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Abstract- Cardiovascular disease and other non-communicable illnesses have been on the rise in recent years. 

Despite innovations in computer-aided diagnosis (CAD) and clinical decision systems, unlike vision-based e-

healthcare practices, heart-disease prediction requires learning over the different bio-physiological parameters 

related to the heart’s health. The limitations of the datasets including class-imbalance, redundant computation and 

the threat of local minima and convergence, and resulting low-accuracy confine real-time significance of the at 

hand cardiovascular disease prediction (CDP) systems. In this paper a robust intrinsically modified bio-

physiological parameters driven heterogenous ensemble learning based CVD prediction model is proposed. We 

focused on both feature optimization as well as computational efficacy to achieve a robust CAD solution towards 

CVD diagnosis. Our proposed method applies age, gender, cholesterol, protein profiles, body mass index 

information, stoke profile or history, electro-cardiogram information etc. from the benchmark dataset to enable a 

scalable CVD prediction model. To ensure semantic feature driven learning, the aforesaid features were processed 

for Word2Vec embedding, which was followed by resampling by using synthetic minority over-sampling 

technique (SMOTE) and its variants, SMOTE-Boundary Line and SMOTE-ENN which helped to alleviate any 

probability of class-imbalance. Subsequently, Principal Component Analysis (PCA), Cross-Correlation Analysis 

(CCRA) and Significant Predictor Test (SPT) methods were applied distinctly to retain the optimal feature sets. 

The selected feature instances were normalized by applying Min-max Scalar Normalization method. The 

normalized features were taught using a mixed-method ensemble learning strategy that comprised Base Classifier 

(RF), Decision Tree (DT), Support Vector Machine (SVM) variations, Naïve Bayes (NB), Logistic Regression 

(LOGR), Linear Regression (LR), Random Forest (RF), and Extra Tree Classifier (ETC) as foundational 

classifiers. It used the maximum voting ensemble (MVE) method to determine if each individual was CDV-

Positive or CVD-Negative. The results show that the proposed method is resilient for application in real-world 

CDS scenarios, as it surpasses all prior state-of-the-art approaches in terms of CVD prediction accuracy  (99.93%), 

precision (99.69%), recall (99.53%), and F-Measure (99.60%). 

Keywords— Heart Disease Prediction, Data Mining, Machine Learning, SMOTE-ENN, Significant Predictor 

Test, Heterogenous Ensemble Learning, Computer Aided Diagnosis. 

I. INTRODUCTION 

 Software innovations, decentralised 

computing, and affordable hardware have all seen 

meteoric rises in the past few years, opening up a 

world of possibilities for new applications that might 

help enterprises make better, more timely decisions. 

Amongst the major demands, healthcare sector has 

always remained the dominant due to high-pace rising 

global population and allied stress on at hand manual 

clinical decisions. The mounting stress on human 

resource-based clinical decisions has triggered 

academia-industries to achieve more effective and 

scalable computer aided diagnosis (CAD) and clinical 

decision systems (CDS) so as to cope up global 

demands [1]. Despite aforesaid motivations, 

guaranteeing optimality of an e-healthcare tool 

remains a challenge, especially due to symptomatic 

diversity, complex symptoms and limited annotated 

dataset [2]. In fact, medical diagnosis turns out to be 

decisive yet challenging task due to aforesaid 

challenge that becomes even more complex over data 

diversity and hence serving automated diagnosis 

becomes more trivial [1]. On the contrary, the low 

availability of physicians and inability to assess 

electronic details make clinical decisions difficult. 

This as a result requires automated CAD solution is 

inevitable [1]. Undeniably, the last few years have 

witnessed computer-driven information-based CDS 

towards cost-effective and timely diagnosis decisions 

and allied medical care. In conjunction with these 

motivations, the majority of hospitals these days use 

CDSs to manage patient, diagnosis details and allied 

information. Unfortunately, aforesaid techniques 

severely form humongous volume of data, which are 

rarely employed to inform CDS purposes [3]. This 
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information facilitates a large volume of esoteric 

information which have not been exploited 

significantly and has been mostly disregarded [4]. On 

the other hand, the majority of the at hand CDS 

systems or CAD systems have been applied to exploit 

visual details (say, vision computing) to perform 

diagnosis details for instance, brain tumor detection, 

cancer detection, diabetic retinopathy detection, etc. 

However, there exists numerous other healthcare 

challenges which demands multivariate feature’s 

analysis to perform healthcare diagnosis such as 

cardiovascular disease (CVD) detection [5][6].  

 The matter of fact is that the 

noncommunicable diseases (NCDs) and resulting 

mortality rate is rising with an alarming pace. 

According to a recent study, noncommunicable 

diseases (NCDs) account for about 71% of all fatalities 

worldwide, with a shockingly high percentage (over 

80%) in poor and middle income nations [7].  

Contemporarily, cardiovascular disorders (CVDs) are 

amongst the dominant illnesses in the world [8]. A 

recent study by World Health Organization (WHO, 

2019) revealed that heart disease has taken more than 

17.9 million people, causing almost 32% of the global 

death [9]. A number of organizations functional in 

medical domain have applied data mining and pattern 

analysis models extensively to perform CVD 

prediction. Yet, ensuring optimal set of physio-

biological patterns and symptoms remains challenge 

for accurate clinical decisions. Nearly 45 percent of all 

fatalities occur from cardiovascular diseases (CVDs), 

which include hypertension, heart disease, and stroke, 

according to a World Health Organization research.  

Conversely, by 2030, low and middle-income nations 

are projected to have a prevalence of NCDs of about 

50% [8][10].  

Literatures also indicate that the annual mortality rate 

due to the CVDs can reach up to from 17.5 million in 

2012 to 22.2 million in 2030 [9]. It alarms industry to 

design robust and accurate CAD solution for scalable 

heart disease detection.  

 Noticeably, heart disease represents an 

extensively used term signifying the varied conditions 

impacting arteries, blood vessels and other organs, 

resulting malfunction. Human respiratory systems 

around the globe have been impacted by the SARS-

CoV-2 virus, according to recent studies.  

As a result, people's lungs release insufficient oxygen, 

which can negatively affect heart health and 

potentially lead to heart failure [11][12].  

However, heart disease is typically the outcome of 

atheromatous plaques, abnormal lipid metabolism, and 

the buildup of lipids and other liquids within the 

coronary arteries. This can lead to a constriction of 

blood vessels, which in turn can cause myocardial 

ischemia, oxygen shortage, or tissue death. Chest pain, 

chest tightness, myocardial infarction, and other 

symptoms are common outcomes of these occurrences 

[13].  

The aforesaid patterns as cumulative phenomenon has 

been causing 12 million deaths globally [14]. The 

complexity involved in heart disease diagnosis and 

remedial have been resulting severe death and hence 

high mortality rate [15]. On the other hand, considering 

a smaller fraction of human ecosystem the medical 

(diagnosis and remedial) expenses involved are 

expected to rise 41% in the US, mounting almost 

$177.5 billion by 2040 [5]. Unfortunately, affording 

such huge cost can’t be easier for the low-income 

countries [15] and allied households and therefore there 

is a need to design more efficient and robust CAD 

solution for heart disease detection and diagnosis 

[16][17].  

 Unlike vision-based CAD solutions, heart 

disease detection and prediction model require 

learning a large number of bio-physiological patterns 

pertaining to the functional aspects of the heart 

mechanism [18]. In this reference, numerous efforts 

have been made by deploying machine learning 

methods over the aforesaid bio-physiological 

parameters to perform heart disease prediction or 

cardiac disorder analysis [18]. However, merely 

applying over redundant data can’t guarantee 

reliability of the solution [16][18]. Despite the fact that 

clinically assessed and specialized bio-physiological 

parameter’s analysis can enable data mining-based 

CVD prediction; yet, monitoring the most recent 

patterns and its relevance towards human heart 

functionality is decisive. In addition, learning a 

machine learning model over the suitable feature set is 

equally important. It infers that a machine learning-

based model can be effective only with the optimal set 

of data, intrinsically optimal features and improved 

learning environment. The depth assessment has 

revealed that there exists certain set of bio-

physiological parameters including gender, insulin, 

cholesterol, lips profiles, body mass index (BMI), 

stroke details, fasting blood sugar, electro-cardiogram 

patterns (ECG) etc. which can be used as features for 

multivariate learning. It can achieve heart disease of 

CVD disease prediction; yet, as stated earlier it 

requires data optimality and computational efficacy. 

Despite several previous attempts, most of the state-of-

the-art methods (see Section II) are either too 

inaccurate or too unreliable to reliably forecast the 

occurrence of heart disease. Machine learning models 

have been fed sparsely characterized input data in the 

majority of previously published methods.  

Interestingly, in almost all datasets available and used 

the number of data-elements (say, instances) 
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pertaining to the normal heart functions are more in 

comparison to the heart malfunction. It signifies the 

presence of class-imbalance and hence the likelihood 

of skewed learning can’t be ignored. Machine learning 

models trained on biased data are more likely to 

produce inaccurate predictions due to false positives 

and negatives. Furthermore, there are some literatures 

suggesting that training a machine learning model over 

selected high-significant features can improve 

accuracy [10]. However, there has been little effort to 

evaluate the effectiveness of various feature selection 

models in predicting heart disease. 

 It broadens the horizon for researchers to design a 

robust feature model which could address both class-

imbalance as well as feature optimality to tune learning 

models for accurate heart disease prediction. The depth 

assessment of literatures indicate that the major state-

of-arts have applied machine learning algorithm as 

standalone classifier, where many machine learning 

models have demonstrated diverse levels of 

performance on the same dataset. It could be 

challenging to generalize a solution in this situation. 

An ensemble learning model could be a game-changer 

in resolving this issue [10].  

Though, in the past a few researches have applied 

ensemble learning methods like RF, AdaBoost, 

XGBoost methods which are homogenous in nature. 

For instance, RF ensemble applies bootstrapped 

Decision Tree (DT) algorithm to constitute voting-

based ensemble classification. Heterogeneous 

ensemble approaches, which include basic classifiers 

from several machine learning algorithms (e.g., 

regression, neuro-computing, pattern learning, 

decision tree, etc.), can outperform homogenous 

ensemble methods in terms of accuracy.  

Considering it as motivation, in this paper the focus is 

made on improving both feature as well as 

computational aspects. In other words, the proposed 

model intends to exploit improved features from the 

input benchmark bio-physiological inputs, while it 

intends to use heterogenous ensemble model to achieve 

improved and reliable heart attack prediction solution.  

 In light of the aforementioned knowledge 

gaps and related areas of study, this work proposes a 

new model for heart disease prediction that makes use 

of heterogeneous ensemble learning and incorporates 

intrinsically changed physiological features. The many 

benchmark datasets that include bio-physiological 

inputs relevant to heart disease were especially taken 

into account in this study.  

Unlike traditional approaches where the authors have 

directly passed inputs to the machine learning 

classifier(s), to exploit latent or semantically enriched 

features we at first transformed input datasets into the 

semantic embedded feature vector by applying 

Word2Vec method. Here, the key motive behind the 

use of Word2Vec embedding method was to improve 

intrinsic features which could enhance overall learning 

efficacy. So, to prevent class imbalance, the suggested 

model uses SMOTE, SMOTE-BL, and SMOTE-ENN, 

which provide an ideal distribution of samples without 

resorting to hotspot generation.  

The resampled data is then processed for feature 

selection by applying three different feature selection 

methods, including PCA, CCRA and Mann Whitney 

SPT methods. The primary goal in this case was to find 

the optimal combination of features and 

methodologies for accurate prediction of heart disease 

using the aforementioned repeated resampling and 

feature selection techniques. After we picked the 

perfect set of features, we mapped each data instance 

in the range of 0 to 1 using the Min-Max scaler 

normalisation method, which prevented over-fitting 

and convergence.  

In conclusion, the suggested heterogeneous ensemble 

learning model was trained using the normalised data. 

Support vector machine (SVM) variations, decision 

tree (DT), Naïve Bayes (NB), Logistic Regression 

(LOGR), Linear Regression (LR), Random Forest 

(RF), Artificial Neural Network Levenberg Marquardt 

(ANN-LM), and Extra Tree Classifier (ETC) were all 

part of this model's foundation classifiers. In order to 

arrive at a final prediction about cardiovascular illness, 

the proposed model utilized the aforementioned 

machine learning (base) classifiers to carry out 

maximum voting ensemble (MVE).  

In this case, generalisable performance is achieved 

through the usage of MVE ensemble, which 

guarantees higher reliability compared to the 

standalone classifier(s). The suggested model 

performs better than existing state-of-the-art models in 

predicting cardiac illness, with scores of 99.93% for 

accuracy, 99.69% for precision, 99.53% for recall, and 

99.60% for F-Measure, proving its suitability for real-

world CAD applications. 

What follows is a breakdown of the remaining sections 

of this manuscript. In Section II, we cover the relevant 

literature; in Section III, we formulate the problems. 

The study questions are presented in Section IV, 

followed by the suggested methodology and its 

execution. Sections V and VI present the findings and 

conclusions from the simulations, correspondingly. At 

the end of the manuscript, you will find the references 

that were used.   

II. RELATED WORK 

 Heart disease (CVD) prediction model 

proposed by Parija et al. [19] is based on machine 

learning. In a similar vein, Shadman et al. [10] used a 

variety of ML models for predicting cardiac problems, 
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including as ANNs, Simple Logistics (SL), RF, SVM, 

and NB. The results showed that a heart disease 

prediction accuracy of 97.53% was achieved by the 

SVM classifier using 10-fold cross-validation.  

Noticeably, to perform aforesaid heart disease 

prediction, the authors designed sensors for collecting 

the parameters like blood-pressure, temperature, 

humidity, and heartbeat. The dataset from the 

repository of University College London (UCI) was 

used by Durairaj et al. [20] to predict cardiac illness 

using artificial neural networks (ANNs) based on 

multilayer perceptrons (MLPs). With an accuracy of 

96.30 percent, their model was the most accurate. To 

forecast the occurrence of coronary heart disease using 

UCL clinical datasets, Hisham et al. [21] implemented 

a number of machine learning models, including as 

LR, SVM, K-Nearest Neighbor (KNN), and MLP 

ANN. In order to enhance the accuracy of heart disease 

prediction, the authors used a pre-processing method 

based on K-Means clustering, a Genetic Algorithm 

(GA), and recursive feature selection. They also 

employed the Synthetic Minority Oversampling 

Technique (SMOTE) algorithm.  

Yet, the highest accuracy obtained was 86.6% [21]. 

Nancy et al. [22] on the other hand found that 

ANOVA-based feature selection could achieve higher 

accuracy with RF classifier for CVD prediction. In 

order to forecast the occurrence of heart disease using 

the UCI heart disease dataset, the authors [23] 

employed various deep learning and machine learning 

algorithms.  

To enhance prediction accuracy, they applied Isolation 

Forest algorithm to drop insignificant features. The 

depth assessment revealed the heart disease prediction 

accuracy of 94.2% by using deep learning method. In 

[24], RF classifier was applied to perform CVD 

prediction where it exhibited prediction accuracy of 

98%. Applying the RF classifier to the Kaggle heart 

disease dataset, the authors [25] achieved a maximum 

accuracy of 86.9% in detecting CVD in a patient. 

Using RF ensemble learning, Yongyong et al. [26] 

were able to predict CVDs. The risk of cardiovascular 

disease (CVD) was estimated in this study using the 

following variables: age, BMI, TG, and DBP.  

 The authors [27] designed an intelligent heart 

disease prediction system (IHDPS) by applying 

machine learning-based models like NB, ANN and DT 

algorithms. The simulation revealed that NB algorithm 

exhibited accuracy of 86.12%, while ANN and DT 

exhibited accuracy of 85.68% and 80.40%, 

respectively. In [28] applied k-NN, NB, DT algorithms 

where it exhibited heart disease prediction accuracy of 

45.67%, 52.33% and 50.00%, correspondingly. In 

their work on cardiac disease prediction, the authors 

[29] utilized J48 DT in conjunction with bagging 

algorithms. In their study, the authors found that using 

a Gain ratio decision method in conjunction with 

voting discretization improved the accuracy, 

sensitivity, and overall performance by 72.01% to 

77.90% and 78.90% to 84.10% by J48 DT and 

bagging, respectively. The several supervised machine 

learning techniques used to forecast the occurrence of 

cardiovascular disease are detailed in [30], among 

them are NB, k-NN, and DT. The usage of an ANN 

algorithm was shown to obtain a prediction accuracy 

of 100% in a simulation using 10-fold cross validation. 

However, a CVD prediction accuracy of 99.20% was 

achieved by combining DT and GA feature selection. 

One study used artificial neural networks (ANN) to 

forecast the occurrence of cardiovascular disease 

based on thirteen bio-physiological variables, such as 

gender, blood pressure, cholesterol, obesity, and 

smoking habits [31]. Similarly, a combined method 

using ANN and GA for CVD classification was 

suggested in [32], and it achieved an impressive 89% 

accuracy. Likewise, in [33] DT, Classification and 

Regression Tree (CART) and Iterative Dichotomized 

3 (ID3) were utilized. The best CVD prediction 

accuracy of 83.40% was achieved using the CART 

approach using 10-fold cross-validation. The 

combined Information Gain and Adaptive Neuro-

Fuzzy Inference System (ANFIS) models 

demonstrated a 98.24% accuracy rate in the prediction 

of CVD in reference [34]. In a similar vein, with a total 

of eleven attributes including gender, age, dummy 

values, heart rate, chest pain, cholesterol, blood sugar, 

blood pressure, cardiogram, alcohol consumption, and 

smoking behavior as input features, the authors of [35] 

utilized REPTREE, NB, Bayes Net, J48, and CART 

for the purpose of cardiovascular disease prediction. I 

found it interesting that it showed the CVD prediction 

accuracy of J48 (99%), REPTREE (99.07%), CART 

(99.07%), Bayes Net (98.15%), and NB (97.22%).  

Similarly, in [36] 13 features where NB exhibited 

CVD prediction accuracy of 85.03%, while DT 

exhibited an accuracy of 84.01%. in [37], the authors 

applied k-NN, DT, Sequential Minimal Optimization 

(SMO), J48 and NB classifier that in conjunction with 

10-folds cross-validation exhibited CVD prediction 

accuracy of 82.77%, 82.77%, 83.732% and 81.81%, 

respectively. The machine learning algorithms 

including ANN, DT and NB were applied in [38] 

where the last (i.e., NB) exhibited the highest CVD 

prediction accuracy of 82.91%. In the same manner, 

the authors [39] applied machine learning algorithms 

including C5.0 DT, k-NN, SVM and ANN, where DT 

exhibited the prediction accuracy of 93.2%, while 

ANN, SVM and k-NN exhibited CVD prediction 

accuracy of 80.20%, 86.05% and 88.37%, 

correspondingly. To forecast CVD, the authors of [40] 

developed a hybrid approach that uses C4.5, MLP, 

MLR, and FURIA, an algorithm for unpredictable rule 

induction. When predicting CVD, the scientists used 
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K-Mean clustering techniques in conjunction with 

particle swarm optimization (PSO) and correlation-

based feature subset (CFS) (feature selection).  

Training their hybrid model over a total of 26 features, 

MLR was found exhibiting the highest CVD 

prediction accuracy of 88.40%. In [41], NB, DT, k-

NN, Memorial network, and ID3 algorithm were 

applied to perform CVD prediction. Regardless of the 

computational drain on input features such as age, 

gender, cholesterol, and blood pressure, the best 

prediction accuracy was 80.60%.  

In [42], multiple kernel learning (MKL) with ANFIS 

to perform CVD prediction. They could achieve the 

highest CVD prediction specificity and sensitivity of 

98% and 99%, correspondingly on KEGG metabolic 

reaction network dataset. In [43] MLP-NN with 

backpropagation (BP) algorithm was applied to 

perform heart disease prediction. Optimisation of GA 

using support vector machines was suggested in [44]. 

The authors discovered that the extracted feature 

produced an accuracy of 88.34% and SVM an 

accuracy of 83.70%.  

In [45] DT and ANN models were applied, where 10-

fold validation with pruned data exhibited the CVD 

prediction accuracy of 78.14%, while each standalone 

method exhibited the accuracy of 77.40% and 76.66% 

by using ANN and C4.5, correspondingly. In [46], the 

authors applied ejection fraction and serum creatinine 

as the vital features to perform CVD prediction. In 

[47], GA and PSO were applied altogether to perform 

feature selection that in conjunction with RF 

performed CVD prediction. To execute CVD 

prediction, the writers [48] utilized a variety of 

machine learning techniques, including as k-NN, 

AdaBoost (AB), DT, and RF. 

 The simulation results confirmed that the applied 

machine learning models exhibited CVD prediction 

accuracy of k-NN, AB, DT, and RF algorithms which 

achieved an accuracy of 100%, 100%, 96.10% and 

99.03%, correspondingly. With Cleveland dataset, k-

NN and RF exhibited accuracy of 97.83% and 

93.437%, correspondingly.  

 In their study, Narain et al. [49] used quantum 

ANN in conjunction with the Framingham risk score 

(FRS) to predict CVD. The results showed an 

impressive accuracy rate of 98.57%. The Cleveland 

heart disease dataset, which contains 17 features, was 

utilized by Shah et al. [50] for the purpose of CVD 

prediction. The authors used k-NN, NB, DT, and RF 

as s-learner algorithms; k-NN achieved a prediction 

accuracy of 90.8%. 

 Drod et al. [51] performed the significant risk variable 

selection to improve CVD prediction. More 

specifically, they applied metabolic-related fatty liver 

disease (MAFLD) systems with the blood biochemical 

analysis and subclinical atherosclerosis assessment to 

perform CVD prediction. Technically, they applied 

LR classifier, univariate feature ranking, with PCA to 

perform feature selection followed by classification. 

The authors applied hypercholesterolemia, plaque 

scores, and duration of diabetes as the parameters to 

perform CVD prediction, where the highest accuracy 

was obtained as 85.11%. Alotalibi [52] applied the 

Cleveland Clinic Foundation dataset to perform 

machine learning-based CVD prediction. More 

specially, the authors applied DT, LR, RF, NB, and 

SVM, where the 10-fold cross-validation resulted the 

highest of 93.19% CVD prediction accuracy by using 

DT, which was followed by SVM (92.30%). Hasan 

and Bao [53] focused on identifying the optimal 

feature selection method towards CVD prediction. 

Along with RF, SVM, k-NN, NB, and XGBoost, it 

used a Boolean process-based common "True" 

condition to apply various feature selection methods, 

such as filtering, wrapping, and embedding. Among 

the three methods tested here, XGBoost classifier with 

wrapper-based feature selection had the best CVD 

prediction accuracy (73.74%), while SVC came in 

second with 73.18% and ANN third with 73.20%.The 

Hybrid Random Forest with Linear Model (HRFLM) 

was developed by Senthilkumar et al. [54] to ensure 

accurate CVD prediction using thirteen distinct 

features.  

The highest accuracy obtained was 88.7%. 

Ramalingam et al. [55] designed an alternating DT 

model with PCA, where the later enabled suitable 

feature selection. Despite SVM used with Ant Colony 

Optimization (ACO) feature selection, the allied 

complexity can’t be ruled out. Rajdhan et al. [56] 

stated that the RF algorithm can yield accuracy of 

90.16 % for CVD prediction over the UCI Cleveland 

heart disease dataset. On the contrary, LR, NB, and DT 

exhibited accuracy of 85.25%, 85.25%, and 81.97%, 

correspondingly. Khourdifi et al. [57] too applied RF, 

k-NN, and ANN to perform heart disease prediction. 

They inferred that the use of hybrid approach with 

PSO and ACO-based feature selection can achieve 

better prediction accuracy. Applying aforesaid feature 

selection methods, they achieved prediction accuracy 

of 99.65% (PSO), and 99.6% (ACO) by using RF 

algorithm. While Jagtap et al. [58] used SVM, LR, and 

NB algorithms, their scalability is limited by the 

highest stated accuracy of 64.4%. To predict CVD, 

Haq et al. [59] employed a combination of ANN, k-

NN, SVM, LR, DT, RF, and NB, as well as Lasso 

feature selection. At its peak, SVM achieved 88% 

accuracy, LR 87%, and ANN 86%. For cardiovascular 

disease prediction, Jindal et al. [60] used k-NN, LR, 

and RF. They achieved an accuracy of 87.5% using a 

wide range of features, including age, cholesterol, 

fasting sugar, chest discomfort, sex, and blood 

pressure.  
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III.  PROBLEM FORMULATION 

 This is the matter of fact that the cases of 

cardiovascular diseases (CVD) are on rise globally 

where the alarming morality rate has been triggering 

both academia as well as industry to achieve more 

efficient diagnosis measure for earlier heart disease 

prediction solution. On the other hand, coping with the 

exponentially rising global population and resulting 

pressure on at hand healthcare infrastructures too have 

forced industries and government to achieve and apply 

varied computer-aided diagnosis solutions to make 

earlier diagnosis decisions and allied medication. 

Though, in the past varied vision-based computing 

models are developed towards e-healthcare purposes; 

however, heart disease prediction turns out to be more 

challenging and trivial due to the lack of direct 

symptoms. Moreover, the dependency or associations 

amongst the different indirect symptoms including 

biological parameters and the physiological patterns 

make heart disease prediction more challenging. 

Though, training over the different (aforesaid) bio-

physiological parameters can lead a better and reliable 

heart disease prediction solution; yet, most of the state-

of-arts data mining-based approaches are limited in 

certain terms such as low-accuracy, lack of the ability 

to address class-imbalance, vulnerability towards local 

minima and convergence etc. Consequently, it makes 

major at hand solutions confined towards real-world 

CVD prediction solution. To enable a robust CAD 

solution towards CVD prediction, guaranteeing both 

feature optimality as well as computational efficacy is 

inevitable. Realizing the fact that the majority of the at 

hand CVD prediction models (including both machine 

learning as well as deep networks) have applied local 

features from the input bio-physiological parameters 

to train a model for prediction. However, such methods 

often lack in the ability to address long-term 

dependency (say, training contextual details) over the 

consecutive bio-physiological patterns. Such 

inabilities can be better addressed by applying 

semantic features or the latent features obtained over 

the sequential bio-physiological test patterns. 

Considering it as motivation, in this work Word2Vec 

word-embedding method was applied over the 

different bio-physiological features encompassing age, 

gender, cholesterol, lipid profile, stroke history, ECG 

profile etc. This approach converts input sequential 

patterns into the equivalent embedded (numeric) 

matrix. It not only addresses the problem of long-term 

dependency but also achieves computational efficacy. 

In addition to the aforesaid issue, the matter that the 

number of instances pertaining to the normal person is 

relatively higher than the heart disease patients. It 

gives rise to the serious issue of class-imbalance and 

hence training a model over such skewed data can 

impact training efficiency and hence can show false 

positive or negative performance. To address this 

problem performing resampling can be of great 

significance. In this reference unlike under-sampling 

and over-sampling methods, which can give rise to the 

iterative hotspot issue, the improve methods like 

SMOTE or SMOTE-ENN can be the viable approach. 

Considering this fact, in this work SMOTE-ENN 

method (along with the other SMOTE variants) has 

been applied over the embedded matrix data. Here, the 

key motive was to assess and identify the optimally 

performing resampling method so as to perform 

scalable and reliable heart disease prediction. Indeed, 

resampling can enhance sample (distribution) 

optimality; but, it comes with a price: additional 

computation. To get around this, it's important to keep 

only the features that can provide better accuracy with 

less computational load. This work's motivation was to 

find the best set of features for further learning and 

classification using three feature selection methods: 

principal component analysis (PCA), clustering, and 

WRST significant predictor tests. The datasets that 

were resampled were SMOTE, SMOTE-BL, and 

SMOTE-ENN. To make heart disease prediction stand 

out, the various resampled datasets were subjected to 

the aforementioned feature selection approaches. 

Next, the features that were chosen were subjected to 

Min-Max normalization. This method assigned a value 

between 0 and 1 to each data instance, reducing the 

chances of over-fitting and convergence. First, the 

input features were processed for the aforementioned 

feature optimization measures. Then, they were passed 

on to a novel and robust heterogeneous ensemble 

learning classifier for two class classification. This 

approach differs from traditional machine learning-

based CVD prediction models, which directly feed the 

input data to standalone machine learning classifiers. 

Notably, traditional approaches have used independent 

machine learning classifiers to learn and classify input 

data, which yields varying degrees of accuracy even 

when using the same dataset. The solution's 

generalizability is limited by this performance 

variation. The suggested model uses a HEL learning 

framework with SVM, DT, NB, LOGR, LR, ANN-

LM, RF, and ETC as basic classifiers to conduct MVE 

ensemble-based prediction, thus resolving this issue. 

Therefore, the heart disease prediction (i.e., CVD-

Positive or CVD-Negative) for the various 

characteristics, resampling strategies, and proposed 

compositions is accomplished with the suggested 

HEL-MVE ensemble learning framework. To 

guarantee better and more generalizable performance 

towards heart disease prediction, it is crucial to 

determine the best data-resampling strategy, feature 

selection approach, classification environment, and 

feature set. In order to evaluate the effectiveness of the 

model(s) that have been proposed, we use MATLAB 

to build them and then collect confusion metrics for 

accuracy, precision, recall, and F-measure. By 

comparing the suggested model to state-of-the-art 

methods for CVD prediction, as well as to other 

models, we are able to characterize its performance.  
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IV. RESEARCH QUESTIONS  

 This work establishes a set of research 

questions that, when answered, will lay the 

groundwork for a scalable and reliable model for 

predicting the occurrence of heart disease, in line with 

the overarching research objectives and 

methodological scopes. Here are the research 

questions: 

RQ1: Can the strategic amalgamation of bio-

physiological parameters including genders, 

age, cholesterol, lipid profile, stroke history, 

ECG pattern, etc. enable machine learning 

methods performing scalable and reliable heart 

disease prediction (or CVD prediction) model? 

RQ2: Can the use of use of improved SMOTE 

resampling (SMOTE-ENN), Wilcoxon Rank 

Sum Test (WRST) Significant Predictor Test, 

and Min-Max Normalization and proposed 

heterogenous ensemble learning (HEL) method 

be effective towards reliable CVD prediction 

model? 

RQ3: Is it possible that the HEL ensemble learning 

model outperforms and is more trustworthy than the 

conventional machine learning approaches that 

operate independently?  

 A solid, trustworthy, and extensible CVD 

prediction system can be built upon the results of these 

research questions, which can be proven through 

quantitative means.   

V. SYSTEM MODEL  

 The general approach and related sequential 

implementation are the main topics of this section. 

Here are the steps that make up the total method: 

1. Data Acquisition and Pre-processing 

2. Semantic Feature Modelling  

3. Feature Resampling 

4. Feature Selection 

5. Data Normalization 

6. Heterogeneous Ensemble Learning based 

Maximum Voting Ensemble for CVD 

Prediction 

 The detailed discussion of the sequential 

implementation is given as follows: 

A. Dataset Acquisition and Pre-Processing  

Realizing the clinical associations amongst the 

different bio-physiological parameters and heart 

disease probability, in this work we intended to exploit 

maximum possible features so as to enable better 

training and hence (CVD) prediction. In light of this, 

we used the Cleveland dataset, housed in the machine 

learning repository at the University of California, 

Irvine (UCI), which consisted of 303 examples across 

13 distinct feature sets. Table I provides an excerpt of 

the data that was considered together with the linked 

feature significances.

 

Table I. Heart disease prediction dataset 

SN. Attribute Icon Attribute name Description 

1. Age Age Patient Age 

2. Sex Gender 
Males -1, 

Female -0. 

3. Chest pain type Chest Pain type 
Male -1, 

Female-0. 

4. 
Resting blood 

pressure 

Rest state blood 

pressure (mm/Hg) 

Resting blood pressure upon hospital admission, 

measured in mm/Hg 

5. Serum cholesterol Serum cholesterol (fat) Blood cholesterol level measured in mg/dL 

6. 
Fasting blood 

sugar 

Fasting blood sugar (not 

eating) 

If the blood sugar level is over 120 mg/dL, after a 

fast of not eating overnight, it is considered to be 

high (1-high). In case, it is below 120 mg/mL, it is 

stated to be normal (0-false). 

7. Resting ECG Rest ECG test 

An ECG test result can be categorised as follows: 

0 for a normal result, 1 for the presence of ST-T 

wave abnormality, and 2 for left ventricular 

hypertrophy. 

8. 
Maximum heart 

rate 

Max. heart rate 

achieved 
Max. heart rate during exercise. 

9. Exercise angina Exercise induced angina 

Angina occurred by a workout: 

0 for No; 

1 for Yes. 

10. Old-peak 
ST depression (ECG 

test) 

ST depression due to exercise relative to relaxation 

will observe in the ECG test. 
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11. ST slope Slope (ST depression) 

Maximum workout: 

1-Upsloping; 

2-Flat; 

3-Down sloping. 

12. Ca No. of vessels (0-3) The number of major 

13. Thai 
Thalassemia 

(Haemolytic disease) 

Thalassemia is a blood disorder caused by 

abnormal haemoglobin production with a score of 

3- Indicating normal production, 

6-Permanent deficiency, 

7- Signifying temporary impairment. 

14. BMI Body Mass Index 
It signifies body mass index presenting patient’s 

specific body structure and mass value. 

15. Target 
Heart failure class 

attribute 

No heart disease-0, 

Heart disease-1. 

 Once obtaining aforesaid dataset, it was 

processed for pre-processing before executing the 

proposed predictive model. The proposed dataset was 

processed for extensive pre-processing and cleaning 

that makes computing easier and hence achieves 

reliable training and hence higher reliability. An 

numeric value indicating the presence of a patient's 

cardiac condition is signified by a target element in the 

aforementioned dataset. If there is no heart illness, the 

target score is 0, and if there is heart disease, the score 

is 1. We took into account the gender of the samples 

as a whole because, according to the research, men had 

a higher risk of cardiovascular disease than women.  

In other words, the data element ‘sex’ comprised two 

classes: 1 and 0, signifying male and female, 

respectively. Chest pain (CP) is also an indicator of 

heart disease and failure. Considering this fact, we 

considered CP profile comprising four classes. The 

proposed model encompassed four classes of CP 

where two different classes represented fasting blood 

sugar (‘fbs’). Additionally, it encompassed three 

different classes of resting ECG ‘restecg’ and two 

classes presenting exercise angina ‘exang’. In 

addition, ‘slope’ also called ST slope comprises three 

classes. Additional characteristics are included, such 

as resting blood pressure ('trestbps'), cholesterol 

('chol'), age, and oldpeak. The patients' body mass 

indexes were also considered. The dataset under 

consideration underwent processing to eliminate 

duplicate or missing values.  

Noticeably, the missing element signifies an 

incomplete or repeated data-element. Such missing 

elements can impact overall learning efficiency and 

accuracy. To alleviate it missing elements were 

removed by performing outlier assessment. 

Considering limited data instances (say, sample 

size), to improve computational efficacy, the missing 

elements were substituted either by means of a user-

defined constant or the average (dataset) value. 

Unlike traditional methods which remove aforesaid 

missing elements completely, our proposed model 

substitutes the missing elements with the average 

value of the dataset. Realizing the limited size of 

Cleveland dataset, we combined other datasets 

including Hungry, Switzerland and Kaggle datasets. 

Thus, a total of 1100 instances was prepared with 14 

different features. 

B. Semantic Feature Modeling  

 To ensure optimal feature learning while 

addressing long-distance dependency, the proposed 

model focused on exploiting semantic features. Unlike 

traditional deep learning methods or tokenization 

approaches which often exploit local features and fail 

in exploiting contextual features, the proposed model 

applies word-embedding method to perform feature 

modeling. To improve computational efficacy word-

embedding based semantic feature modeling is 

performed that yields low-dimensional semantic 

features for further learning and classification. The 

dataset comprised the different bio-physiological 

features for the different patients representing both 

classes, heart disease patients and non-heart disease 

patient. Such feature diversity and corresponding 

embedding matrix output present both contextual as 

well as latent information to perform accurate and 

reliable CVD prediction. To facilitate additional 

learning and classification, we employed the 

Word2Vec word-embedding technique to produce a 

semantic embedded matrix in this study.  

We used Gensim Word2Vec technique to convert 

input instances into equivalent embedding vector. We 

designed Word2Vec model with dual-layer neural 

network encompassing two hidden layers that 

generated semantic feature(s) with sparser feature 

outputs. In this approach, the input data (say, instances 

or tokens) was retrieved based on the window of the 

connecting context-window. Let, 𝑊𝑖−1 , 𝑊𝑖−2 , 

𝑊𝑖+1, 𝑊𝑖+2  be the context words retrieved from the 

data corpus, then the CBOW method predicts 𝑊𝑖  

which is highly related to the other data instance 

available within the dataset. The predicted embedding 

outputs were related to the target token value 𝑊𝑖. From 

a functional standpoint, the CBOW embedding 
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approach is comprised of two sets of word-embedding 

vectors, one for each data instance (here, w∈V being 

the feature instance) and one for each target-side, 

denoted as v_w,v_w^'∈R^d. We utilized embedding 

methods based on Gensim, wherein a data corpus input 

instance window represents the center token w_0 and 

generates appropriate context embedded vectors 

w_1,...,w_C. This is how the CBOW loss is calculated: 

(1).  

𝑣𝑐 =
1

𝐶
∑ 𝑣𝑤𝑗

𝐶

𝑗=1

 

(1) 

ℒ = − 𝑙𝑜𝑔 𝜎 (𝑣𝑤0
′  𝑇𝑣𝑐

) 

− ∑ 𝑙𝑜𝑔 𝜎(−𝑣𝑛𝑖
′  𝑇𝑣𝑐

)

𝑘

𝑖=1

 

(2) 

 In (2) 𝑛1, … , 𝑛𝑘 ∈ 𝑉  signifies the negative 

examples obtained from the noise distribution 𝑃𝑛 over 

input vectors 𝑉 . In (2), ℒ  gradient is obtained with 

respect to the target value 𝑣𝑤0
′ , negative target value 

𝑣𝑛𝑖
′  and average context source (𝑣𝑐)  

𝜕ℒ

𝜕𝑣𝑤0
′ = (𝜎(𝑣𝑤0 

′  𝑇𝑣𝑐
) − 1)𝑣𝑐 

(3) 

𝜕ℒ

𝜕𝑣𝑛𝑖
′

= (𝜎(𝑣𝑛𝑖
′   𝑇𝑣𝑐

) − 1)𝑣𝑐 
(4) 

𝜕ℒ

𝜕𝑣𝑐
= (𝜎(𝑣𝑤0 

′  𝑇𝑣𝑐
) − 1)𝑣𝑤0 

′

+ ∑(𝜎(𝑣𝑛𝑖
′   𝑇𝑣𝑐

)

𝑘

𝑖=1

− 1)𝑣𝑛𝑖
′  

(5) 

 So, the gradient of the predicted word vector 

(let's call it the context vector) was applied using the 

Chain-rule approach over the source context 

embedding (6). 

 

 
𝜕ℒ

𝜕𝑣𝑤𝑗

=
1

𝐶
[(𝜎(𝑣𝑤0 

′  𝑇𝑣𝑐
) − 1)𝑣𝑤0 

′ +

∑ (𝜎(𝑣𝑛𝑖
′   𝑇𝑣𝑐

) − 1)𝑣𝑛𝑖
′𝑘

𝑖=1 ] 

(6) 

We normalized the context words using a context 

window width sampled at random from 1 to C_max for 

each target value in order to fix the issue of 

inappropriate context vector update. Using the 

aforementioned technique, the whole dataset was 

converted into an embedding matrix, which was 

subsequently used for resampling and feature 

selection. 

  

C. Feature Resampling  

 In real-time ecosystems, data imbalance is 

still a possibility, even with uniformly distributed 

datasets. To rephrase, there may be a large discrepancy 

between the numbers of samples reflecting normal or 

non-heart disease data and those representing 

incidences of heart disease. Because of the extreme 

class imbalance that might result from such skewed 

data, training a machine learning model with such data 

can lead to inaccurate results.  

It can confine the real-time significance or scalability 

of a CVD prediction model. To alleviate such issues 

alleviating the data imbalance problem seems to be 

inevitable. Data sampling has historically made use of 

a variety of resampling techniques, such as up-

sampling, random sampling, and down-sampling, 

however. The authors have used up-sampling to 

increase the number of samples from minority classes 

and down-sampling to decrease the number of samples 

from majority classes.  

On the other hand, in random sampling approaches the 

number of instances is randomly increased so as to 

reduce the disparity of the minority and majority class 

samples. Unfortunately, the aforesaid resampling 

methods often yields iterative hotspot and hence 

imbalanced data. The uncontrolled or improper 

addition of minority class in up-sampling can 

iteratively cause majority class to become minority 

and hence the challenge of class-imbalance remains 

the same. To alleviate this problem, in the recent years 

a robust method called synthetic minority class 

oversampling technique (SMOTE) is proposed. The 

SMOTE method creates synthetic samples that reflect 

strongly correlated instances or attributes, avoiding 

any impact on the original sample distribution, in 

contrast to the resampling procedures mentioned 

earlier. Using minority samples as input, this method 

retrieved synthetic samples that were subsequently 

processed with a k-Nearest Neighbor (k-NN) 

classifier. In order to pinpoint the most relevant or 

likely samples in relation to the initial instance or 

sample, we utilized a k-NN method that is founded on 

the principle of Euclidean distance. It was a vector 

connecting the one from the recovered k-neighbors to 

the one from the present samples. To obtain the final 

synthetic sample, the produced vector is multiplied by 

a random integer between 0 and 1, which is then added 

to the initial sample. We used SMOTE, SMOTE-BL, 

and SMOTE-ENN, three variants of the SMOTE 

sampling method, in this study.  

In function, SMOTE method applied k-NN method in 

reference to the original sample to achieve synthesized 

data. 

 Though, SMOTE method retrieves fairly 

distributed samples; however, the randomness of the 

data, especially over the large feature space results a 

scene where there can be the probability of multiple 

instances belong to or ambiguously belong to the 

multiple classes. It has the potential to affect the 
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effectiveness of learning and, as a result, produce 

inaccurate results. We suggest SMOTE-BL to help 

with it.  

Unlike traditional SMOTE resampling method, 

SMOTE-BL distinguishes the ambiguous data 

elements present at the common boundaries to label it 

with specific class and thus suppresses the likelihood 

of ambiguity. It makes SMOTE-BL more effective 

over the large heterogenous high-dimensional 

datasets. Recently, a more evolved SMOTE variant 

was proposed named SMOTE-ENN which applied 

Edited Nearest Neighbour (ENN) concept to improve 

sample distribution. Unlike traditional SMOTE 

method, where constraining class-boundaries can be 

difficult due to over-lapping synthetic minority 

samples (with the majority class), SMOTE-ENN 

exploits the strength of ENN to classify ambiguous 

data elements and thus labels them to the appropriate 

class. It improves accuracy over the traditional k-NNs 

neighbors. With SMOTE-ENN, any discrepancy 

between the input sample and allied k-NNs is 

immediately eliminated from the synthetic sample set. 

For better learning, it aids in making samples more 

consistent and significant. By maintaining a dataset 

with perfectly balanced instances or samples for future 

learning and classification, a higher value of k 

accomplishes rigorous cleaning. Therefore, we 

separately evaluated the effectiveness of SMOTE, 

SMOTE-BL, and SMOTE-ENN in this study for the 

purpose of CVD prediction.  

D. Feature Selection  

The truth is that resampling method(s) enhance data 

distribution for better learning, but also increase 

computation in the process.  Moreover, over a large 

feature space training any machine learning method 

can be exhaustive and hence time-consuming. 

Additionally, over such high-dimensional feature 

space, the likelihood of pre-mature convergence and 

local minima can’t be ruled out, and therefore there is 

the need to apply certain suitable feature selection 

method which could reduce insignificant or redundant 

features. This approach can retain optimal set of 

features and allied instances that consequently can not 

only improve overall learning but can also alleviate 

aforesaid issue of convergence, local minima as well 

as time-exhaustion. It can be vital towards at hand 

CVD prediction tasks. Though, in the past the authors 

have suggested applying PCA [], heuristic methods [], 

etc. towards feature selection; however, their higher 

reliance over the coefficient values and large iterations 

limits their scalability and suitability towards at hand 

CVD prediction task. A variety of feature selection 

techniques, such as the significant predictor test and 

cross-correlation analysis (CCRA), have been 

implemented in Big Data environments and the data 

mining area. We used three feature selection 

methods—principal component analysis (PCA), 

principal component regression analysis (CCRA), and 

a Mann Whitney-based significant predictor test—

with this as our driving force. This section provides an 

overview of several feature selection methods: 

1. Principle Component Analysis (PCA) 

In this work, PCA method was applied over the 

resampled datasets (i.e., SMOTE, SMOTE-BL and 

SMOTE-ENN dataset) so as to retain the optimal set 

of the significant features having decisive impact on 

the CVD prediction results. In this case, we calculated 

the eigenvalues and principal component for each 

feature set and data piece based on their covariance. 

Using a predetermined value of 0.5 for the mean 

principal component, we calculated the Eigen distance 

for each feature instance. That is why we kept the 

characteristics (instances) for future learning and 

classification and removed the ones with a higher 

eigen distance. 

 Those feature instances with the Eigen distance 

smaller than 0.5 signify higher extent of relatedness or 

associations. And therefore, such feature instances can 

have higher impact on the eventual CVD prediction 

results. Thus, we applied PCA over the different 

resampled datasets which helped retaining selected set 

of feature sets for further learning task.  

2. Cross-Correlation Analysis (CCRA) 

It is a statistical method signifying the extent to 

which the two variables are associated. In function. 

CCRA measures association between the two 

variables representing the extent of relatedness. CCRA 

also represents the correlation-strengths and allied 

orientation. Typically, the relationship between the 

two instances can exist in the range of 1 to 0, where 

“1” signifies higher relatedness, while the values near 

to “0” indicates lower association. In this work, we 

applied Pearson correlation method (7) to calculate 

correlation coefficient (𝑟).  

𝑟 =
∑ (𝑥𝑖 − 𝑥̅) ∑ (𝑦𝑖 − 𝑦̅)𝑛

𝑖=1
𝑛
𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1  ∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

 
(7) 

In this work, those feature instances having 𝑟 

larger than 0.5 (i.e., 𝑟 > 0.5 ) were considered 

significant and were retained. On the contrary, those 

feature instance with 𝑟 < 0.5  were dropped from 

further computation. Thus, this method retained a 

trimmed set of features for further learning and 

classification.  

3. Significant Predictor Test  

This approach takes advantage of the attributes' 

association with one another to assess how important 

they are for the current CVD prediction job. This 

technique evaluates the relevance of each feature 

instance in relation to a hand CVD prediction task by 

examining the relationships between them.  
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More specifically, Mann Whitney method was 

used as feature selection technique that exploited 

correlation coefficient between the feature instances to 

measure their impact on CVD prediction results. In our 

work, each feature vector was assigned as an 

autonomous variable, while CVD likelihood was 

labelled as the dependent variable. Therefore, 

measuring the level of significance for each feature 

instance the instance possessing higher level of 

significance were retained. We fixed 𝑝  also called 

level of significance as 0.05 , and thus the feature 

instances with 𝑝 > 0.05  were retained, while 

remaining feature instances were dropped from further 

learning and classification.  

E. Min-Max Scaler Normalization 

To alleviate any probability of over-fitting and 

convergence over the large non-linear heterogenous 

features, the input instances (say, selected symbols) 

were processed for Min-Max scaler normalization in 

which each data instance was mapped in the range of 

0 to 1. We used equation (6) to perform Min-Max 

normalization over the input features. In (8), 𝑥𝑖 

represents the feature instances, where 𝑥𝑖 ∈ 𝑁, which 

is mapped to the allied normalized value representing 

𝑥𝑖
′ . The proposed Min-Max normalization method 

obtained the value of 𝑥𝑖
′  in the range of 0 to 1. 

Noticeably, in (8), 𝑀𝑖𝑛(𝑋)  and 𝑀𝑎𝑥(𝑋)  signify the 

minimum and the maximum values of  𝑋 , 

correspondingly.  

𝑁𝑜𝑟𝑚(𝑥𝑖) = 𝑥𝑖
′ =

𝑥𝑖 − 𝑀𝑖𝑛 (𝑋)

𝑀𝑎𝑥(𝑋) −  𝑀𝑖𝑛 (𝑋)
 

(8)   

 

F. Heterogenous Ensemble Learning Based Learning 

and Classification 

G. To improve upon the accuracy and reliability 

of predictions, we developed a strong HEL 

classification framework that utilized many 

machine learning techniques as base 

classifiers. This approach differs from 

conventional standalone machine learning-

based CVD prediction models. It becomes 

dubious to generalize the performance of 

these models for healthcare prediction tasks 

like CVD prediction, given that various 

machine learning algorithms exhibit varying 

degrees of accuracy when applied to the same 

dataset, as mentioned before.  

To alleviate this problem, in this work we designed 

HEL as an ensemble learning framework that 

embodied the different machine learning classifiers as 

base classifier, where each base classifier labels each 

data instance with respective class probability (i.e., 

Heart Disease Yes-1, No Heart Disease-0). Thus, 

exploiting aforesaid class labels by each encompassing 

base classifier a consensus is built by using the 

maximum voting ensemble (MVE) concept. The data 

instance (say, patient data) with higher consensus or 

maximum voting as 1 was eventually predicted as 

CVD-Positive and labelled as 1. On the contrary, a 

data instance with more 0 was labelled or predicted as 

CVD-Negative. In this manner, the use of consensus 

model helped achieving higher prediction accuracy 

and reliability towards CAD solution, especially with 

the generalizability.  

To achieve aforesaid HEL learning and prediction, 

we have applied a total of 13 machine learning 

classifiers belonging to the different categories 

including support vector machine-based pattern 

learning, regression methods, neuro-computing and 

homogenous ensemble methods (i.e., RF and ETC). As 

stated above, these machine learning algorithms 

perform classification distinctly, where their 

prediction results were subsequently applied to make 

consensus towards eventual prediction. We applied the 

following machine learning algorithms as base 

classifier to perform learning and classification.  

1) Multinomial Naïve Bayes (MNB), 

2) SVM RBF (Radial Basis Function), 

3) SVM-Linear, 

4) SVM-Polynomial, 

5) Decision Tree (DT), 

6) Logistic Regression (LOGR), 

7) K-NN, 

8) AdaBoost,  

9) Gradient Boost, 

10) Bagging (k-NN Kernel), 

11) Bagging (MNB Kernel), 

12) Random Forest (RF), and  

13) Extra Tree Classifier (ETC).  

A brief of these base classifiers is given as follows:

  

a) Naïve Bayes (NB) 

The Naïve Bayes classifier employs Bayes' rules for 

pattern learning and classification and is one of the 

most popular and extensively studied probabilistic 

classifiers. The "independent feature model" 

postulates that the linked features continue to function 

independently of one another and, as a result, do not 

impact the classification results; NB is probabilistic in 

character. Another tenet of this pattern-learning 

strategy is that two feature instances in the same class 

cannot possibly be connected. According to the Bayes' 

rule, which is provided in (9), it assigns a data instance 

x to the class e^*=argmax_d P(d|x) in light of the 

hypotheses mentioned earlier.  

𝑃(𝑑|𝑥) =
𝑃(𝑥|𝑑)𝑃(𝑑)

𝑃(𝑥)
 

(9) 

The likelihood of data instance x is represented as 

P(d|x), while the probability of class c is stated in (9). 

 Here, 𝑃(𝑥)  signifies the predictor prior 

probability, which is measured as per the equation 

(10).  
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𝑃(𝑥|𝑑) = ∏ 𝑃(𝑥𝑙|𝑑)

𝑚

𝑙=1

 
(10) 

Though, NB algorithm has evolved with the 

different kernels like Gaussian, Multinomial; however, 

we applied NB-Multinomial (MNB) as classifier to 

perform two-class classification. Here, MNB 

performed learning over the count’s frequency, 

signifying 𝑥𝑖  occurrences over 𝑛 trails. It applies the 

occurrence(s) of the binary terms so as to predict each 

instance as Heart Disease Positive (say, CVD positive) 

or CVD negative and labelled it as 1 and o, 

correspondingly.  

b) Support Vector Machine (SVM) 

Pattern recognition and classification are two areas 

where support vector machines (SVMs), a type of 

supervised machine learning model, have found 

widespread use. Support vector machines (SVMs) are 

the go-to pattern learning approach for text and picture 

classification issues due to its hyper-plane learning and 

classification capabilities. As a non-probabilistic 

binary classifier, SVM learns on the normalised 

dataset in this study. The learning and classification 

processes are carried out by iteratively minimising the 

generalisation error over the input feature space. We 

calculated the hyper-plane support vector, which 

represents a training subset that shows the boundary 

conditions. In keeping with the two-category 

classification problem at hand, the support vector 

model was used to construct the hyper-plane between 

the two classes, positive and negative, of 

cardiovascular disease (CVD). It applied equation (11) 

to perform classification.  

𝑌′ = 𝑤 ∗ 𝜙(𝑥) + 𝑏 (11) 

In (11), parameter 𝜙(𝑥)  states a non-linear 

transform that emphasizes on the allocation of the 

appropriate weights 𝑤  and bias value 𝑏  to perform 

learning and classification. We measured 

classification result 𝑌′  by reducing a regression-risk 

parameter, defined in equation (12).  

𝑅𝑟𝑒𝑔(𝑌′) = 𝐶 ∗ ∑ 𝛾(𝑌𝑖
′ − 𝑌𝑖) +

1

2

𝑙

𝑖=0

∗ ‖𝑤‖2 

(12) 

The penalty factor and cost-function are represented 

by the parameters C and γ, respectively, in equation 

(12). Following the protocol in (13), we determined the 

weight scores. 

 

𝑤 = ∑(𝛼𝑗 − 𝛼𝑗
∗)𝜙(𝑥𝑗)

𝑙

𝑗=1

 

(13) 

Here, α  and α∗ be the non-zero values, called 

Lagrange relaxation. Thus, the applied SVM model 

results prediction output as (14).  

𝑌′ = ∑(𝛼𝑗 − 𝛼𝑗
∗)𝜙(𝑥𝑗) ∗ 𝜙(𝑥) + 𝑏

𝑙

𝑗=1

 

= ∑(𝛼𝑗 − 𝛼𝑗
∗) ∗ 𝐾(𝑥𝑗, 𝑥) + 𝑏

𝑙

𝑗=1

 

(14) 

In (14), 𝐾(𝑥𝑗, 𝑥) states a kernel function. In this 

work, SVM was applied with three different kernel 

functions, including SVM-Linear, SVM-Polynomial 

and SVM-RBF. Here, each variant performed 

independently to classify each input data.  

c) Decision Tree (DT)  

Data mining and classification jobs often make use of 

DT, one of the most applied association rule mining 

methodologies. The CART, ID3, C4.5, and C5.0 

association rule mining methods have all contributed 

to the development of this machine learning model. 

Both solo classifiers and ensemble-learning methods, 

such random forests and additional tree classifiers, 

have made use of the DT algorithm. Starting at the root 

node, it applies an association rule with a split-

condition to split the input feature instances into 

numerous branches, one for each node in the tree. This 

is how it serves its functional purpose. After that, it 

learns and classifies the pattern or data by applying the 

information gain ratio (IGR) technique over each 

branch. Input features can be easily divided into 

numerous branches, and the system will automatically 

obtain the other nodes that will branch off into other 

data.  

In this manner, this approach looks like a tree 

structure having multiple branches. The DT algorithm 

resembles a binary tree possessing single root or parent 

node having multiple children’s nodes.  

Let, the left and the right child node be 𝐿𝐶𝑑 and 

𝑅𝐶𝑑 , respectively. Consider, 𝑥  be the input feature, 

while 𝐼  be the noise value. Now, with the available 

samples in 𝑃𝑑, 𝐿𝐶𝑑 and 𝑅𝐶𝑑, DT intends to optimize 

information gain, iteratively by using (15).  

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 (𝑃𝑑𝑥)

= 𝐼(𝑃𝑑) −
𝐿𝐶𝑛

𝑃𝑛
𝐼(𝐿. 𝐶𝑑)

−
𝑅𝐶𝑛

𝑃𝑛
𝐼(𝑅. 𝐶𝑑) 

(15) 

In (15), 𝐼  can be calculated by using any of the 

methods like Entropy 𝐼𝐻 (16), Gini-Index 𝐼𝐺  (17), and 

classification error 𝐼𝐸 (18).  

𝐼𝐻(𝑛) = − ∑ 𝑝(𝑐|𝑛) log2 𝑝(𝑐|𝑛)

𝑐

𝑖=1

 
(16) 

𝐼𝐺(𝑛) = 1 − ∑ 𝑝(𝑐|𝑛)2

𝑐

𝑖=1

 
(17) 



Letters in High Energy Physics 
ISSN: 2632-2714 

Volume 2024 

 

 

457 

𝐼𝐸(𝑛) = 1 − 𝑚𝑎𝑥{𝑝(𝑐|𝑛)} (18) 

Parameters c and n in (16-18) denote the class(es) and 

corresponding node(s), respectively. The probability 

factor was determined by dividing c by n.  

Once obtaining the predicted output, each sample 

was classified into two classes, CVD-Positive and 

CVD Negative, and was labelled as 1 and 0, 

respectively.  

d) Logistic Regression  

By transforming input feature sets into independent 

variables, logistic regression runs regressions on such 

sets.  On the contrary, it defined feature’s CVD 

probability as dependent variable. The proposed 

LOGR prediction method applied (19) as regression 

function.  

logit[π(x)]
= β0 + β1X1 + β2X2

+ ⋯ … . +βmXm 

(19) 

The dependent variable is represented by logit[π(x)] in 

equation (19), while the independent variable is x_i. In 

this case, the binary outputs were translated using the 

logit function, which produces different values of π(x) 

from 0 to 1, negative infinity to positive infinity. In the 

previous equation. In terms of π, the CVD probability 

was found to be (20), while m represents the overall 

independent variables.  

 

π(x)

=
eβ0+β1X1+β2X2+⋯….+βmXm

1 + eβ0+β1X1+β2X2+⋯….+βmXm
 

(20

) 

Thus, applying above discussed LOGR method, 

each data instance or sample (say, patients bio-

physiological data) was classified as CVD Positive and 

CVD Negative, which was labelled as “1” and “0”, 

respectively.  

e) AdaBoost  

It is a type of adaptive boosting ensemble learning 

technique having better instance-wise learning and 

analysis capability. In order to implement the 

AdaBoost algorithm, certain weak learners were 

formed by assigning equal weight to the associated 

prerequisite exams. As a result of measuring the error 

rate for the previously mentioned weak classifier for 

each cycle, AdaBoost improved the weight for the 

correctly categorised samples and iteratively reduced 

the weights for the incorrectly classified samples.  

Eventually, the weak learner turned out to be the 

strong learner and thus classified each sample or data 

as CVD Positive and CVD negative and labeled them 

as “1” and “0”, correspondingly. Unlike traditional 

AdaBoost method, the gradient boosting method 

focuses on improving weight parameters more 

efficiently and thus enables more accurate sample 

classification (say, data classification). Unlike fixed 

update method, gradient boosting method tunes 

learners adaptively and thus achieves more detailed 

learning to yield higher accuracy. This approach helps 

in suppressing any probable convergence problem. 

Despite increased computational cost, it performs 

superior over the classical AdaBoost or Boosting 

ensemble. With this motivation, in addition to the 

AdaBoost method, we applied gradient boosting 

ensemble as well as a base classifier.   

f) Bagging (k-NN) and Bagging (MNB) 

We applied bagging method with the two different 

kernels (also called, base classifiers). Particularly, 

bagging ensemble was designed with k-NN and MNB 

classifier as their base classifier to perform two-class 

classification. Thus, these bagging ensemble methods 

or variants classified each data as CVD Positive and 

CVD Negative and labelled them as 1 and 0, 

respectively.  

g) Random Forest (RF) 

When it comes to ensemble approaches that use 

numerous tree-based classifiers, Random Forest is a 

popular choice. Because it is a tree-based learning 

system, every tree comes up with its own best guess 

for the most likely class. Assume that N is the input 

training set. Afterwards, RF uses the input samples or 

data to randomly select a sample with N cases. In order 

to build a new tree, these samples are used as the 

training set. If we use M to represent the input data, we 

can divide the node using the optimal split applied to 

m. During the execution of forest growth, we fixed the 

value of m. This is how it grows each tree to its 

maximum potential. Lightweight and computationally 

efficient, the RF algorithm outperforms conventional 

classifiers thanks to its reduced parameter 

requirements for learning and classification. The RF 

method is a mathematically determined mixture of 

many tree-structures that are based on the 

aforementioned forest development mechanism (21). 

 {ℎ(𝑥, 𝜃𝑘), 𝑘 = 1,2, … 𝑖 … } (21) 

In (21), ℎ be the classification function, while the 

random vector generated throughout tress is given as 
{𝜃𝑘}. In this method, each tree contains a unit vote for 

its most probable class. Noticeably, the capability to 

use multiple DTs where each (say, unit) DT acts as a 

distinct classifier enables RF behaving as a 

bootstrapped learning model to perform consensus 

(based on the multiple DT classifiers)-based learning 

and classification. In this work, we used a bootstrapped 

subset of training samples to train each tree throughput 

the constituted forest, where it applies 70% sample for 

training, while the remaining samples are labeled as 

the out-of-bag samples. These out-of-bag samples are 

later used for inner cross-validation to perform 

eventual prediction. In this manner, each data sample 

was classified as CVD Positive and CVD Negative 

samples and labelled as “1” and “0”, respectively.  

h) Extra Tree Classifier (ETC) 
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 This is also an ensemble learning variant 

which constitutes a cluster of the unpruned DTs on the 

basis of the traditional top-down mechanism. Unlike 

RF technique, ETC method contains randomization of 

the data samples and cut-point selection while 

performing node-split. ETC algorithm is capable of 

constituting overall randomized trees encompassing 

structures which are independent of the outputs of the 

training sample. There are two main features that set 

this ensemble learning model apart from competing 

tree-based ensemble approaches. The first is that it 

uses random cut-point selection to partition nodes, and 

the second is that it uses the entire training set to carry 

out tree-growth or forestation. In this case, the 

prediction output (i.e., CVD class) was generated by 

combining the classified results from the trees using 

the MVE approach. When compared to other machine 

learning models that use weaker randomisation 

methods, the ETC ensemble model's main concept and 

functional components—ensemble averaging and 

overall cut-point and attribute randomization—reduce 

variance more appropriately. Furthermore, to get 

better (prediction) accuracy, using the original training 

samples decreases the chance of the bias-probability.  

Thus, applying this mechanism the proposed ETC 

model classified each sample or data into two-classes, 

CVD Positive and CVD Negative and labelled them as 

“1” and “0”, respectively.  

Thus, applying above discussed machine learning 

models as the base classifier(s), each data sample was 

classified into two classes; CVD-Positive and CVD-

Negative and labelled them as “1” and “0”, 

respectively. Since, we applied a total of 13 machine 

learning models in parallel, where ach model provided 

unit predicted output or labels, applying consensus 

model (also called the maximum voting ensemble 

(MVE)) each sample was classified as CVD-Positive 

or CVD-Negative. In MVE method, a data sample with 

more than or equal to seven “1s” was predicted as 

CVD-Positive, while a data sample with seven or more 

“0s” was predicted and labelled as CVD-Negative. 

Thus, applying this method, each data sample (say, 

patient data) was predicted as CVD-Positive or CVD-

Negative. Accuracy (%), precision (%), recall (%), and 

F-Measure were some of the statistical measures 

retrieved in order to evaluate performance and 

dependability. What follows is a presentation of the 

simulation findings along with related conclusions.  

VI. RESULTS AND DISCUSSION 

In this work, we developed a robust intrinsically 

modified Bio-Physiological Features Driven 

Heterogenous Ensemble Learning-based Heart 

Disease Prediction Model or Cardio Vascular Disease 

(CVD) Prediction Model. As the name indicates to 

design targeted CAD solution, patient’s specific 

biological as well as physiological features including 

lipid profile, cholesterol, ECG pattern, stroke events, 

gender, etc. were taken into consideration. More 

specifically, UCI Cleveland dataset along with the 

Kaggle datasets were taken into consideration. A total 

of 14 features were taken into consideration 

encompassing the different biological as well as 

physiological clinical measurements. The input data 

was at first processed for pre-processing where outlier 

analysis and missing element problem was solved. 

Subsequently, Word2Vec word-embedding method 

was applied to generate the corresponding embedded 

matrix. It helped retrieving the latent/semantic features 

to perform further learning and classification. It also 

helped in addressing the problem of long-term 

dependency that eventually improved learning and 

classification. The embedded matrix from each feature 

set was processed for resampling techniques including 

SMOTE, SMOTE-BL and SMOTE-ENN algorithms. 

It helped improving overall sample distribution by 

supressing any likelihood of class-imbalance. The 

resampled data was then processed for feature 

selection by applying PCA, CCRA and Mann-Whitney 

Significant Predictor Test (SPT). Noticeably, these 

feature selection methods were applied distinctly over 

the resampled datasets so as to assess relative 

(performance) efficacy. Additionally, it helped in 

identifying the optimally performing resampling and 

feature selection model to achieve optimal CAD 

solution for CVD prediction. The selected features 

were then processed for Min-max normalization which 

mapped each data instance in the range of 0 to 1, and 

thus alleviated any probability of over-fitting and 

convergence. Unlike traditional standalone machine 

learning-based classification models, in this work an 

HEL was designed by applying machine learning of 

the different categories including SVM variants 

(SVM-Linear, SVM-RBF, SVM-Polynomial), DT, 

NB, LOGR, LR, ANN-LM, RF and ETC, as base 

classifiers. A total of 13 machine learning algorithms 

were applied as base classifier that in conjunction with 

MVE ensemble performed eventual prediction and 

classified each subject’s class as CVD-Positive and 

CVD-Negative, which was labelled as “1” and “0”, 

respectively. True positives (TP), true negatives (TN), 

false positives (FP), and false negatives (FN) are the 

confusion metrics that we obtained. F-Measure, recall, 

accuracy, and precision are some of the statistical 

performance metrics that were derived from these 

inputs. Table II provides the performance 

characteristics together with their related statistical 

derivations. The MATLAB 2020b program was used 

for the overall model design, and the simulation was 

conducted on a computer system with Microsoft 

Windows operating systems, an Intel i5 processor, 8 

GB RAM, and a frequency of 3.2 GHz. 
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Table II: Performance parameters 

Parameter Mathematical Expression 

Accuracy (𝑇𝑁 + 𝑇𝑃)

(𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃)
 

Precision 𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

Recall 𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

F-measure 
2.

𝑅𝑒𝑐𝑎𝑙𝑙. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

Intra-Model Assessment and Inter-Model Assessment 

are used to characterise the overall performance. A 

variety of resampling techniques, feature selection 

algorithms, and classifiers were used in this intra-

model evaluation to see how well the suggested CVD-

prediction model performed. Conversely, the 

suggested model's relative efficacy was evaluated 

using inter-model assessment in comparison to other 

state-of-the-arts. The following sections provide a 

comprehensive analysis of the suggested model. 

A. Intra-Model Assessment 

This study compares and contrasts the performance of 

various resampling strategies, feature selection 

methods, and base classifiers, including the suggested 

MVE ensemble. What this means is that we tested how 

well various feature resampling, feature selection, and 

classification models works.  

In this work performance characterization was 

done with respect to the resampling and feature 

selection methods. The simulation results obtained are 

given as follows: 

1. Resampling Methods Assessment 

Table III presents the performance outputs with the 

different resampling methods. To assess whether the 

use of resampling methods (i.e., SMOTE resampling 

methods) can improve CVD prediction accuracy, we 

considered both resampled data as well as the original 

dataset. In this manner, four different datasets 

including original dataset, SMOTE, SMOTE-BL and 

SMOTE-ENN were assessed for their respective 

performance. The simulation results reveal that the 

original dataset shows the highest accuracy of 95.21%, 

precision of 96.03%, recall 94.16% and F-Measure 

(%) of 95.10%. On the contrary, the classical SMOTE 

resampling method shows the accuracy of 95.77%, 

precision 96.66%, recall 95.55% and F-Measure of 

96.10%. This result clearly indicates that the use of 

SMOTE resampling yields higher accuracy than the 

original dataset. SMOTE-BL on the other hand shows 

CVD prediction accuracy of 97.94%, precision 

96.91%, recall 95.97% and F-measure of 96.43%. The 

simulation also inferred that the use of SMOTE-ENN 

method achieved accuracy of 99.87%, precision of 

99.32%, recall of 96.88% and F-Measure of 98.02%. 

These results state that undeniably, unlike traditional 

approaches where the original data are passed to the 

classifiers or prediction, the use of resampling 

method(s) can yield superior results. The highest 

accuracy with the original data was found 95.21%, 

while SMOTE-ENN resampled data exhibited an 

accuracy of 99.87%, which is almost 4.7% higher than 

the traditional (without resampling) method. It shows 

that the use of SMOTE-ENN resampling can achieve 

the best performance towards targeted CVD prediction 

tasks. The relative assessment revealed that SMOTE-

ENN method performs superior over SMOTE and 

SMOTE-BL method. It confirms the use of SMOTE-

ENN efficacy towards real-time CVD prediction tasks.  

 

Table III Feature Resampling Performance 

Data Accura

cy (%) 

Precisi

on (%) 

Recall 

(%) 

F-

Measu

re (%) 

Origi

nal Data 

95.2

1 

96.0

3 

94.

16 

95.

10 

SMO

TE 

95.7

7 

96.6

6 

95.

55 

96.

10 

SMO

TE-BL 

97.9

4 

96.9

1 

95.

97 

96.

43 

SMO

TE-ENN 

99.8

7 

99.3

2 

96.

88 

98.

02 

 

 
Fig. 1 Performance over the different sampling 

techniques 

2. Feature Selection Method Assessment 

To improve analytics model’s accuracy feature 

selection methods have performed superior over the 

original dataset. We used PCA, CCRA, and MW-SPT 

(Mann Whitney Significant Predictor Test) as feature 

selection methods in this reference. In this case, 

finding the top feature for VCD prediction was our 

primary goal. Based on the findings of the simulation, 

it can be inferred that the original data, which did not 

undergo processing feature selection, displays an F-

Measure of 95.08%, an accuracy of 95%, a precision 

of 95.14%, and a recall of 95.03%. In contrast, models 
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that are selected using principal component analysis 

(PCA) show recall, accuracy, precision, and F-

Measure values of 96.24%, 96.76%, 95.74%, and 

96.24%, respectively. In contrast, the CCRA approach 

demonstrated an F-Measure of 96.35%, a recall of 

94.97%, a precision of 96.73%, and an accuracy of 

96.67% in predicting CVD. The MW-SPT feature 

selection approach demonstrated an F-Measure of 

99.32% and a CVD-prediction accuracy of 98.31%.  

Noticeably, the simulation results indicate that the 

use of feature selection methods (i.e., PCA, CCRA and 

MW-SPT) can achieve superior results than the 

original data-based analytics. Interestingly, amongst 

the aforesaid feature selection methods the use of MW-

SPT algorithm exhibits the highest accuracy of 

98.31%, precision of 99.84%, recall 98.81% and F-

Measure of 99.32%. Though, other feature selection 

methods exhibit higher (CVD-prediction) accuracy 

than the original feature-based model; however, 

amongst the all-feature selection methods applied, 

MW-SPT exhibited the highest CVD prediction 

accuracy (98.31%). The results clearly indicate that the 

ability to address ambiguous data elements over 

SMOTE makes SMOTE-ENN more effective and 

hence yields higher accuracy. SMOTE-ENN applies 

ENN as an additional machine learning approach to 

retain only those feature instance having high 

correlated-ness and significance and thus improved 

data quality. Consequently, it strengthens MW-SPT 

method that achieves superior performance towards at 

hand CVD prediction.  

 

Table IV Feature Selection Method Performance  

Data Accuracy (%) Precision (%) Recall (%) F-Measure (%) 

Original Data 94.99 95.14 95.03 95.08 

PCA 95.23 96.76 95.74 96.24 

CCRA 96.67 96.73 95.97 96.35 

MW-SPT  98.31 99.84 98.81 99.32 

 
Fig. 2 Performance over the different feature selection 

techniques 

Classification Model Assessment  

Here, we compared the performance of various 

machine learning classifiers both as independent tools 

and as part of an MVE ensemble learning framework.  

The overall effort is made to assess whether the 

standalone method can perform better or the use of 

MVE-based HEL model can yield superior efficacy 

towards CVD-prediction. Furthermore, this 

quantification of performance can aid in comparing 

various machine learning methods for certain CVD-

prediction jobs. According to the simulation results, 

the MNB machine learning model has an accuracy of 

94.48% and the DT method has an accuracy of 95.01% 

when it comes to CVD predictions.  

On the other hand, the SVM algorithms variants 

exhibits the highest accuracy of 94.44%, 95.34% and 

96.01% by SVM-Lin, SVM-Poly and SVM-RBF, 

respectively. The logarithmic regression method 

(LOGR) exhibited the CVD-prediction accuracy of 

96.66%, while ANN performed the prediction 

accuracy of 96.50%. The LR method exhibited CVD-

prediction accuracy of 95.06%, while Bagging k-NN 

and Bagging-NB shows the prediction accuracy of 

94.88% and 95.21%, correspondingly. AdaBoost on 

the other hand shows CVD-prediction accuracy of 

95.95%. the other variants of ensemble learning 

methods including RF, ETC and the proposed MVE-

HEL model exhibited the CVD-prediction accuracy of 

98.81%, 99.70% and 99.93%, correspondingly. In 

comparison to other independent machine learning 

techniques, the suggested MVE-HEL method 

performs better in the aggregate. By comparison to the 

other machine learning methods, the suggested MVE-

HEL method achieved better CVD-prediction 

accuracy (99.93%), precision (99.69%), recall 

(99.53%), and F-Measure (99.60%). The results show 

that the suggested MVE-HEL approach is reliable for 

CVD prediction. With an F-Measure of 0.996, the 

suggested CVD-prediction model is viable and 

scalable for use in practical CAD applications. The 

suggested CVD-prediction approach is robust towards 

real-world CAD applications, as shown by the other 

parameters as well. 
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Fig. 3 Performance over the different machine learning classifiers 

  

Table V Classification Method Performance  

Machine 

Learning Model 

Accuracy (%) Precision (%) Recall (%) F-Measure 

(%) 

MNB 94.48 94.92 95.35 95.13 

DT 95.01 94.99 95.82 95.40 

SVM-Lin 94.44 95.27 95.99 95.62 

SVM-Poly 95.34 95.33 96.21 95.76 

SVM-RBF 96.01 95.85 95.95 95.90 

LOGR 96.66 96.02 96.85 96.43 

ANN 96.50 96.37 96.96 96.66 

LR 95.06 96.99 96.22 96.60 

Bagging k-NN 94.88 97.01 97.83 97.41 

Bagging-NB 95.21 96.21 97.04 96.62 

AdaBoost 95.95 97.38 98.30 97.98 

RF 98.81 99.20 99.18 99.18 

ETC 99.70 99.78 99.38 99.57 

MVE 99.93 99.69 99.53 99.60 

B. Inter-Model Assessment  

We conducted an inter-model evaluation to see how 

well the proposed CVD-prediction model performed 

in comparison to the other state-of-the-arts. The 

suggested analytics (CAD) solution was pitted against 

the other current CVD-prediction models in this 

method. 

 

Table VI Relative performance comparison 

Ref. Year Dataset Classifier Methodology 
Accuracy 

(%) 

[61]  2019 Cleveland  

NB, C4.5, MLP, PART, 

Bagging, Boosting, 

Majority Voting, Stacking 

Bagging and Boosting ensemble  85.48 

[62] 2020 Cleveland LR, SVM, k-NN 
Feature normalization and 

dimensional reduction using PCA 
87.00 

[63] 2020 Cleveland 
LR, DT and Gaussian NB 

(GNB) 

Singular Value Deposition (SVD)-

based dimensionality reduction  
82.75 

[64] 2022 Cleveland 
SVM, NB, ConvSGLV 

and ensemble learning  

CNN feature extraction and MVE 

voting for prediction  
93.00 

[65] 2023 Cleveland 
LR, k-NN, DT, XGB, 

SVM, RF 

GridSearchCV hyper-parameter 

tuning  
87.91 
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[66] 2023 Cleveland 
LR, k-NN, NB, RF, GB, 

AB, SVE  
Soft voting ensemble  93.44 

[13] 2023 Cleveland 
LR, NB, k-NN, SVM, DT, 

RF, MLP 
Feature reduction  90.00 

[10] 2023 Kaggle  SVM, k-NN, RF, LOGR IQR, CCRA 99.00 

 [67] 2023 Kaggle DT, PCA PCA feature reduction  98.00 

 [68]  Framingham  SVM, MLP, RF Ensemble  97.13 

Proposed  2023 Cleveland  

SVM-Lin, SVM-Poly, 

SVM-RBF, DT, MNB, k-

NN, LOGR, LR, Bagging, 

Boosting, AdaBoost, RF, 

ETC, MVE 

Word2Vec embedding, SMOTE-

ENN resampling, Mann-Whitney 

Significant Predictor Test, Min-Max 

normalization, MVE-HEL 

ensemble.  

99.93 

Observing the results (Table VI), it can be found that 

though a number of literatures have applied machine 

learning methods towards CVD prediction; however, 

the state-of-arts methods show poor accuracy than the 

proposed intrinsically modified or improved HEL-

MVE based analytics solution for CVD prediction. 

Noticeably, to make justifiable and generalizable 

performance comparison same dataset (i.e., 

Cleveland) was taken into consideration. Moreover, 

the recent works are used to perform relative 

performance analysis. In [61], the different machine 

learning methods including NB, C4.5, MLP, PART, 

Bagging, Boosting, Majority Voting, Stacking were 

applied to perform CVD prediction. The authors 

applied ensemble learning approach to improve CVD-

prediction accuracy, where it exhibited the highest 

prediction accuracy of 85.48%. On the other hand, the 

authors [62] applied LR, SVM, k-NN machine 

learning model, where the input features were 

normalized followed by PCA feature reduction. It 

achieved the CVD-prediction accuracy of 87%, which 

is almost 12.7% lower than the proposed CVD-

prediction model. With a maximum accuracy of 

82.75%—nearly 12% lower than the suggested CVD-

prediction model—the authors of [63] used LR, DT, 

and the Gaussian NB (GNB) approach in combination 

with a dimensionality reduction method based on 

Singular Value Deposition (SVD). 

 The authors [64] applied the different machine 

learning model including SVM, NB, ConvSGLV and 

ensemble learning where CNN (convolutional neural 

network) was applied to perform feature extraction 

where the extracted features were processed for MVE 

consensus-based prediction towards CVD prediction. 

The highest prediction accuracy obtained was 93%. 

The authors [65] applied LR, k-NN, DT, XGB, SVM, 

RF machine learning models with GridSearchCV 

hyper-parameter tuning to perform heart disease 

prediction. The highest prediction accuracy obtained 

was 87.91%. On the other hand, in [66] applied the 

different machine learning methods including LR, k-

NN, NB, RF, GB, AB, SVE algorithms. The authors 

applied soft-voting ensemble to perform CVD 

prediction, where the highest CVD-prediction results 

exhibited the prediction accuracy of 93.44%. 

Interestingy, unlike aforesaid state-of-arts, we 

performed both data optimization or feature 

optimization as well as computational enhancement to 

achieve higher prediction accuracy. More specifically, 

we performed Word2Vec embedding, SMOTE-ENN 

resampling, Mann-Whitney Significant Predictor Test, 

Min-Max normalization, MVE-HEL ensemble, which 

was designed by applying SVM-Lin, SVM-Poly, 

SVM-RBF, DT, MNB, k-NN, LOGR, LR, Bagging, 

Boosting, AdaBoost, RF, ETC as base classifier to 

constitute MVE-HEL to perform eventual prediction. 

Outperforming all existing state-of-the-art models, our 

suggested model demonstrated an unprecedented level 

of accuracy at 99.93%. It proves that the suggested 

model is stable enough for real-time CVD prediction. 

The authors of [13] used a variety of ML techniques, 

such as LR, NB, k-NN, SVM, DT, RF, and MLP. Their 

thorough evaluation showed that RF ensembles could 

achieve a maximum CVD-prediction accuracy of 

90%; however, this was still lower than the suggested 

model's prediction accuracy of 99.7 percent.  

Their highest F-Measure performance obtained 

was 90.91%, which still falls below the proposed 

model’s output (F-Measure 99.60%). Similarly, in 

[10], the authors applied SVM, k-NN, LOGR and RF 

algorithms to perform CVD prediction over Kaggle 

dataset. The authors claimed that the use of RF 

ensemble learning model achieves the highest 

prediction accuracy of 99%. To improve feature the 

authors applied inter-quartile range (IQR) method, 

correlation and significant assessment altogether. With 

PCA feature selection, the authors [67] claimed to 

have achieved prediction accuracy of 98%. Yet, it 

failed in addressing numerous challenges including 

data-imbalance, over-fitting and convergence. RF 

ensemble was applied in [68], where it exhibited an 

accuracy of almost 98%. Despite such efforts, the 

relative performance characterization confirms that the 

proposed approach exhibits superior over the state-of-

arts and hence can serve a potential, reliable and 

scalable CAD solution for CVD prediction.  
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VII. CONCLUSION  

In sync with the high pace rising cases of 

cardiovascular diseases and resulting mortality rate, 

academia-industries have been making efforts to 

achieve data mining-based automated heart disease 

prediction solution. To achieve it, the use of the 

different bio-physiological parameters including age, 

gender, cholesterol, insulin, lipids profile, stroke 

history etc. information has been applied extensively 

in the past. However, the lack of sufficient and suitable 

datasets, likelihood of class-imbalance and other 

computational complexities including local minima 

and convergence limit the reliability of the at hand 

solution. Additionally, the majority of the existing 

methods are limited due to low accuracy that confines 

its scalability towards real-time CAD solutions or 

CAD prediction solutions. Considering it as 

motivation this research focused on designing a robust 

intrinsically modified bio-physiological parameters 

driven heterogenous ensemble learning based heart 

disease (say, CVD) prediction model. As the name 

indicates the proposed CAD model emphasized on 

improving both feature as well as computational 

aspects so as to enable scalable heart disease prediction 

model. In this work, at first benchwork dataset 

encompassing age, gender, cholesterol, protein 

profiles, BMI, stoke profile or history, ECG 

information etc. to design a robust heart disease 

prediction. Following data collection, outlier analysis 

was performed on a set of thirteen characteristics. 

Word2Vec embedding was then applied to the input 

data in order to improve the features. This method 

converted the aforementioned features into an 

equivalent embedded matrix. Next, the embedded 

matrix was subjected to resampling processing 

utilising the SMOTE, SMOTE-BL, and SMOTE-ENN 

algorithms, all of which contributed to reducing the 

likelihood of class imbalance. After resampling, the 

features were passed via PCA, CCRA, and a 

significant predictor test based on the Wilcoxon Rank 

Sum Test in order to pick the features. The chosen 

feature was subsequently subjected to Min-Max 

normalisation, which aimed to reduce the chances of 

over-fitting and convergence by mapping input 

features between 0 and 1. Lastly, instead of using a 

single machine classifier as a basis for learning and 

prediction like in the past, the suggested model uses a 

heterogeneous ensemble learning approach. This 

includes base classifiers such as SVM, DT, NB, 

LOGR, LR, ANN-LM, RF, and ETC. In order to solve 

the two-class classification problem of consensus-

based CVD prediction, the suggested model used the 

maximum voting ensemble (MVE). It assigned a value 

of 0 for "normal person" and a value of 1 for "CVD 

probable person" for every case.  

The depth performance analysis revealed that the 

proposed model exhibited the highest performance in 

conjunction with SMOTE-ENN resampling, WRST 

significant predictor test-based feature selection, Min-

Max normalization and the proposed heterogenous 

MVE ensemble model. The performance 

characterisation of the proposed model for predicting 

heart disease shows that it is robust for real-world 

CAD or CDS applications, with a prediction accuracy 

of 99.93%, precision of 99.69%, recall of 99.53%, and 

F-Measure of 99.60%—all higher than the other state-

of-the-art models. 
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