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Abstract 

In this work, In this paper, we presented A novel approach for calculating a finite group's set of subgroups, cyclic 

subgroups using it to establish the quantity of all subgroups in the direct product of two groups, the Dicyclic group 

have order 4𝑛 and the Cyclic group have order 𝑝, 𝜏(𝑛)  is a total number of all divisors of  𝑛  and the summation 

of all divisors, 𝜎(𝑛). Using this, we derive a formula for the number of subgroups in the group 𝑇4𝑛 × 𝐶𝑝. We then 

use the computer program GAP to find all 𝑇4𝑛 × 𝐶𝑝 with exactly |𝑇4𝑛 × 𝐶𝑝| − t cyclic subgroups for  𝑡 ≥ 1. 

Keywords- Subgroups, Cyclic Subgroups, Finite Group 

 

1- Introduction 

CGT, or Computational Group 

Theory, is a well-established branch of 

algebra in the field of computation. While 

many symbolic algebra programs can work 

with groups to some degree, CGT specifically 

studies both theoretical and practical 

algorithms for dealing with groups. These 

algorithms have applications not only in group 

theory, but in other fields such as 

combinatorics, topology, and physics, where 

groups are used to represent symmetries. For 

these computations, two systems are 

particularly well-suited: GAP and Magma. 

Additionally, there are many other 

independent programs and smaller systems 

that are also accessible. 

In this paper for all groups are finite. 

Let's suppose we have a group 𝐺 of finite 

order 𝑛 We want to algorithmically compute 

all subgroups, and there are some ways to do 

that.  

In their respective presentations, 

Cavior and Calhoun [1] and [2] showed the 

number of all subgroups in the one of finite 

group is known the dihedral group to be 

𝜏(𝑛) + 𝜎(𝑛). Ahrafi  with authors  introduced 

a new rule to calculate the number of all 

subgroups for same of a finite groups, citing 

earlier research [12,13], this method depend 

on  divide of the number of 𝑛 = 2𝑟𝑚, where 

𝑚 = ∏ 𝑝𝜁𝑖
𝑖

𝑟
𝑖=1  to integer divisors and 

structure the table have first row on all 

divisors of 2𝑟and first column have all 

divisors of 𝑚 = ∏ 𝑝𝜁𝑖
𝑖

𝑟
𝑖=1  to find the order of 

subgroups. 

 

            K 

*    

1 2 … 𝑟 𝑟 + 1 

1 2 ⋯ 2𝑟−1 2𝑟 

1 1 2 ∗ 1 … 2𝑟−1 ∗ 1 2𝑟 ∗ 1 

𝑝 𝑝 2 ∗ 𝑝 … 2𝑟−1 ∗ 𝑝 2𝑟 ∗ 𝑝 

⋮ ⋮ ⋮ … ⋮ ⋮ 

𝑚 𝑚 2 ∗ 𝑚 … 2𝑟−1 ∗ 𝑚 2𝑟 ∗ 𝑚 
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Lazorec  with M. Trume [4,14] and 

M. S. [15,16,17] emphasized the importance 

of the cyclic subgroup count in establishing 

the total quantity of a group in [7]. They 

presented that for a finite group G with its 

poset of cyclic subgroups 𝐿1(𝐺) [1,3,6,7] the 

quantity is ∝ (𝐺) =
|𝐿1(𝐺)|

|𝐺|
 Within this 

framework, a finite group is considered 

nilpotent if ∝ (𝐺) is equal to 3/4. [2,5,8] 

Building upon this research, this paper aims to 

delve deeper into determining the number of 

subgroups in the direct product of two groups, 

specifically 𝚽 ≃ 𝑇4n × 𝐶𝑝, where 𝑝 is an odd 

of all prime number and 𝑝 is not a divisor of 

𝑛. G. James. M. Liebeck in [7] presented the 

dicyclic group by 𝑇4𝑛 = 〈𝛼, 𝛽|𝛼
2𝑛 = e, 𝛼𝑛 =

𝛽2 = 𝑒, 𝛽𝛼𝛽−1 = 𝛼−1〉 has order 4𝑛. 

This paper is divided into sections for 

easy understanding. Initially, we elaborate on 

the core concept of displaying subgroups of 

finite groups. Following that our paper 

introduces a crucial algorithm: a technique for 

exhibiting specific subgroups in a finite group 

and we demonstrate how to utilize these 

subgroups to compute head complements, 

while, we explain their application in 

computing formation-theoretic subgroups. To 

highlight the practicality of our methods, we 

present the implementation results of these 

techniques using the computer algebra system 

GAP (see Schonert et al., 1995). In 

[9,10,12,15] the final sectionwe provide a 

comprehensive analysis of the complexity 

involved.  A cyclic group 𝐺 is a group that can 

be produced by just one element 𝛼, resulting 

in every element in 𝐺 taking the form α𝑖 with 

an integer 𝑖. 𝐶𝑛 represents the cyclic group of 

order 𝑛. 

We frequently encounter cyclic 

groupings in daily life. A group that has an 

element to which an operation is done and 

which yields the entire set is called a 𝑐yclic 

group. The 𝑠implest 𝑔roup is a 𝑐yclic 𝑔roup. 

A natural pattern or a geometric design we 

create ourselves can both be examples of 

cyclic groups. In [4,6,11,16] Cyclic groups 

can also be thought of as reels since, given 

enough rotations, each item will eventually 

return to its initial location. In this research 

study, we investigate more cyclic group 

operations in number proposition, such as the 

division algorithm and Chinese remainder 

theorem, as well as other operations such as 

bell ringing, modular systems, chaotic 

proposal, 12-Hours wristwatch, and direct 

codes. But they might utilize the inventor to 

identify the quickest straightforward circuit 

for. For more information, see [5,7,9,11,12]. 

Theorem[6]:  

A cyclic group is cyclic in all of its subgroups. 

If 𝐺 = ⟨α⟩ is cyclic, then 𝛼
|𝐺|

𝑑⁄  can generate 

by only one of the subgroup have order 𝑑 for 

each divisor 𝑑 of |𝐺|. 

Theorem[6]:  

Every group of composite order has proper 

subgroups. 

2- Main Results 

The our idea in the section, we will provide a novel 

approach to determine how many subgroups there 

are in any order division order group.  𝑇4𝑛 × 𝐶𝑝. This 

algorithm will help in calculating these subgroups 

through the number of the subgroups table proposed 

in the following results, which will quickly reach the 

result while determining the order of these 

subgroups.  

We will in this section reviewer some of the 

standard of claims using information from [1, 2], 

Cavior was able to get the bulding  of the 𝑑ihedral 

group's subgroups. and shelash in 2020 computed 

the set of all subgroups of the dihedral group with 

some of cyclic groups. 

Lemma 2.1. 

Suppose that  𝑇4𝑛 be a 𝐷icyclic group have 4𝑛 

order and and 𝐶𝑝 is a  𝐶yclic finite groups, the 

presentation of the direct product of two groups is 

given by: 

𝚽 ≅ 𝑇4𝑛 × 𝐶𝑝 = 〈𝛼, 𝛽, 𝑐|𝛼
2𝑛 = e, 𝛼𝑛 = 𝛽2 =

𝛾𝑝=𝑒, 𝛽𝛼𝛽−1=𝛼−1, [𝛼, 𝛾]=[𝛽, 𝛾]=1〉 
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Proof: 

It is clear that, the Dicyclic group 𝑇4𝑛 is define by 

 𝑇4𝑛 = 〈𝛼, 𝛽|𝛼
2𝑛 = e, 𝛼𝑛 = 𝛽2 = 𝑒, 𝛽𝛼𝛽−1 =

𝛼−1〉, it is generated by  𝛼 and  𝛽 are elements, 

where order  𝑂(𝛼) = 2𝑛 and the order 𝑂(𝛽) = 4. 

So, the cyclic group is define by 𝐶n = 〈𝛾|𝛾
𝑛 = e〉, 

By defining the direct product of two groups we 

can obtain the following. 

𝑇4𝑛 × 𝐶𝑝 = 〈𝛼, 𝛽|𝛼
2𝑛 = e, 𝛼𝑛 = 𝛽2 =

𝑒, 𝛽𝛼𝛽−1=𝛼−1〉×〈𝛾|𝛾𝑝 = e〉  

                 = 〈𝛼, 𝛽, 𝛾|𝛼2𝑛 = e, 𝛼𝑛 = 𝛽2 = 𝛾𝑝 =

𝑒, 𝛽𝛼𝛽−1=𝛼−1, 𝛼𝛾=𝛾𝛼, 𝛽𝛾=𝛾𝛽〉 

                  = 〈𝛼, 𝛽, 𝛾|𝛼2𝑛 = e, 𝛼𝑛 = 𝛽2 = 𝛾𝑝 =

𝑒, 𝛽𝛼𝛽−1=𝛼−1, [𝛼, 𝛾]=[ 𝛽, 𝛾]=𝑒〉 

Hence [𝑥, 𝑦] = 𝑥𝑦𝑥−1𝑦−1 for each 𝑥, 𝑦 ∈ 𝐺. 

Thus, 𝛼𝛾 = 𝛾𝛼 ⟹ 𝛼𝛾𝛼−1𝛾−1 = 𝑒 ⟹ [𝛼, 𝛾], so 

for  𝛽𝛾 = 𝛾𝛽 ⟹ 𝛽𝛾𝛽−1𝛾−1 = 𝑒 ⟹ [𝛽, 𝛾]. 

Proposition 2.2. 

Suppose that  n = 2r∏i∈ℕ pi
ζi  be a positive integer 

number . Then:  

1) ℋ1 = 〈𝛼
𝑖〉   ∀ 𝑖|2𝑛;  

2) ℋ2 = 〈𝛼
𝑖, 𝛼𝑗𝛽〉,  ∀ 𝑖|𝑛 and 1 ≤ 𝑗 ≤ 𝑖; 

3) ℋ3 = 〈𝛼
𝑖, 𝛾〉,  ∀ 𝑖|2𝑛; 

4) ℋ4 = 〈𝛼
𝑖, 𝛼𝑗𝛽, 𝛾〉, ∀ 𝑖|𝑛 and 1 ≤ 𝑗 ≤ 𝑖.  

 

Are subgroup of  𝑇4𝑛 × 𝐶𝑝. 

Proof.  

From [6,7,8,9] the set of all subgroups of the 

dicyclic group it is given by the strucuter 

presented by  ℋ1 and ℋ2. 

Now, we will prove the structure subgroups 

for ℋ3 and ℋ4. Becouse the cyclic group 𝐶𝑝 

is a  prime order then it is has cases, in case 

one is 〈𝑒〉, case two is 〈𝛾〉, for case 〈𝑒〉, we 

obtaian on the following: 

ℋ1 × 〈𝑒〉 = ℋ1 for each 𝑖|2𝑛 

ℋ2 × 〈𝑒〉 = ℋ2 for each 𝑖|𝑛 

And for case two, suppose that 𝛼 and 𝛾 are 

elements in abelian groups ℋ1 and ℋ3 respectively 

also, their orders are limited as well as co-prime, 

then  ℋ1 × ℋ3 = 〈α, 𝛾〉 

We have the order ((𝛼, 𝛾)) =

𝑙𝑐𝑚{𝑜(𝛼), 𝑜(𝛾)} = 𝑜(𝛼)𝑜(𝛾), Consequently 

subgroup (〈𝛼, 𝛾〉) has order 𝑜(𝛼)𝑜(𝛾), which 

same request of 〈𝛼〉 × 〈𝛾〉. Presently need to 

demonstrate that 〈𝛼, 𝛾〉 = 〈𝛼〉 × 〈𝛾〉 Suppose 

that 𝜇 ∈ (𝛼, 𝛾)𝜔 be any inconsistent 

component of 〈𝛼, 𝛾〉, 𝜇 = (𝛼𝜔, 𝛾𝜔) ⟹  𝜇 ∈

𝛼𝜔, and  𝜇 ∈ 𝛾𝜔 thus (𝛼𝜔, 𝛾𝜔) ∈ 〈𝛼〉 × 〈𝛾〉 

and in final 𝜇 ∈ 〈𝛼〉 × 〈𝛾〉. 

Hence  〈𝛼, 𝛾〉 ⊆ 〈𝛼〉 × 〈𝛾〉. So   〈𝛼〉 × 〈𝛾〉  ⊆

 〈𝛼, 𝛾〉 by similarly, we can obtain on the  

〈𝛼, 𝛾〉 = 〈𝛼〉 × 〈𝛾〉 thus for each 𝑖 |2𝑛 there 

exist a cyclic subgroup of type 〈𝛼𝑖, 𝛾〉. 

ℋ1 × 〈𝛾〉 = 〈𝛼
𝑖, 𝛾〉 = ℋ3 for each 𝑖|2𝑛 

ℋ2 × 〈𝛾〉 = 〈𝛼
𝑖, 𝛼𝑗𝛽, 𝛾〉 = ℋ4 for each 𝑖|𝑛 

3-  Novel Formula in Number Theory for 

the quantity of subgroups of  𝑻𝟒𝒏 × 𝑪𝒑  

where  𝒑 ∤  𝒏 

 

Theorem 3.1 (Order Subgroup Table) 

 Suppose that  n = 2rm  is an integer number and  

m = p1
ζ1p2

ζ2 …p
j

ζj
 is the prime factorization of 𝑗 >

 1. The number subgroups order is given by the 

following table:  

1- Fisrt Part of Table: if  ℷ|𝑚, then: 

 k 1 2 3  r+2 r+3 

 * 1 2 22 ⋯ 2𝑟+1 2𝑟+2  

ℷ|𝑚 

1 
1 1 𝑛 + 1 ⋯ 𝑛

2𝑟−1
+ 1 

𝑛

2𝑟
 

⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮  
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𝑚 
1 1 𝑛

𝑚
+ 1 ⋯ 𝑛

2𝑟−1𝑚
+ 1 

𝑛

2𝑟𝑚
 

Sum First part 𝜏(𝑚) 𝜏(𝑚) 2𝑟𝜎(𝑚) + 𝜏(𝑚) ⋯ 2𝜎(𝑚) + 𝜏(𝑚) 𝜎(𝑚) 

 

2- Fisrt Part of Table: if 𝑝(ℷ|𝑚), then: 

 k 1 2 3  r+2 r+3 

 * 1 2 22 ⋯ 2𝑟+1 2𝑟+2  

𝑝(ℷ|𝑚) 

𝑝 
1 1 (

𝑛𝑝

𝑝
+ 1) ⋯  (

𝑛𝑝

2𝑟−1𝑝
+ 1) (

𝑛𝑝

2𝑟𝑝
)  

⋮ ⋮ ⋮ ⋮ ⋯ ⋮  ⋮ 

𝑚𝑝 
1 1 (

𝑛𝑝

𝑚𝑝
+ 1) ⋯  (

𝑛𝑝

2𝑟−1𝑚𝑝
+ 1) (

𝑛𝑝

2𝑟𝑚𝑝
)  

Sum Second Part 𝜏(𝑚) 𝜏(𝑚) 2𝑟𝜎(𝑚) + 𝜏(𝑚) ⋯ 2𝜎(𝑚) + 𝜏(𝑚) 𝜎(𝑚) 

 

Proof.  

In the first, we will calculate the total number 

of subgroups for columns with 𝑘 = 1,2. This 

is equivalent to the number of positive 

divisors of a positive integer 𝑚, denoted as 

𝜏(𝑚). Let 𝑡 and 𝑚 be positive integers, where 

𝑡 is a divisor of 𝑚. As 𝑡 is a divisor of 𝑚, 

there exists an integer 𝑙 such that 𝑚/𝑙 = 𝑡. 

The set {𝜌^𝑡, 𝜌^2𝑡, 𝜌^3𝑡, … , 𝜌^(𝑚 −

𝑡), 𝜌^𝑚 } will be formed when 𝜌^𝑡 is raised 

to various powers. For this set to be a 

subgroup, each power of 𝜌 must generate a 

subgroup. This means that every divisor of m 

will generate a subgroup of rotations. 

Furthermore, any multiple of 𝑡 that is not a 

divisor of m will generate the same subgroup 

as 𝜌^𝑡, and any power of 𝜌 that is relatively 

prime to 𝑚 will also generate the same 

subgroup as 𝜌. In conclusion, the number of 

subgroups for 𝑘 =  1,2 will be 𝜏(𝑚) for both 

cases. 

Now, for 𝑘 = 3,4, … , 𝑟 + 2, we can explain 

this by the  
𝑛

2𝑘−1𝑡
+ 1   for each  𝑡|𝑚 are computing by the 

following: 

𝑛

2𝑘−3
+ 1 +

𝑛

2𝑘−3𝑝
+ 1 +⋯+

𝑛

2𝑘−3𝑚
+ 1 

= 2𝑟−𝑘+3 (𝑛 +
𝑛

𝑝
+⋯+ 1) + (1 + 1 +⋯+ 1) 

= 2𝑟−𝑘+3𝜎(𝑚) + 𝜏(𝑚)  for each  3 ≤ 𝑘 ≤ 𝑟 + 2  

and for last column are equal to 𝜎(𝑚). 

Now, the summation set of the subgroups of all 

subgroups for any columns is given by: 

 𝜏(𝑚) + 𝜏(𝑚)2𝑟𝜎(𝑚) + 𝜏(𝑚) + 2𝑟−1𝜎(𝑚) +

𝜏(𝑚)…+ 2𝜎(𝑚) + 𝜏(𝑚) + 𝜎(𝑚) =

𝜎(2𝑟)𝜎(𝑚) + 𝑟𝜏(𝑚) = 𝜎(𝑛) + (𝑟 + 2)𝜏(𝑚) =

𝜎(𝑛) + 𝜏(2𝑛). 

Theorem 3.2  

Let n = 2r∏i∈ℕ pi
ζi  be a positive integer number. 

The number of subgroups of group Φ is given by:  

 Σ𝑁𝑆(Φ) = 𝜏(𝑝)(𝜏(2𝑛) + 𝜎(𝑛)) 

Proof.  

From Theorem (2.2), we can computing the all of 

the subgroups from using the number subgroups of 

table, the summation of columns of the first part we 

obtain on the following :  

𝑆𝑢𝑏(𝐹𝑖𝑟. 𝑃𝑎𝑟𝑡)  = 𝜏(𝑚) + 2𝑟𝜎(𝑚) + 𝜏(𝑚) +⋯

+ 22𝜎(𝑚) +   𝜏(𝑚) + 2𝜎(𝑚)

+ 𝜏(𝑚) + 𝜎(𝑚) 
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      = 𝜏(𝑚) +⋯+ 𝜏(𝑚)⏟            
𝑟+2

+

2𝑟𝜎(𝑚) + ⋯+ 2𝜎(𝑚) + 𝜎(𝑚) 

                  = 𝜏(2𝑟+1)𝜏(𝑚) + (2𝑟 +

2𝑟−1 +⋯+ 2 + 1)𝜎(𝑚) 

      = 𝜏(2𝑟+1)𝜏(𝑚) +

𝜎(2𝑟)𝜎(𝑚) 

 = 𝜏(2𝑛) + 𝜎(𝑛). 

Comparably, the total of all subgroups in the second 

section of Table 2.1 should equal 𝜏(𝑛) + 𝜎(𝑛). 

Since the first table contains all order subgroups that 

𝑝 does not divide and the second contains all order 

subgroups that 𝑝 divides, the number parts of Table 

2 should equal 𝜏(𝑝) = 2. 

In the final we obtain on the  

Σ𝑁𝑆(Φ) = 2(𝜏(2𝑛) + 𝜎(𝑛))

= 𝜏(𝑝)(𝜏(2𝑛) + 𝜎(𝑛)) 

 

 

Example 3.3 

In the following example, we will present an 

application for computing the number of subgroups 

order table, using the Theorem [3.1] 

Take 𝑛 = 23252 and 𝑝 = 7, thus, the direct product 

group  Φ = 𝑇1800 × 𝐶7 thave order 12600, the 

number of all subgroups are given by the following 

table: 

1) 𝑘 = 1,2,3,4 

2) The set of divisors of 𝑛 are 

{1,2,3,5,6,9,10,15,18,25,30,45,50,75,90,150,225,450} 

3) Order of subgroups table: 

4) If  ℷ|225, then : 

  

 K 1 2 3 4 

 * 1 2 22 23  

ℷ|225 

1 1 1 451 225 

3 1 1 151 75 

5 1 1 91 45 

9 1 1 51 25 

15 1 1 31 15 

25 1 1 19 9 

45 1 1 11 5 

75 1 1 7 3 

225 1 1 3 1 

Sum First part 9 9 2(403) + 9 403 

 

5) If  7(ℷ|225), then: 

 K 1 2 3 4 

 * 1 2 22 23  
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7(ℷ|225) 

7 1 1 451 225 

21 1 1 151 75 

35 1 1 91 45 

63 1 1 51 25 

105 1 1 31 15 

175 1 1 19 9 

315 1 1 11 5 

525 1 1 7 3 

1575 1 1 3 1 

Sum Second Part 9 9 2(403) + 9 403 

 

To clarify how these subgroups are calculated. We will calculate all subgroups based on the following  

Proposition [2.2]. 

From this type subgroup ℋ1 = 〈𝛼
𝑖〉   ∀ 𝑖|900 we get the following subgroups:   

Subgroups Order Subgroups Order Subgroups Order 

〈𝛼〉    900 〈𝛼15〉    60 〈𝛼75〉    12 

〈𝛼2〉    450 〈𝛼18〉  50 〈𝛼90〉    10 

〈𝛼3〉    300 〈𝛼20〉    45 〈𝛼100〉    9 

〈𝛼4〉  225 〈𝛼25〉    36 〈𝛼150〉  6 

〈𝛼5〉    180 〈𝛼30〉   30 〈𝛼180〉    5 

〈𝛼6〉    150 〈𝛼36〉    25 〈𝛼225〉    4 

〈𝛼9〉   100 〈𝛼45〉    20 〈𝛼300〉   3 

〈𝛼10〉    90 〈𝛼50〉    18 〈𝛼450〉    2 

〈𝛼12〉    75 〈𝛼60〉    15 〈e〉    1 

 

From this type subgroup 〈𝛼𝑖, 𝛼𝑗𝛽〉,  ∀ 𝑖|450 and 1 ≤ 𝑗 ≤ 𝑖; 

 we get the following subgroups:   

Subgroups Order Subgroups Order 

〈𝛼, 𝛽〉    1800 〈𝛼25, 𝛼𝑗𝛽〉1 ≤𝑗≤25   72 

〈𝛼2, 𝛼𝑗𝛽〉1 ≤𝑗≤2    900 〈𝛼30, 𝛼𝑗𝛽〉1 ≤𝑗≤30 60 

〈𝛼3, 𝛼𝑗𝛽〉1 ≤𝑗≤3 600 〈𝛼45, 𝛼𝑗𝛽〉1 ≤𝑗≤45 40 

〈𝛼5, 𝛼𝑗𝛽〉1 ≤𝑗≤5 360 〈𝛼50, 𝛼𝑗𝛽〉1 ≤𝑗≤50 36 

〈𝛼6, 𝛼𝑗𝛽〉1 ≤𝑗≤6  300 〈𝛼75, 𝛼𝑗𝛽〉1 ≤𝑗≤75 24 

〈𝛼9, 𝛼𝑗𝛽〉1 ≤𝑗≤9  200 〈𝛼90, 𝛼𝑗𝛽〉1 ≤𝑗≤90  20 

〈𝛼10, 𝛼𝑗𝛽〉1 ≤𝑗≤10  180 〈𝛼150, 𝛼𝑗𝛽〉1 ≤𝑗≤150  12 

〈𝛼15, 𝛼𝑗𝛽〉1 ≤𝑗≤15   120 〈𝛼225, 𝛼𝑗𝛽〉1 ≤𝑗≤225 8 
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〈𝛼18, 𝛼𝑗𝛽〉1 ≤𝑗≤18 100 〈𝛼450, 𝛼𝑗𝛽〉1 ≤𝑗≤450 4 

 

From this type subgroup ℋ3 = 〈𝛼
𝑖, 𝛾〉   ∀ 𝑖|900 we get the following subgroups:   

Subgroups Order Subgroups Order Subgroups Order 

〈𝛼, 𝛾〉    6300 〈𝛼15, 𝛾〉    420 〈𝛼75, 𝛾〉    84 

〈𝛼2, 𝛾〉    3150 〈𝛼18, 𝛾〉  350 〈𝛼90, 𝛾〉    70 

〈𝛼3, 𝛾〉    2100 〈𝛼20, 𝛾〉    315 〈𝛼100, 𝛾〉    63 

〈𝛼4, 𝛾〉  1575 〈𝛼25, 𝛾〉    252 〈𝛼150, 𝛾〉  42 

〈𝛼5, 𝛾〉    1260 〈𝛼30, 𝛾〉   210 〈𝛼180, 𝛾〉    35 

〈𝛼6, 𝛾〉    1050 〈𝛼36, 𝛾〉    175 〈𝛼225, 𝛾〉    28 

〈𝛼9, 𝛾〉   700 〈𝛼45, 𝛾〉    140 〈𝛼300, 𝛾〉   21 

〈𝛼10, 𝛾〉    630 〈𝛼50, 𝛾〉    126 〈𝛼450, 𝛾〉    14 

〈𝛼12, 𝛾〉    525 〈𝛼60, 𝛾〉    105 〈𝛾〉    7 

 

 

From this type subgroup 〈𝛼𝑖, 𝛼𝑗𝛽, 𝛾〉,  ∀ 𝑖|450 and 1 ≤ 𝑗 ≤ 𝑖; 

 we get the following subgroups:   

Subgroups Order Subgroups Order 

〈𝛼, 𝛽, 𝛾〉    12600 〈𝛼25, 𝛼𝑗𝛽, 𝛾〉1 ≤𝑗≤25   504 

〈𝛼2, 𝛼𝑗𝛽, 𝛾〉1 ≤𝑗≤2    6300 〈𝛼30, 𝛼𝑗𝛽, 𝛾〉1 ≤𝑗≤30 420 

〈𝛼3, 𝛼𝑗𝛽, 𝛾〉1 ≤𝑗≤3 4200 〈𝛼45, 𝛼𝑗𝛽, 𝛾〉1 ≤𝑗≤45 280 

〈𝛼5, 𝛼𝑗𝛽, 𝛾〉1 ≤𝑗≤5 2520 〈𝛼50, 𝛼𝑗𝛽, 𝛾〉1 ≤𝑗≤50 252 

〈𝛼6, 𝛼𝑗𝛽, 𝛾〉1 ≤𝑗≤6  2100 〈𝛼75, 𝛼𝑗𝛽, 𝛾〉1 ≤𝑗≤75 168 

〈𝛼9, 𝛼𝑗𝛽, 𝛾〉1 ≤𝑗≤9  1400 〈𝛼90, 𝛼𝑗𝛽, 𝛾〉1 ≤𝑗≤90  140 

〈𝛼10, 𝛼𝑗𝛽, 𝛾〉1 ≤𝑗≤10  1260 〈𝛼150, 𝛼𝑗𝛽, 𝛾〉1 ≤𝑗≤150  84 

〈𝛼15, 𝛼𝑗𝛽, 𝛾〉1 ≤𝑗≤15   840 〈𝛼225, 𝛼𝑗𝛽, 𝛾〉1 ≤𝑗≤225 56 

〈𝛼18, 𝛼𝑗𝛽, 𝛾〉1 ≤𝑗≤18 700 〈𝛼450, 𝛼𝑗𝛽, 𝛾〉1 ≤𝑗≤450 28 

 

Sum first part = 1236 subgroups 

Sum second part = 1236 subgroups 

So, we found out that there are a total of  1236+1236=2472 subgroups in Φ = 𝑇1800 × 𝐶7. 

 

By using the final formula proposed in the 

Theorem 3.2 to verify the final result, we 

notice that the number be equal to  the 

number of  calculation in the table. 

Σ𝑁𝑆(𝑇1800 × 𝐶7) = 𝜏(7)(𝜏(900)

+ 𝜎(450)) 

                    = (2)(27 + 1209) 

= 2472 

By GAP program. 

gap> n:=450; 

gap>F := FreeGroup( "a", "b" ); 

gap>T := F / [ a^(2*n), b^2/a^n, b^(-

1)*a*b*a ]; 

gap> i:=IsomorphismPermGroup(T); 

gap>c:=CyclicGroup(7); 

gap> Tc:=DirectProduct(T,c); 

gap> s:=AllSubgroups(Tc); 

gap>Size(s); 

Answer:  2472 

 

4- The number of CyclicGroup of group  

𝑻𝟒𝒏 × 𝑪𝒑  where  𝒑 ∤  𝒏 

 

In this section we will present, the cyclic group is 

one of important application group theory. 
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Proposition 4.1    

A Cyclic subgroups 〈𝑎𝑖〉, where 𝑖|2𝑛; they are 

isomorphic with 𝐶2𝑛
𝑖

  

Proof: 

Clear that the sturucture subgroup  〈𝛼𝑖〉 generated 

by one element for all 𝑖|2𝑛 is isomorphic to cyclic 

subgroup of group Φ . Assume that, there exist 𝑘 is 

an integer number divided 2𝑛, then (𝛼𝑘)
2𝑛

𝑘⁄ = 𝑒 , 

thus mean 〈𝛼𝑘〉 = { 𝑎𝑘 , 𝑎2𝑘 , … , 𝑎
2𝑛

𝑘⁄ } ≅ 𝐶2𝑛
𝑖

, 

Proposition 4.2    

A Cyclic subgroups 〈𝛼𝑘, 𝛼𝑗𝛽〉, where 𝑘 = 𝑛 and  

1 ≤ 𝑗 ≤ 𝑘 be  isomorphic to 𝐶4. 

Proof: 

Since 𝛼2𝑛 = 𝑒, this mean 𝛼𝑛 is order 2, and 𝛼𝑗𝛽 of 

order 4, thus the strucutre subgroup 〈𝛼𝑛, 𝛼𝑗𝛽〉 =

{𝑒, 𝛼𝑛, 𝛼𝑗𝛽, 𝛼𝑗+𝑛𝛽}, be isomorphic to 𝐶4 for all 

1 ≤ 𝑗 ≤ 𝑘 

〈𝛼𝑛, 𝛼1𝛽〉 = {𝑒, 𝛼𝑛, 𝛼1𝛽, 𝛼1+𝑛𝛽}, 

〈𝛼𝑛, 𝛼2𝛽〉 = {𝑒, 𝛼𝑛, 𝛼2𝛽, 𝛼2+𝑛𝛽}, 

                  . 

                  . 

                  . 

〈𝛼𝑛, 𝛼𝑛𝛽〉 = {𝑒, 𝛼𝑛, 𝛼𝑛𝛽, 𝛼𝑛+𝑛𝛽} = {𝑒, 𝛼𝑛, 𝛽3, 𝛽}, 

Proposition 4.3 

(1) 〈𝛼𝑖, γ〉 is a cyclic subgroups 

isomorphic to 𝐶𝑛𝑝
𝑖

 for all 𝑖|2𝑛  

(2) 〈𝛼𝑖, 𝛼𝑗𝛽, 𝛾〉 is a cyclic subgroups 

isomorphic to 𝐶2𝑝.  where 𝑖 = 𝑛 and 

  1 ≤ 𝑗 ≤ 𝑛. 

Proof. A cyclic subgroup is clearly the type of 

subgroup that number (1) belongs to.  It is still 

necessary to demonstrate that type (2)'s subgroup is 

cyclic.  

(𝛼𝑗𝛽𝛾)2𝑝 = 𝛼𝑗𝛽𝛾. 𝛼𝑗𝛽𝛾⋯𝛼𝑗𝛽𝛾⏟            
2𝑝  𝑡𝑖𝑚𝑒𝑠

=

((𝛼𝑗𝛽)2)𝑝((𝛾)𝑝)2 = 𝑒  

Definition 4.5 

Let 𝐺 be a finite  group.  The following are hold: 

1. Ω𝐺(𝛼)  =  {𝛽 ∈ 𝐺| ⟨𝛼, 𝛽⟩ 𝑖𝑠 𝑐𝑦𝑐𝑙𝑖𝑐},   The 

cyclicizer of an element 𝑥 of 𝐺. 

2. Ω𝐺(G) =  ⋂ Ω𝐺(𝛼)α∈G = {β ∈

 G|⟨α, β⟩ is cyclic ∀ α ∈ G} 

Proposition 4.6 

Let 𝐺  be a finite  group.  The cyclicizer of an 

element 𝛼 of 𝐺 is a subgroup of 𝐺 if and only if 𝐺 is 

a cyclic group. 

Proof: 

(⟹) Assume the cyclicizer of an element 𝛼 of 𝐺 is 

a subgroup of 𝐺 for each 𝛼 in 𝐺     

Ω𝐺(𝛼)  =  {𝛽 ∈ 𝐺| ⟨𝛼, 𝛽⟩ 𝑖𝑠 𝑐𝑦𝑐𝑙𝑖𝑐},   thus mean 𝐺 

is a cyclic group. 

(⟸) Let 𝐺 be a cyclic group, then by definition the 

cyclicizer of any elements is define by  Ω𝐺(𝛼)  =

 {𝛽 ∈ 𝐺| ⟨𝛼, 𝛽⟩ 𝑖𝑠 𝑐𝑦𝑐𝑙𝑖𝑐} is a subgroup of 𝐺. 

Theorem 4.7  

Let n = 2r∏i∈ℕ pi
ζi  be integer number. The 

number of cyclic subgroups of group Φ is given by:  

 Σ𝐶𝑦𝑆(Φ) = 𝜏(𝑝)(𝜏(2𝑛) + 𝑛) 

Proof: 

we first show that the set of all cyclic 

subgroups for each type of subgroups is 

presented in Proposition 2.2 , 

its clear that for each subgroup of 〈𝛼𝑖〉 and 

𝑖 | 2𝑛 are equal to 𝜏(2𝑛), so for the  subgroup 

of 〈𝛼𝑖, 𝑐〉 is same. 

Now,  the subgroup 〈𝛼𝑖, 𝛼𝑗𝛽〉 is a cyclic 

subgroup and isomorphic to 𝐶4 if 𝑖 = 𝑛, so so 

for the  subgroup of 〈𝛼𝑖, 𝛼𝑗𝛽, 𝑐〉 is same. 

Example 4.8 

In the following example, we will present an 

application for computing the number of subgroups 

order table, using the Theorem [3.3] 

Take 𝑛 = 23252 and 𝑝 = 7, thus, the direct product 

group  Φ = 𝑇1800 × 𝐶7 thave order 12600, the 

number of all subgroups are given by the following 

table: 
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1) 𝑘 = 1,2,3,4 

2) The set of divisors of 𝑛 are 

{1,2,3,5,6,9,10,15,18,25,30,45,50,75,90,150,225,450} 

3) Order of subgroups table: 

4) If  ℷ|225, then : 

 

 

 k 1 2 3 4 

 * 1 2 22 23  

ℷ|225 

1 1 1 451 − 

3 1 1 1 − 

5 1 1 1 − 

9 1 1 1 − 

15 1 1 1 − 

25 1 1 1 − 

45 1 1 1 − 

75 1 1 1 − 

225 1 1 1 − 

Sum First part 9 9 450 + 9  

 

5) If 7( ℷ|225), then : 

 

 k 1 2 3 4 

 * 1 2 22 23  

7(ℷ|225) 

7 1 1 451 − 

21 1 1 1 − 

35 1 1 1 − 

63 1 1 1 − 

105 1 1 1 − 

175 1 1 1 − 

315 1 1 1 − 

525 1 1 1 − 

1575 1 1 1 − 
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Sum Second Part 9 9 450 + 9  

 

To clarify how these subgroups are calculated. We will calculate all subgroups based on the following 

Theorem[3.1] 

From this type subgroup ℋ1 = 〈𝛼
𝑖〉   ∀ 𝑖|900 we get the following subgroups:   

Subgroups Order Subgroups Order Subgroups Order 

〈𝛼〉    900 〈𝛼15〉    60 〈𝛼75〉    12 

〈𝛼2〉    450 〈𝛼18〉  50 〈𝛼90〉    10 

〈𝛼3〉    300 〈𝛼20〉    45 〈𝛼100〉    9 

〈𝛼4〉  225 〈𝛼25〉    36 〈𝛼150〉  6 

〈𝛼5〉    180 〈𝛼30〉   30 〈𝛼180〉    5 

〈𝛼6〉    150 〈𝛼36〉    25 〈𝛼225〉    4 

〈𝛼9〉   100 〈𝛼45〉    20 〈𝛼300〉   3 

〈𝛼10〉    90 〈𝛼50〉    18 〈𝛼450〉    2 

〈𝛼12〉    75 〈𝛼60〉    15 〈e〉    1 

 

From this type subgroup 〈𝛼𝑖, 𝛼𝑗𝛽〉,  ∀ 𝑖|450 and 1 ≤ 𝑗 ≤ 𝑖; 

 we get the following subgroups:   

〈𝛼450, 𝛼𝑗𝛽〉1 ≤𝑗≤450 are cyclic. 

From this type subgroup ℋ3 = 〈𝛼
𝑖, 𝛾〉   ∀ 𝑖|900 we get the following subgroups:   

Subgroups Order Subgroups Order Subgroups Order 

〈𝛼, 𝛾〉    6300 〈𝛼15, 𝛾〉    420 〈𝛼75, 𝛾〉    84 

〈𝛼2, 𝛾〉    3150 〈𝛼18, 𝛾〉  350 〈𝛼90, 𝛾〉    70 

〈𝛼3, 𝛾〉    2100 〈𝛼20, 𝛾〉    315 〈𝛼100, 𝛾〉    63 

〈𝛼4, 𝛾〉  1575 〈𝛼25, 𝛾〉    252 〈𝛼150, 𝛾〉  42 

〈𝛼5, 𝛾〉    1260 〈𝛼30, 𝛾〉   210 〈𝛼180, 𝛾〉    35 

〈𝛼6, 𝛾〉    1050 〈𝛼36, 𝛾〉    175 〈𝛼225, 𝛾〉    28 

〈𝛼9, 𝛾〉   700 〈𝛼45, 𝛾〉    140 〈𝛼300, 𝛾〉   21 

〈𝛼10, 𝛾〉    630 〈𝛼50, 𝛾〉    126 〈𝛼450, 𝛾〉    14 

〈𝛼12, 𝛾〉    525 〈𝛼60, 𝛾〉    105 〈𝛾〉    7 

 

From this type subgroup 〈𝛼𝑖, 𝛼𝑗𝛽, 𝛾〉,  ∀ 𝑖|450 and 

1 ≤ 𝑗 ≤ 𝑖; 

 we get the following subgroups:   

〈𝛼450, 𝛼𝑗𝛽, 𝛾〉1 ≤𝑗≤450 

Sum first part = 1236 subgroups 

Sum second part = 1236 subgroups 

So, we found out that there are a total of  

1236+1236=2472 subgroups in Φ =

𝑇1800 × 𝐶7. 

 

By using the final formula proposed in the 

Theorem 3.2 to verify the final result, we 

notice that the number be equal to  the 

number of  calculation in the table. 

Σ𝑁𝑆(𝑇1800 × 𝐶7) = 𝜏(7)(𝜏(900)

+ 𝜎(450)) 

                    = (2)(27 + 1209) 

= 2472 

By GAP program. 

gap> n:=450; 

gap>F := FreeGroup( "a", "b" ); 
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gap>T := F / [ a^(2*n), b^2/a^n, b^(-

1)*a*b*a ]; 

gap> i:=IsomorphismPermGroup(T); 

gap>c:=CyclicGroup(7); 

gap> Tc:=DirectProduct(T,c); 

gap> s:=AllSubgroups(Tc); 

gap>x:=[]; 

gap> for t in s do 

gap> dd:=IsCyclic(t); 

gap> if dd=true then; Add(x,t), fi; od; x; 

Size(x); 

Answer:  2472 

 

5- Aplication. 

In our work, suppose that the our group is define by: 

 𝑇4𝑛 × 𝐶𝑝 = = 〈𝛼, 𝛽, 𝛾|𝛼
2𝑛 = e, 𝛼𝑛 = 𝛽2 = 𝛾𝑝 =

𝑒, 𝛽𝛼𝛽−1 = 𝛼−1, [𝛼, 𝛾] = [ 𝛽, 𝛾] = 𝑒〉  

be a finite group has order 4𝑛𝑝 and we denoted by  

Σ𝐶𝑦𝑆(𝐺) is a set of all cyclic subgroups of 𝑇4𝑛 × 𝐶𝑝. 

Here, we work on an important field of group theory. 

T˘arn˘auceanu [7,18,19] proved that a finite group 𝐺 

has |𝐺|  −  1 cyclic subgroups if and only if 𝐺 is 

isomorphic to  𝐶𝑘 , 𝑘 = 3,4  or it isomorphic to  

𝐷2𝑘 , 𝑘 = 3,4. In this  paper,  Describe the finite 

groups 𝑇4𝑛 × 𝐶𝑝 satisfying Σ𝐶𝑦𝑆(𝐺)  = |𝑇4𝑛 ×

𝐶𝑝|  −  𝑡. 

Proposition 5.1 

Suppose that where 𝑝 and 𝑞 are distinct primes and 

𝑝 <  𝑞  and 𝑇4𝑛 × 𝐶𝑝 be a finite non-abelian group 

of order 4𝑞𝑝. If 𝑛 = 𝑞, then 𝑡 = 2𝑞(2𝑝 − 1) − 8   

Σ𝐶𝑢𝑆(𝑇4𝑛 × 𝐶𝑝)  = 4𝑝𝑞 − 2𝑞(2𝑝 − 1) − 8 

Proof: 

Let  𝑛 = 𝑞 be a prime number, and p is prime 

number and  𝑝 <  𝑞 , 

By applying  Theorem 4.8, we obtain on the 

following. 

|𝑇4𝑛 × 𝐶𝑝| = 4𝑞𝑝 

Σ𝐶𝑦𝑆(𝑇4𝑛 × 𝐶𝑝) = 𝜏(𝑝)(𝜏(2𝑞) + 𝑞) 

Σ𝐶𝑦𝑆(𝑇4𝑛 × 𝐶𝑝) = 2(𝜏(2)𝜏(𝑞) + 𝑞) 

Σ𝐶𝑦𝑆(𝑇4𝑛 × 𝐶𝑝) = 2(4 + 𝑞) 

𝑡 = 4𝑞𝑝 − 2(4 + 𝑞) 

𝑡 = 2𝑞(2𝑝 − 1) − 8 

The proof is done. 

 

Proposition 5.2 

Suppose that where 𝑝 and 𝑞2 are distinct primes and 

𝑝 <  𝑞  and 𝑇4𝑛 × 𝐶𝑝 be a finite non-abelian group 

of order 4𝑞2𝑝. If 𝑛 = 𝑞2, then 𝑡 = 2𝑞2(2𝑝 − 1) −

12   

Σ𝐶𝑦𝑆(𝑇4𝑛 × 𝐶𝑝)  = 4𝑞
2𝑝 − 2𝑞2(2𝑝 − 1) − 12 

Proof: 

Let  𝑛 = 𝑞2 be a prime number, and p is prime 

number and  𝑝 <  𝑞 , 

By applying  Theorem 4.8, we obtain on the 

following. 

|𝑇4𝑛 × 𝐶𝑝| = 4𝑞
2𝑝 

Σ𝐶𝑦𝑆(𝑇4𝑛 × 𝐶𝑝) = 𝜏(𝑝)(𝜏(2𝑞
2) + 𝑞2) 

Σ𝐶𝑦𝑆(𝑇4𝑛 × 𝐶𝑝) = 2(𝜏(2)𝜏(𝑞
2) + 𝑞2) 

Σ𝐶𝑦𝑆(𝑇4𝑛 × 𝐶𝑝) = 2(6 + 𝑞
2) 

𝑡 = 4𝑞2𝑝 − 2(6 + 𝑞2) 

𝑡 = 2𝑞2(2𝑝 − 1) − 12 

The proof is done. 

 

Theorem 5.3 

Let  𝑛 = 𝑞𝑟 be a  prime number, 𝑟 ≥ 1  and 𝑝 <  𝑞 

, then 

𝑡 = 2𝑞𝑟(2𝑝 − 1) − 4𝜏(𝑞𝑟) 

Proof. 

Let  𝑛 = 𝑞𝑟 be a prime number, and p is prime 

number and  𝑝 <  𝑞 , 

By applying  Theorem 4.8, we obtain on the 

following. 

|𝑇4𝑛 × 𝐶𝑝| = 4𝑞
𝑟𝑝 
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Σ𝐶𝑦𝑆(𝑇4𝑛 × 𝐶𝑝) = 𝜏(𝑝)(𝜏(2𝑞
𝑟) + 𝑞𝑟) 

Σ𝐶𝑦𝑆(𝑇4𝑛 × 𝐶𝑝) = 2(𝜏(2)𝜏(𝑞
𝑟) + 𝑞𝑟) 

Σ𝐶𝑦𝑆(𝑇4𝑛 × 𝐶𝑝) = 2(2(𝑟 + 1) + 𝑞
𝑟) 

𝑡 = 4𝑞𝑟𝑝 − 2(2(𝑟 + 1) + 𝑞2) 

𝑡 = 2𝑞𝑟(2𝑝 − 1) − 2(2(𝑟 + 1)) 

𝑡 = 2𝑞𝑟(2𝑝 − 1) − (4(𝑟 + 1)) 

𝑡 = 2𝑞𝑟(2𝑝 − 1) − (4𝜏(𝑞𝑟)) 

Theorem 5.4 

Let  𝑛 = 2𝑟  be an even prime number, 𝑟 ≥ 1  and 

𝑝 <  𝑞 , then 

𝑡 = 2𝑟(2𝑝 − 1) − 2𝜏(2𝑟+1) 

Proof. 

Let  𝑛 = 2𝑟  be an even prime number, and p is prime 

number and  𝑝 <  𝑞 , 

By applying  Theorem 4.8, we obtain on the 

following. 

|𝑇4𝑛 × 𝐶𝑝| = 42
𝑟𝑝 = 2𝑟+2𝑝 

Σ𝐶𝑦𝑆(𝑇4𝑛 × 𝐶𝑝) = 𝜏(𝑝)(𝜏(22
𝑟) + 2𝑟) 

Σ𝐶𝑦𝑆(𝑇4𝑛 × 𝐶𝑝) = 2(𝜏(2
𝑟+1) + 2𝑟) 

Σ𝐶𝑦𝑆(𝑇4𝑛 × 𝐶𝑝) = 2((𝑟 + 2) + 2
𝑟) 

𝑡 = 2𝑟+2𝑝 − 2((𝑟 + 2) + 2𝑟) 

𝑡 = 2𝑟(22𝑝 − 1) − 2((𝑟 + 2)) 

𝑡 = 2𝑟(22𝑝 − 1) − (2𝜏(2𝑟+1)) 

Theorem 5.5 

If 𝑛 be a positive integer number , then 

𝛴𝑁𝑆(𝑇4𝑛 × 𝐶𝑝) ≤  𝛴𝐶𝑦𝑆(𝑇4𝑛 × 𝐶𝑝) 

Proof. 

In this proof, we must spilt to two cases: 

Case 1, Suppose that 𝑛 = 1, then it is true.  

𝛴𝑁𝑆(𝑇4𝑛 × 𝐶𝑝) =  𝛴𝐶𝑦𝑆(𝑇4𝑛 × 𝐶𝑝) 

Case 2, 

Suppose that 𝑛 > 1, thus,  

𝛴𝑁𝑆(𝑇4𝑛 × 𝐶𝑝) = 𝜏(𝑝)(𝜏(2𝑛) + 𝜎(𝑛)) 

and 

𝛴𝐶𝑦𝑆(𝑇4𝑛 × 𝐶𝑝) = 𝜏(𝑝)(𝜏(2𝑛) + 𝑛 

Suppose that are equal, we obtain on the  

𝜏(𝑝)(𝜏(2𝑛) + 𝜎(𝑛)) = 𝜏(𝑝)(𝜏(2𝑛) + 𝑛) 

By using cancel law  obtain on the  𝜎(𝑛) = 𝑛 it is 

not true for 𝑛 > 1, 

Thus 𝜎(𝑛) < 𝑛. 

Corollary 5.6 

If 𝑛 be a positive integer number , then 

𝛴𝑁𝑆(𝑇4𝑛 × 𝐶𝑝) ≤ |𝑇4𝑛 × 𝐶𝑝| − 𝑡 

For all 𝑡 ∈  ℕ. 

Proof: 

Directly from Theorem 5.5 

𝛴𝑁𝑆(𝑇4𝑛 × 𝐶𝑝) ≤  𝛴𝐶𝑦𝑆(𝑇4𝑛 × 𝐶𝑝) 

and by theorem 2.1 in [16] 

Σ𝐶𝑦𝑆(𝐺)  = |𝑇4𝑛 × 𝐶𝑝|  −  𝑡 

We obtain on the  

𝛴𝑁𝑆(𝑇4𝑛 × 𝐶𝑝) ≤  𝛴𝐶𝑦𝑆(𝑇4𝑛 × 𝐶𝑝)

= |𝑇4𝑛 × 𝐶𝑝|  −  𝑡 

𝛴𝑁𝑆(𝑇4𝑛 × 𝐶𝑝) ≤  |𝑇4𝑛 × 𝐶𝑝|  −  𝑡 
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