease-0,
Heart disease-1.

Once obtaining aforesaid dataset, it was
processed for pre-processing before executing the
proposed predictive model. The proposed dataset was
processed for extensive pre-processing and cleaning
that makes computing easier and hence achieves
reliable training and hence higher reliability. An
numeric value indicating the presence of a patient's
cardiac condition is signified by a target element in the
aforementioned dataset. If there is no heart illness, the
target score is 0, and if there is heart disease, the score
is 1. We took into account the gender of the samples
as a whole because, according to the research, men had
a higher risk of cardiovascular disease than women.

In other words, the data element ‘sex’ comprised two
classes: 1 and 0O, signifying male and female,
respectively. Chest pain (CP) is also an indicator of
heart disease and failure. Considering this fact, we
considered CP profile comprising four classes. The
proposed model encompassed four classes of CP
where two different classes represented fasting blood
sugar (‘fbs’). Additionally, it encompassed three
different classes of resting ECG ‘restecg’ and two
classes presenting exercise angina ‘exang’. In
addition, ‘slope’ also called ST slope comprises three
classes. Additional characteristics are included, such
as resting blood pressure (‘trestbps’), cholesterol
(‘chol’), age, and oldpeak. The patients' body mass
indexes were also considered. The dataset under
consideration underwent processing to eliminate
duplicate or missing values.

Noticeably, the missing element signifies an
incomplete or repeated data-element. Such missing
elements can impact overall learning efficiency and
accuracy. To alleviate it missing elements were
removed by performing outlier assessment.
Considering limited data instances (say, sample
size), to improve computational efficacy, the missing
elements were substituted either by means of a user-
defined constant or the average (dataset) value.
Unlike traditional methods which remove aforesaid
missing elements completely, our proposed model

452

substitutes the missing elements with the average
value of the dataset. Realizing the limited size of
Cleveland dataset, we combined other datasets
including Hungry, Switzerland and Kaggle datasets.
Thus, a total of 1100 instances was prepared with 14
different features.

B. Semantic Feature Modeling

To ensure optimal feature learning while
addressing long-distance dependency, the proposed
model focused on exploiting semantic features. Unlike
traditional deep learning methods or tokenization
approaches which often exploit local features and fail
in exploiting contextual features, the proposed model
applies word-embedding method to perform feature
modeling. To improve computational efficacy word-
embedding based semantic feature modeling is
performed that vyields low-dimensional semantic
features for further learning and classification. The
dataset comprised the different bio-physiological
features for the different patients representing both
classes, heart disease patients and non-heart disease
patient. Such feature diversity and corresponding
embedding matrix output present both contextual as
well as latent information to perform accurate and
reliable CVD prediction. To facilitate additional
learning and classification, we employed the
Word2Vec word-embedding technique to produce a
semantic embedded matrix in this study.

We used Gensim Word2Vec technique to convert
input instances into equivalent embedding vector. We
designed Word2Vec model with dual-layer neural
network encompassing two hidden layers that
generated semantic feature(s) with sparser feature
outputs. In this approach, the input data (say, instances
or tokens) was retrieved based on the window of the
connecting context-window. Let, W;_, , W;_, ,
W1, W;4, be the context words retrieved from the
data corpus, then the CBOW method predicts W;
which is highly related to the other data instance
available within the dataset. The predicted embedding
outputs were related to the target token value W;. From
a functional standpoint, the CBOW embedding
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approach is comprised of two sets of word-embedding
vectors, one for each data instance (here, weV being
the feature instance) and one for each target-side,
denoted as v_w,v_w™MeR". We utilized embedding
methods based on Gensim, wherein a data corpus input
instance window represents the center token w_0 and
generates appropriate context embedded vectors
w_1,...,w_C. Thisis how the CBOW loss is calculated:

Q).
c
1 (1)
Ve = EZ Ywj
=1
L=—logo (v",vo T,,C) (2)

k

— Z log 0(—171'1i Tvc)

=1

In (2) ny,..,n, €V signifies the negative
examples obtained from the noise distribution B, over
input vectors V. In (2), £ gradient is obtained with
respect to the target value v;,,, negative target value
vy, and average context source (v,)
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So, the gradient of the predicted word vector
(let's call it the context vector) was applied using the
Chain-rule approach over the source context
embedding (6).

aL

=l ) = Dvle +

55 (o (vl o)) — 1))

We normalized the context words using a context
window width sampled at random from 1 to C_max for
each target value in order to fix the issue of
inappropriate context vector update. Using the
aforementioned technique, the whole dataset was
converted into an embedding matrix, which was
subsequently used for resampling and feature
selection.

C. Feature Resampling
In real-time ecosystems, data imbalance is
still a possibility, even with uniformly distributed
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datasets. To rephrase, there may be a large discrepancy
between the numbers of samples reflecting normal or
non-heart disease data and those representing
incidences of heart disease. Because of the extreme
class imbalance that might result from such skewed
data, training a machine learning model with such data
can lead to inaccurate results.

It can confine the real-time significance or scalability
of a CVD prediction model. To alleviate such issues
alleviating the data imbalance problem seems to be
inevitable. Data sampling has historically made use of
a variety of resampling techniques, such as up-
sampling, random sampling, and down-sampling,
however. The authors have used up-sampling to
increase the number of samples from minority classes
and down-sampling to decrease the number of samples
from majority classes.

On the other hand, in random sampling approaches the
number of instances is randomly increased so as to
reduce the disparity of the minority and majority class
samples. Unfortunately, the aforesaid resampling
methods often yields iterative hotspot and hence
imbalanced data. The uncontrolled or improper
addition of minority class in up-sampling can
iteratively cause majority class to become minority
and hence the challenge of class-imbalance remains
the same. To alleviate this problem, in the recent years
a robust method called synthetic minority class
oversampling technique (SMOTE) is proposed. The
SMOTE method creates synthetic samples that reflect
strongly correlated instances or attributes, avoiding
any impact on the original sample distribution, in
contrast to the resampling procedures mentioned
earlier. Using minority samples as input, this method
retrieved synthetic samples that were subsequently
processed with a Kk-Nearest Neighbor (k-NN)
classifier. In order to pinpoint the most relevant or
likely samples in relation to the initial instance or
sample, we utilized a k-NN method that is founded on
the principle of Euclidean distance. It was a vector
connecting the one from the recovered k-neighbors to
the one from the present samples. To obtain the final
synthetic sample, the produced vector is multiplied by
arandom integer between 0 and 1, which is then added
to the initial sample. We used SMOTE, SMOTE-BL,
and SMOTE-ENN, three variants of the SMOTE
sampling method, in this study.

In function, SMOTE method applied k-NN method in
reference to the original sample to achieve synthesized
data.

Though, SMOTE method retrieves fairly
distributed samples; however, the randomness of the
data, especially over the large feature space results a
scene where there can be the probability of multiple
instances belong to or ambiguously belong to the
multiple classes. It has the potential to affect the
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effectiveness of learning and, as a result, produce
inaccurate results. We suggest SMOTE-BL to help
with it.

Unlike traditional SMOTE resampling method,
SMOTE-BL distinguishes the ambiguous data
elements present at the common boundaries to label it
with specific class and thus suppresses the likelihood
of ambiguity. It makes SMOTE-BL more effective
over the large heterogenous high-dimensional
datasets. Recently, a more evolved SMOTE variant
was proposed named SMOTE-ENN which applied
Edited Nearest Neighbour (ENN) concept to improve
sample distribution. Unlike traditional SMOTE
method, where constraining class-boundaries can be
difficult due to over-lapping synthetic minority
samples (with the majority class), SMOTE-ENN
exploits the strength of ENN to classify ambiguous
data elements and thus labels them to the appropriate
class. It improves accuracy over the traditional k-NNs
neighbors. With SMOTE-ENN, any discrepancy
between the input sample and allied k-NNs is
immediately eliminated from the synthetic sample set.
For better learning, it aids in making samples more
consistent and significant. By maintaining a dataset
with perfectly balanced instances or samples for future
learning and classification, a higher value of k
accomplishes rigorous cleaning. Therefore, we
separately evaluated the effectiveness of SMOTE,
SMOTE-BL, and SMOTE-ENN in this study for the
purpose of CVD prediction.

D. Feature Selection

The truth is that resampling method(s) enhance data
distribution for better learning, but also increase
computation in the process. Moreover, over a large
feature space training any machine learning method
can be exhaustive and hence time-consuming.
Additionally, over such high-dimensional feature
space, the likelihood of pre-mature convergence and
local minima can’t be ruled out, and therefore there is
the need to apply certain suitable feature selection
method which could reduce insignificant or redundant
features. This approach can retain optimal set of
features and allied instances that consequently can not
only improve overall learning but can also alleviate
aforesaid issue of convergence, local minima as well
as time-exhaustion. It can be vital towards at hand
CVD prediction tasks. Though, in the past the authors
have suggested applying PCA [], heuristic methods [],
etc. towards feature selection; however, their higher
reliance over the coefficient values and large iterations
limits their scalability and suitability towards at hand
CVD prediction task. A variety of feature selection
techniques, such as the significant predictor test and
cross-correlation analysis (CCRA), have been
implemented in Big Data environments and the data
mining area. We used three feature selection
methods—principal component analysis (PCA),
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principal component regression analysis (CCRA), and
a Mann Whitney-based significant predictor test—
with this as our driving force. This section provides an
overview of several feature selection methods:

1. Principle Component Analysis (PCA)

In this work, PCA method was applied over the
resampled datasets (i.e., SMOTE, SMOTE-BL and
SMOTE-ENN dataset) so as to retain the optimal set
of the significant features having decisive impact on
the CVD prediction results. In this case, we calculated
the eigenvalues and principal component for each
feature set and data piece based on their covariance.
Using a predetermined value of 0.5 for the mean
principal component, we calculated the Eigen distance
for each feature instance. That is why we kept the
characteristics (instances) for future learning and
classification and removed the ones with a higher
eigen distance.

Those feature instances with the Eigen distance
smaller than 0.5 signify higher extent of relatedness or
associations. And therefore, such feature instances can
have higher impact on the eventual CVD prediction
results. Thus, we applied PCA over the different
resampled datasets which helped retaining selected set
of feature sets for further learning task.

2. Cross-Correlation Analysis (CCRA)

It is a statistical method signifying the extent to
which the two variables are associated. In function.
CCRA measures association between the two
variables representing the extent of relatedness. CCRA
also represents the correlation-strengths and allied
orientation. Typically, the relationship between the
two instances can exist in the range of 1 to 0, where
“1” signifies higher relatedness, while the values near
to “0” indicates lower association. In this work, we
applied Pearson correlation method (7) to calculate
correlation coefficient (r).

i =0 X (i =)
2O — %)% T (i — y)?

In this work, those feature instances having r
larger than 0.5 (i.e, r> 0.5) were considered
significant and were retained. On the contrary, those
feature instance with r < 0.5 were dropped from
further computation. Thus, this method retained a
trimmed set of features for further learning and
classification.

U]

3. Significant Predictor Test

This approach takes advantage of the attributes'
association with one another to assess how important
they are for the current CVD prediction job. This
technique evaluates the relevance of each feature
instance in relation to a hand CVD prediction task by
examining the relationships between them.
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More specifically, Mann Whitney method was
used as feature selection technique that exploited
correlation coefficient between the feature instances to
measure their impact on CVD prediction results. In our
work, each feature vector was assigned as an
autonomous variable, while CVD likelihood was
labelled as the dependent variable. Therefore,
measuring the level of significance for each feature
instance the instance possessing higher level of
significance were retained. We fixed p also called
level of significance as 0.05, and thus the feature
instances with p > 0.05 were retained, while
remaining feature instances were dropped from further
learning and classification.

E. Min-Max Scaler Normalization

To alleviate any probability of over-fitting and
convergence over the large non-linear heterogenous
features, the input instances (say, selected symbols)
were processed for Min-Max scaler normalization in
which each data instance was mapped in the range of
0 to 1. We used equation (6) to perform Min-Max
normalization over the input features. In (8), x;
represents the feature instances, where x; € N, which
is mapped to the allied normalized value representing
x; . The proposed Min-Max normalization method
obtained the value of x; in the range of 0 to 1.
Noticeably, in (8), Min(X) and Max(X) signify the
minimum and the maximum values of X
correspondingly.

i

!

X — Min (X)
Norm(x;) = x| = Max(X) — Min (X)

F. Heterogenous Ensemble Learning Based Learning
and Classification
G. To improve upon the accuracy and reliability
of predictions, we developed a strong HEL
classification framework that utilized many
machine learning techniques as base
classifiers. This approach differs from
conventional standalone machine learning-
based CVD prediction models. It becomes
dubious to generalize the performance of
these models for healthcare prediction tasks
like CVD prediction, given that various
machine learning algorithms exhibit varying
degrees of accuracy when applied to the same
dataset, as mentioned before.

To alleviate this problem, in this work we designed
HEL as an ensemble learning framework that
embodied the different machine learning classifiers as
base classifier, where each base classifier labels each
data instance with respective class probability (i.e.,
Heart Disease Yes-1, No Heart Disease-0). Thus,
exploiting aforesaid class labels by each encompassing
base classifier a consensus is built by using the
maximum voting ensemble (MVE) concept. The data
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instance (say, patient data) with higher consensus or
maximum voting as 1 was eventually predicted as
CVD-Positive and labelled as 1. On the contrary, a
data instance with more 0 was labelled or predicted as
CVD-Negative. In this manner, the use of consensus
model helped achieving higher prediction accuracy
and reliability towards CAD solution, especially with
the generalizability.

To achieve aforesaid HEL learning and prediction,
we have applied a total of 13 machine learning
classifiers belonging to the different categories
including support vector machine-based pattern
learning, regression methods, neuro-computing and
homogenous ensemble methods (i.e., RF and ETC). As
stated above, these machine learning algorithms
perform  classification distinctly, where their
prediction results were subsequently applied to make
consensus towards eventual prediction. We applied the
following machine learning algorithms as base
classifier to perform learning and classification.

Multinomial Naive Bayes (MNB),
SVM RBF (Radial Basis Function),
SVM-Linear,

SVM-Polynomial,

Decision Tree (DT),

Logistic Regression (LOGR),
K-NN,

AdaBoost,

Gradient Boost,

10)Bagging (k-NN Kernel),
12@agging (MNB Kernel),
12)Random Forest (RF), and
13)Extra Tree Classifier (ETC).

A brief of these base classifiers is given as follows:

a) Naive Bayes (NB)
The Naive Bayes classifier employs Bayes' rules for
pattern learning and classification and is one of the
most popular and extensively studied probabilistic
classifiers. The "independent feature model"
postulates that the linked features continue to function
independently of one another and, as a result, do not
impact the classification results; NB is probabilistic in
character. Another tenet of this pattern-learning
strategy is that two feature instances in the same class
cannot possibly be connected. According to the Bayes'
rule, which is provided in (9), it assigns a data instance
X to the class e*=argmax_d P(d|x) in light of the
hypotheses mentioned earlier.
P(x|d)P(d) 9)
PIX) =55

The likelihood of data instance x is represented as
P(d|x), while the probability of class c is stated in (9).

Here, P(x) signifies the predictor prior
probability, which is measured as per the equation
(20).
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Though, NB algorithm has evolved with the
different kernels like Gaussian, Multinomial; however,
we applied NB-Multinomial (MNB) as classifier to
perform two-class classification. Here, MNB
performed learning over the count’s frequency,
signifying x; occurrences over n trails. It applies the
occurrence(s) of the binary terms so as to predict each
instance as Heart Disease Positive (say, CVD positive)
or CVD negative and labelled it as 1 and o,
correspondingly.

b) Support Vector Machine (SVM)

Pattern recognition and classification are two areas
where support vector machines (SVMs), a type of
supervised machine learning model, have found
widespread use. Support vector machines (SVMs) are
the go-to pattern learning approach for text and picture
classification issues due to its hyper-plane learning and
classification capabilities. As a non-probabilistic
binary classifier, SVM learns on the normalised
dataset in this study. The learning and classification
processes are carried out by iteratively minimising the
generalisation error over the input feature space. We
calculated the hyper-plane support vector, which
represents a training subset that shows the boundary
conditions. In keeping with the two-category
classification problem at hand, the support vector
model was used to construct the hyper-plane between
the two classes, positive and negative, of
cardiovascular disease (CVD). It applied equation (11)
to perform classification.

YVi=wxpx)+b (12)

In (11), parameter ¢(x) states a non-linear
transform that emphasizes on the allocation of the
appropriate weights w and bias value b to perform
learning and  classification. We  measured
classification result Y’ by reducing a regression-risk
parameter, defined in equation (12).

L 1 (12)
Rreg(Y,) =C* ZY(Y{ -Y)+ 2
i=0

*[wll?

The penalty factor and cost-function are represented
by the parameters C and v, respectively, in equation
(12). Following the protocol in (13), we determined the
weight scores.

L
w = Z(‘Zj — &) (%)
=1

Here, o and o* be the non-zero values, called
Lagrange relaxation. Thus, the applied SVM model
results prediction output as (14).

(10)

! (14)
Y' = Z(aj — a]f‘)(j)(xj) *p(x)+ b
=

l
= > (&= a)) «K(xx) + b
j=1

In (14), K (x;, x) states a kernel function. In this
work, SVM was applied with three different kernel
functions, including SVM-Linear, SVM-Polynomial
and SVM-RBF. Here, each variant performed
independently to classify each input data.

¢) Decision Tree (DT)

Data mining and classification jobs often make use of
DT, one of the most applied association rule mining
methodologies. The CART, ID3, C4.5, and C5.0
association rule mining methods have all contributed
to the development of this machine learning model.
Both solo classifiers and ensemble-learning methods,
such random forests and additional tree classifiers,
have made use of the DT algorithm. Starting at the root
node, it applies an association rule with a split-
condition to split the input feature instances into
numerous branches, one for each node in the tree. This
is how it serves its functional purpose. After that, it
learns and classifies the pattern or data by applying the
information gain ratio (IGR) technique over each
branch. Input features can be easily divided into
numerous branches, and the system will automatically
obtain the other nodes that will branch off into other
data.

In this manner, this approach looks like a tree
structure having multiple branches. The DT algorithm
resembles a binary tree possessing single root or parent
node having multiple children’s nodes.

Let, the left and the right child node be LC,; and
RC,4, respectively. Consider, x be the input feature,
while I be the noise value. Now, with the available
samples in P4, LC,; and RCy4, DT intends to optimize
information gain, iteratively by using (15).

Information Gain (Pyx) (15)
LC
= I1(Py) —P—HI(L- Ca)

n

I(R.C,)

n

P

In (15), I can be calculated by using any of the
methods like Entropy I (16), Gini-Index I; (17), and
classification error I (18).

I3, (n) = - Z p(c|n)log, p(c|n)
i=1

I = 1= plcn)’
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(16)

(17)
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Iz(n) = 1 — max{p(c|n)}

Parameters c and n in (16-18) denote the class(es) and
corresponding node(s), respectively. The probability
factor was determined by dividing c by n.

Once obtaining the predicted output, each sample
was classified into two classes, CVD-Positive and
CVD Negative, and was labelled as 1 and O,
respectively.

d) Logistic Regression
By transforming input feature sets into independent
variables, logistic regression runs regressions on such
sets. On the contrary, it defined feature’s CVD
probability as dependent variable. The proposed
LOGR prediction method applied (19) as regression
function.

logit[m(x)]

=Bo + B Xy + B2X;

+ o HBmXm

(19)

The dependent variable is represented by logit[n(x)] in
equation (19), while the independent variable is x_i. In
this case, the binary outputs were translated using the
logit function, which produces different values of m(x)
from 0 to 1, negative infinity to positive infinity. In the
previous equation. In terms of n, the CVD probability
was found to be (20), while m represents the overall
independent variables.

(%)

eBo+B1X1+B2Xo+ . +BmXm

= 1 + eBo+B1X1+B2Xz+ .4 BmXm

(20
)

Thus, applying above discussed LOGR method,
each data instance or sample (say, patients bio-
physiological data) was classified as CVD Positive and
CVD Negative, which was labelled as “1” and “0”,
respectively.

e) AdaBoost

It is a type of adaptive boosting ensemble learning
technique having better instance-wise learning and
analysis capability. In order to implement the
AdaBoost algorithm, certain weak learners were
formed by assigning equal weight to the associated
prerequisite exams. As a result of measuring the error
rate for the previously mentioned weak classifier for
each cycle, AdaBoost improved the weight for the
correctly categorised samples and iteratively reduced
the weights for the incorrectly classified samples.

Eventually, the weak learner turned out to be the
strong learner and thus classified each sample or data
as CVD Positive and CVD negative and labeled them
as “1” and “0”, correspondingly. Unlike traditional
AdaBoost method, the gradient boosting method
focuses on improving weight parameters more
efficiently and thus enables more accurate sample
classification (say, data classification). Unlike fixed
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(18) update method, gradient boosting method tunes

learners adaptively and thus achieves more detailed
learning to yield higher accuracy. This approach helps
in suppressing any probable convergence problem.
Despite increased computational cost, it performs
superior over the classical AdaBoost or Boosting
ensemble. With this motivation, in addition to the
AdaBoost method, we applied gradient boosting
ensemble as well as a base classifier.

f) Bagging (k-NN) and Bagging (MNB)

We applied bagging method with the two different
kernels (also called, base classifiers). Particularly,
bagging ensemble was designed with k-NN and MNB
classifier as their base classifier to perform two-class
classification. Thus, these bagging ensemble methods
or variants classified each data as CVD Positive and
CVD Negative and labelled them as 1 and O,
respectively.

g) Random Forest (RF)

When it comes to ensemble approaches that use
numerous tree-based classifiers, Random Forest is a
popular choice. Because it is a tree-based learning
system, every tree comes up with its own best guess
for the most likely class. Assume that N is the input
training set. Afterwards, RF uses the input samples or
data to randomly select a sample with N cases. In order
to build a new tree, these samples are used as the
training set. If we use M to represent the input data, we
can divide the node using the optimal split applied to
m. During the execution of forest growth, we fixed the
value of m. This is how it grows each tree to its
maximum potential. Lightweight and computationally
efficient, the RF algorithm outperforms conventional
classifiers thanks to its reduced parameter
requirements for learning and classification. The RF
method is a mathematically determined mixture of
many tree-structures that are based on the
aforementioned forest development mechanism (21).

{h(x,0,),k=12,..i..} (21)

In (21), h be the classification function, while the
random vector generated throughout tress is given as
{6,3. In this method, each tree contains a unit vote for
its most probable class. Noticeably, the capability to
use multiple DTs where each (say, unit) DT acts as a
distinct classifier enables RF behaving as a
bootstrapped learning model to perform consensus
(based on the multiple DT classifiers)-based learning
and classification. In this work, we used a bootstrapped
subset of training samples to train each tree throughput
the constituted forest, where it applies 70% sample for
training, while the remaining samples are labeled as
the out-of-bag samples. These out-of-bag samples are
later used for inner cross-validation to perform
eventual prediction. In this manner, each data sample
was classified as CVD Positive and CVD Negative
samples and labelled as “1” and “0”, respectively.

h) Extra Tree Classifier (ETC)
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This is also an ensemble learning variant
which constitutes a cluster of the unpruned DTs on the
basis of the traditional top-down mechanism. Unlike
RF technique, ETC method contains randomization of
the data samples and cut-point selection while
performing node-split. ETC algorithm is capable of
constituting overall randomized trees encompassing
structures which are independent of the outputs of the
training sample. There are two main features that set
this ensemble learning model apart from competing
tree-based ensemble approaches. The first is that it
uses random cut-point selection to partition nodes, and
the second is that it uses the entire training set to carry
out tree-growth or forestation. In this case, the
prediction output (i.e., CVD class) was generated by
combining the classified results from the trees using
the MVE approach. When compared to other machine
learning models that use weaker randomisation
methods, the ETC ensemble model's main concept and
functional components—ensemble averaging and
overall cut-point and attribute randomization—reduce
variance more appropriately. Furthermore, to get
better (prediction) accuracy, using the original training
samples decreases the chance of the bias-probability.

Thus, applying this mechanism the proposed ETC
model classified each sample or data into two-classes,
CVD Positive and CVD Negative and labelled them as
“1” and “0”, respectively.

Thus, applying above discussed machine learning
models as the base classifier(s), each data sample was
classified into two classes; CVD-Positive and CVD-
Negative and labelled them as “1” and “07,
respectively. Since, we applied a total of 13 machine
learning models in parallel, where ach model provided
unit predicted output or labels, applying consensus
model (also called the maximum voting ensemble
(MVE)) each sample was classified as CVD-Positive
or CVD-Negative. In MVE method, a data sample with
more than or equal to seven “Is” was predicted as
CVD-Positive, while a data sample with seven or more
“0s” was predicted and labelled as CVD-Negative.
Thus, applying this method, each data sample (say,
patient data) was predicted as CVVD-Positive or CVD-
Negative. Accuracy (%), precision (%), recall (%), and
F-Measure were some of the statistical measures
retrieved in order to evaluate performance and
dependability. What follows is a presentation of the
simulation findings along with related conclusions.

VI. RESULTS AND DISCUSSION

In this work, we developed a robust intrinsically
modified  Bio-Physiological ~ Features  Driven
Heterogenous Ensemble Learning-based Heart
Disease Prediction Model or Cardio Vascular Disease
(CVD) Prediction Model. As the name indicates to
design targeted CAD solution, patient’s specific
biological as well as physiological features including
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lipid profile, cholesterol, ECG pattern, stroke events,
gender, etc. were taken into consideration. More
specifically, UCI Cleveland dataset along with the
Kaggle datasets were taken into consideration. A total
of 14 features were taken into consideration
encompassing the different biological as well as
physiological clinical measurements. The input data
was at first processed for pre-processing where outlier
analysis and missing element problem was solved.
Subsequently, Word2Vec word-embedding method
was applied to generate the corresponding embedded
matrix. It helped retrieving the latent/semantic features
to perform further learning and classification. It also
helped in addressing the problem of long-term
dependency that eventually improved learning and
classification. The embedded matrix from each feature
set was processed for resampling techniques including
SMOTE, SMOTE-BL and SMOTE-ENN algorithms.
It helped improving overall sample distribution by
supressing any likelihood of class-imbalance. The
resampled data was then processed for feature
selection by applying PCA, CCRA and Mann-Whitney
Significant Predictor Test (SPT). Noticeably, these
feature selection methods were applied distinctly over
the resampled datasets so as to assess relative
(performance) efficacy. Additionally, it helped in
identifying the optimally performing resampling and
feature selection model to achieve optimal CAD
solution for CVD prediction. The selected features
were then processed for Min-max normalization which
mapped each data instance in the range of 0 to 1, and
thus alleviated any probability of over-fitting and
convergence. Unlike traditional standalone machine
learning-based classification models, in this work an
HEL was designed by applying machine learning of
the different categories including SVM variants
(SVM-Linear, SVM-RBF, SVM-Polynomial), DT,
NB, LOGR, LR, ANN-LM, RF and ETC, as base
classifiers. A total of 13 machine learning algorithms
were applied as base classifier that in conjunction with
MVE ensemble performed eventual prediction and
classified each subject’s class as CVD-Positive and
CVD-Negative, which was labelled as “1” and “0”,
respectively. True positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN) are the
confusion metrics that we obtained. F-Measure, recall,
accuracy, and precision are some of the statistical
performance metrics that were derived from these
inputs. Table 1l provides the performance
characteristics together with their related statistical
derivations. The MATLAB 2020b program was used
for the overall model design, and the simulation was
conducted on a computer system with Microsoft
Windows operating systems, an Intel i5 processor, 8
GB RAM, and a frequency of 3.2 GHz.
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Table Il: Performance parameters

Parameter Mathematical Expression
Accuracy (TN +TP)
(TN+FN+FP+TP)
Precision TP
(TP + FP)
Recall TP
(TP + FN)
F-measure Recall. Precision

"Recall + Precision

Intra-Model Assessment and Inter-Model Assessment
are used to characterise the overall performance. A
variety of resampling techniques, feature selection
algorithms, and classifiers were used in this intra-
model evaluation to see how well the suggested CVD-
prediction model performed. Conversely, the
suggested model's relative efficacy was evaluated
using inter-model assessment in comparison to other
state-of-the-arts. The following sections provide a
comprehensive analysis of the suggested model.

A. Intra-Model Assessment

This study compares and contrasts the performance of
various resampling strategies, feature selection
methods, and base classifiers, including the suggested
MVE ensemble. What this means is that we tested how
well various feature resampling, feature selection, and
classification models works.

In this work performance characterization was
done with respect to the resampling and feature
selection methods. The simulation results obtained are
given as follows:

1. Resampling Methods Assessment

Table 111 presents the performance outputs with the
different resampling methods. To assess whether the
use of resampling methods (i.e., SMOTE resampling
methods) can improve CVD prediction accuracy, we
considered both resampled data as well as the original
dataset. In this manner, four different datasets
including original dataset, SMOTE, SMOTE-BL and
SMOTE-ENN were assessed for their respective
performance. The simulation results reveal that the
original dataset shows the highest accuracy of 95.21%,
precision of 96.03%, recall 94.16% and F-Measure
(%) of 95.10%. On the contrary, the classical SMOTE
resampling method shows the accuracy of 95.77%,
precision 96.66%, recall 95.55% and F-Measure of
96.10%. This result clearly indicates that the use of
SMOTE resampling yields higher accuracy than the
original dataset. SMOTE-BL on the other hand shows
CVD prediction accuracy of 97.94%, precision
96.91%, recall 95.97% and F-measure of 96.43%. The
simulation also inferred that the use of SMOTE-ENN
method achieved accuracy of 99.87%, precision of
99.32%, recall of 96.88% and F-Measure of 98.02%.
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These results state that undeniably, unlike traditional
approaches where the original data are passed to the
classifiers or prediction, the use of resampling
method(s) can yield superior results. The highest
accuracy with the original data was found 95.21%,
while SMOTE-ENN resampled data exhibited an
accuracy of 99.87%, which is almost 4.7% higher than
the traditional (without resampling) method. It shows
that the use of SMOTE-ENN resampling can achieve
the best performance towards targeted CVD prediction
tasks. The relative assessment revealed that SMOTE-
ENN method performs superior over SMOTE and
SMOTE-BL method. It confirms the use of SMOTE-
ENN efficacy towards real-time CVD prediction tasks.

Table Il Feature Resampling Performance

Data Accura Precisi  Recall F-
cy (%) on (%) (%) Measu
re (%)
Origi 95.2 96.0 94, 95.
nal Data 1 3 16 10
SMO 95.7 96.6 95. 96.
TE 7 6 55 10
SMO 97.9 96.9 95. 96.
TE-BL 4 1 97 43
SMO 99.8 99.3 96. 98.
TE-ENN 7 2 88 02
__ 100
& o8
S 96
g 94 ® Original Data
£ 2 SMOTE
S 9% "
A\<:\o\(\\(:\<>\\\<,\o\@Q\o\ SMOTE-BL
&P & = SMOTE-ENN
vsl(z le @?/
»
Parameters

Fig. 1 Performance over the different sampling
techniques

2. Feature Selection Method Assessment

To improve analytics model’s accuracy feature
selection methods have performed superior over the
original dataset. We used PCA, CCRA, and MW-SPT
(Mann Whitney Significant Predictor Test) as feature
selection methods in this reference. In this case,
finding the top feature for VCD prediction was our
primary goal. Based on the findings of the simulation,
it can be inferred that the original data, which did not
undergo processing feature selection, displays an F-
Measure of 95.08%, an accuracy of 95%, a precision
of 95.14%, and a recall of 95.03%. In contrast, models
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that are selected using principal component analysis
(PCA) show recall, accuracy, precision, and F-
Measure values of 96.24%, 96.76%, 95.74%, and
96.24%, respectively. In contrast, the CCRA approach
demonstrated an F-Measure of 96.35%, a recall of
94.97%, a precision of 96.73%, and an accuracy of
96.67% in predicting CVD. The MW-SPT feature
selection approach demonstrated an F-Measure of
99.32% and a CVD-prediction accuracy of 98.31%.

Noticeably, the simulation results indicate that the
use of feature selection methods (i.e., PCA, CCRA and
MW-SPT) can achieve superior results than the
original data-based analytics. Interestingly, amongst
the aforesaid feature selection methods the use of MW-
SPT algorithm exhibits the highest accuracy of

Table IV Feature Selection Method Performance

98.31%, precision of 99.84%, recall 98.81% and F-
Measure of 99.32%. Though, other feature selection
methods exhibit higher (CVD-prediction) accuracy
than the original feature-based model; however,
amongst the all-feature selection methods applied,
MW-SPT exhibited the highest CVD prediction
accuracy (98.31%). The results clearly indicate that the
ability to address ambiguous data elements over
SMOTE makes SMOTE-ENN more effective and
hence yields higher accuracy. SMOTE-ENN applies
ENN as an additional machine learning approach to
retain only those feature instance having high
correlated-ness and significance and thus improved
data quality. Consequently, it strengthens MW-SPT
method that achieves superior performance towards at
hand CVD prediction.

Data Accuracy (%) Precision (%) Recall (%) F-Measure (%)
Original Data 94.99 95.14 95.03 95.08
PCA 95.23 96.76 95.74 96.24
CCRA 96.67 96.73 95.97 96.35
MW-SPT 98.31 99.84 98.81 99.32
100 94.48% and the DT method has an accuracy of 95.01%
99 when it comes to CVD predictions.
T 98
% 97 On the other hand, the SVM algorithms variants
e gg exhibits the highest accuracy of 94.44%, 95.34% and
E o mOrigina 96.01% by SVM-Lin, SVM-Poly and SVM-RBF,
€ o3 respectively. The logarithmic regression method
& 92 ®PCA (LOGR) exhibited the CVD-prediction accuracy of
gé CCRA  96.66%, while ANN performed the prediction
< < < < = MW-SP accuracy of 96.50%. The LR method exhibited CVD-
dﬁ\" RO &Q\" prediction accuracy of 95.06%, while Bagging k-NN
R (}é}° Q\ég’ & and Bagging-NB shows the prediction accuracy of
N N ((/@e 94.88% and 95.21%, correspondingly. AdaBoost on
the other hand shows CVD-prediction accuracy of
Parameters

Fig. 2 Performance over the different feature selection
techniques

Classification Model Assessment

Here, we compared the performance of various
machine learning classifiers both as independent tools
and as part of an MVE ensemble learning framework.
The overall effort is made to assess whether the
standalone method can perform better or the use of
MVE-based HEL model can yield superior efficacy
towards  CVD-prediction.  Furthermore,  this
quantification of performance can aid in comparing
various machine learning methods for certain CVD-
prediction jobs. According to the simulation results,
the MNB machine learning model has an accuracy of
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95.95%. the other variants of ensemble learning
methods including RF, ETC and the proposed MVE-
HEL model exhibited the CVD-prediction accuracy of
98.81%, 99.70% and 99.93%, correspondingly. In
comparison to other independent machine learning
techniques, the suggested MVE-HEL method
performs better in the aggregate. By comparison to the
other machine learning methods, the suggested MVE-
HEL method achieved better CVD-prediction
accuracy (99.93%), precision (99.69%), recall
(99.53%), and F-Measure (99.60%). The results show
that the suggested MVE-HEL approach is reliable for
CVD prediction. With an F-Measure of 0.996, the
suggested CVD-prediction model is viable and
scalable for use in practical CAD applications. The
suggested CVD-prediction approach is robust towards
real-world CAD applications, as shown by the other
parameters as well.
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Fig. 3 Performance over the different machine learning classifiers
Table V Classification Method Performance
Machine Accuracy (%) Precision (%) Recall (%) F-Measure
Learning Model (%)
MNB 94.48 94.92 95.35 95.13
DT 95.01 94.99 95.82 95.40
SVM-Lin 94.44 95.27 95.99 95.62
SVM-Poly 95.34 95.33 96.21 95.76
SVM-RBF 96.01 95.85 95.95 95.90
LOGR 96.66 96.02 96.85 96.43
ANN 96.50 96.37 96.96 96.66
LR 95.06 96.99 96.22 96.60
Bagging k-NN 94.88 97.01 97.83 97.41
Bagging-NB 95.21 96.21 97.04 96.62
AdaBoost 95.95 97.38 98.30 97.98
RF 98.81 99.20 99.18 99.18
ETC 99.70 99.78 99.38 99.57
MVE 99.93 99.69 99.53 99.60

B. Inter-Model Assessment

We conducted an inter-model evaluation to see how

suggested analytics (CAD) solution was pitted against

well the proposed CVD-prediction model performed method.
in comparison to the other state-of-the-arts. The

Table VI Relative performance comparison

the other current CVD-prediction models in this

Ref. Year Dataset Classifier Methodology Accuracy
(%)

NB, C4.5, MLP, PART,

[61] 2019 Cleveland Bagging, Boosting, Bagging and Boosting ensemble 85.48
Majority Voting, Stacking

Feature normalization and

[62] 2020 Cleveland LR, SVM, k-NN dimensional reduction using PCA 87.00
LR, DT and Gaussian NB  Singular Value Deposition (SVD)-

[63] 2020 Cleveland (GNB) based dimensionality reduction 82.75

[64] 2022 Cleveland SVM, NB, ConvSGLV CNN feature extraction and MVE 93.00
and ensemble learning voting for prediction '
LR, k-NN, DT, XGB, GridSearchCV hyper-parameter

[65] 2023 Cleveland SVM, RF tuning 87.91
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[66]

[13]

[10]
[67]
[68]

Proposed

2023 Cleveland

LR, k-NN, NB, RF, GB,

Soft voting ensemble 93.44

AB, SVE
LR, NB, k-NN, SVM, DT, .
2023 Cleveland RF. MLP Feature reduction 90.00
2023 Kaggle SVM, k-NN, RF, LOGR IQR, CCRA 99.00
2023 Kaggle DT, PCA PCA feature reduction 98.00
Framingham SVM, MLP, RF Ensemble 97.13
SVM-Lin, SVM-Poly, Word2Vec embedding, SMOTE-
SVM-RBF, DT, MNB, k- ENN resampling, Mann-Whitney
2023 Cleveland NN, LOGR, LR, Bagging, Significant Predictor Test, Min-Max 99.93

Boosting, AdaBoost, RF,

ETC, MVE

normalization, MVE-HEL

ensemble.

Observing the results (Table V1), it can be found that
though a number of literatures have applied machine
learning methods towards CVD prediction; however,
the state-of-arts methods show poor accuracy than the
proposed intrinsically modified or improved HEL-
MVE based analytics solution for CVD prediction.
Noticeably, to make justifiable and generalizable
performance comparison same dataset (i.e.,
Cleveland) was taken into consideration. Moreover,
the recent works are used to perform relative
performance analysis. In [61], the different machine
learning methods including NB, C4.5, MLP, PART,
Bagging, Boosting, Majority Voting, Stacking were
applied to perform CVD prediction. The authors
applied ensemble learning approach to improve CVD-
prediction accuracy, where it exhibited the highest
prediction accuracy of 85.48%. On the other hand, the
authors [62] applied LR, SVM, k-NN machine
learning model, where the input features were
normalized followed by PCA feature reduction. It
achieved the CVD-prediction accuracy of 87%, which
is almost 12.7% lower than the proposed CVD-
prediction model. With a maximum accuracy of
82.75%—nearly 12% lower than the suggested CVD-
prediction model—the authors of [63] used LR, DT,
and the Gaussian NB (GNB) approach in combination
with a dimensionality reduction method based on
Singular Value Deposition (SVD).

The authors [64] applied the different machine
learning model including SVM, NB, ConvSGLV and
ensemble learning where CNN (convolutional neural
network) was applied to perform feature extraction
where the extracted features were processed for MVE
consensus-based prediction towards CVD prediction.
The highest prediction accuracy obtained was 93%.
The authors [65] applied LR, k-NN, DT, XGB, SVM,
RF machine learning models with GridSearchCV
hyper-parameter tuning to perform heart disease
prediction. The highest prediction accuracy obtained
was 87.91%. On the other hand, in [66] applied the
different machine learning methods including LR, k-
NN, NB, RF, GB, AB, SVE algorithms. The authors
applied soft-voting ensemble to perform CVD
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prediction, where the highest CVD-prediction results
exhibited the prediction accuracy of 93.44%.
Interestingy, unlike aforesaid state-of-arts, we
performed both data optimization or feature
optimization as well as computational enhancement to
achieve higher prediction accuracy. More specifically,
we performed Word2Vec embedding, SMOTE-ENN
resampling, Mann-Whitney Significant Predictor Test,
Min-Max normalization, MVE-HEL ensemble, which
was designed by applying SVM-Lin, SVM-Poly,
SVM-RBF, DT, MNB, k-NN, LOGR, LR, Bagging,
Boosting, AdaBoost, RF, ETC as base classifier to
constitute MVE-HEL to perform eventual prediction.
Outperforming all existing state-of-the-art models, our
suggested model demonstrated an unprecedented level
of accuracy at 99.93%. It proves that the suggested
model is stable enough for real-time CVD prediction.
The authors of [13] used a variety of ML techniques,
suchas LR, NB, k-NN, SVM, DT, RF, and MLP. Their
thorough evaluation showed that RF ensembles could
achieve a maximum CVD-prediction accuracy of
90%; however, this was still lower than the suggested
model's prediction accuracy of 99.7 percent.

Their highest F-Measure performance obtained
was 90.91%, which still falls below the proposed
model’s output (F-Measure 99.60%). Similarly, in
[10], the authors applied SVM, k-NN, LOGR and RF
algorithms to perform CVD prediction over Kaggle
dataset. The authors claimed that the use of RF
ensemble learning model achieves the highest
prediction accuracy of 99%. To improve feature the
authors applied inter-quartile range (IQR) method,
correlation and significant assessment altogether. With
PCA feature selection, the authors [67] claimed to
have achieved prediction accuracy of 98%. Yet, it
failed in addressing numerous challenges including
data-imbalance, over-fitting and convergence. RF
ensemble was applied in [68], where it exhibited an
accuracy of almost 98%. Despite such efforts, the
relative performance characterization confirms that the
proposed approach exhibits superior over the state-of-
arts and hence can serve a potential, reliable and
scalable CAD solution for CVD prediction.
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CONCLUSION

In sync with the high pace rising cases of
cardiovascular diseases and resulting mortality rate,
academia-industries have been making efforts to
achieve data mining-based automated heart disease
prediction solution. To achieve it, the use of the
different bio-physiological parameters including age,
gender, cholesterol, insulin, lipids profile, stroke
history etc. information has been applied extensively
in the past. However, the lack of sufficient and suitable
datasets, likelihood of class-imbalance and other
computational complexities including local minima
and convergence limit the reliability of the at hand
solution. Additionally, the majority of the existing
methods are limited due to low accuracy that confines
its scalability towards real-time CAD solutions or
CAD prediction solutions. Considering it as
motivation this research focused on designing a robust
intrinsically modified bio-physiological parameters
driven heterogenous ensemble learning based heart
disease (say, CVD) prediction model. As the name
indicates the proposed CAD model emphasized on
improving both feature as well as computational
aspects so as to enable scalable heart disease prediction

model. In this work, at first benchwork dataset
encompassing age, gender, cholesterol, protein
profiles, BMI, stoke profile or history, ECG

information etc. to design a robust heart disease
prediction. Following data collection, outlier analysis
was performed on a set of thirteen characteristics.
Word2Vec embedding was then applied to the input
data in order to improve the features. This method
converted the aforementioned features into an
equivalent embedded matrix. Next, the embedded
matrix was subjected to resampling processing
utilising the SMOTE, SMOTE-BL, and SMOTE-ENN
algorithms, all of which contributed to reducing the
likelihood of class imbalance. After resampling, the
features were passed via PCA, CCRA, and a
significant predictor test based on the Wilcoxon Rank
Sum Test in order to pick the features. The chosen
feature was subsequently subjected to Min-Max
normalisation, which aimed to reduce the chances of
over-fitting and convergence by mapping input
features between 0 and 1. Lastly, instead of using a
single machine classifier as a basis for learning and
prediction like in the past, the suggested model uses a
heterogeneous ensemble learning approach. This
includes base classifiers such as SVM, DT, NB,
LOGR, LR, ANN-LM, RF, and ETC. In order to solve
the two-class classification problem of consensus-
based CVD prediction, the suggested model used the
maximum voting ensemble (MVE). It assigned a value
of 0 for "normal person™ and a value of 1 for "CVD
probable person” for every case.

The depth performance analysis revealed that the
proposed model exhibited the highest performance in
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conjunction with SMOTE-ENN resampling, WRST
significant predictor test-based feature selection, Min-
Max normalization and the proposed heterogenous
MVE ensemble model. The  performance
characterisation of the proposed model for predicting
heart disease shows that it is robust for real-world
CAD or CDS applications, with a prediction accuracy
of 99.93%, precision of 99.69%, recall of 99.53%, and
F-Measure of 99.60%—all higher than the other state-
of-the-art models.
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