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Abstract

In this work, In this paper, we presented A novel approach for calculating a finite group's set of subgroups, cyclic
subgroups using it to establish the quantity of all subgroups in the direct product of two groups, the Dicyclic group
have order 4n and the Cyclic group have order p, t(n) is a total number of all divisors of n and the summation
of all divisors, a(n). Using this, we derive a formula for the number of subgroups in the group T,,, X C,,. We then
use the computer program GAP to find all T,,, x C, with exactly |T,,, x C,| — t cyclic subgroups for t > 1.
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1- Introduction

CGT, or Computational Group
Theory, is a well-established branch of
algebra in the field of computation. While

many symbolic algebra programs can work
with groups to some degree, CGT specifically

studies  both  theoretical and  practical
algorithms for dealing with groups. These
algorithms have applications not only in group
theory, but in other fields such as
combinatorics, topology, and physics, where
groups are used to represent symmetries. For
these computations, two systems are
particularly  well-suited: GAP and Magma.
Additionally, there are many other
independent programs and smaller systems

that are also accessible.

In this paper for all groups are finite.
Let's suppose we have a group G of finite

order n We want to algorithmically compute
all subgroups, and there are some ways to do
that.

In  their  respective  presentations,
Cavior and Calhoun [1] and [2] showed the
number of all subgroups in the one of finite
group is known the dihedral group to be
t(n) + o(n). Ahrafi with authors introduced
a new rule to calculate the number of all
subgroups for same of a finite groups, citing
earlier research [12,13], this method depend
on divide of the number of n = 2"m, where

m = [Il_,p%, to integer divisors  and
structure the table have first row on all
divisors of 2"and first column have all

divisors of m = [[i_, p, to find the order of
subgroups.
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Lazorec  with M. Trume [4,14] and
M. S. [15,16,17] emphasized the importance
of the cyclic subgroup count in establishing
the total quantity of a group in [7]. They
presented that for a finite group G with its
poset of cyclic subgroups L,(G) [1,3,6,7] the

quantity is o (G) = % Within  this
framework, a finite group is considered
nilpotent if o (G) is equal to 3/4. [2,58]

Building upon this research, this paper aims to
delve deeper into determining the number of
subgroups in the direct product of two groups,
specifically @ =~ T,, X C,,, where p is an odd
of all prime number and p is not a divisor of
n. G. James. M. Liebeck in [7] presented the
dicyclic group by T,, = (a,Bla’" =ea™ =
p? =e,faf™t = a~1) has order 4n.

This paper is divided into sections for
easy understanding. Initially, we elaborate on
the core concept of displaying subgroups of
finite groups. Following that our paper
introduces a crucial algorithm: a technique for
exhibiting specific subgroups in a finite group

and we demonstrate how to utilize these
subgroups to compute head complements,
while, we explain their application in

computing formation-theoretic subgroups. To
highlight the practicality of our methods, we
present the implementation results of these
techniques using the computer algebra system

GAP (see Schonert et al., 1995). In
[9,10,12,15] the final sectionwe provide a
comprehensive analysis of the complexity

involved. A cyclic group G is a group that can
be produced by just one element «, resulting
in every element in G taking the form o with
an integer i. C, represents the cyclic group of
order n.

We  frequently  encounter cyclic
groupings in daily life. A group that has an
element to which an operation is done and
which yields the entire set is called a cyclic
group. The simplest group is a cyclic group.
A natural pattern or a geometric design we
create ourselves can both be examples of
cyclic groups. In [4,6,11,16] Cyclic groups
can also be thought of as reels since, given
enough rotations, each item will eventually
return to its initial location. In this research
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study, we investigate more cyclic group
operations in number proposition, such as the
division algorithm and Chinese remainder
theorem, as well as other operations such as
bell  ringing, modular  systems, chaotic
proposal, 12-Hours wristwatch, and direct
codes. But they might utilize the inventor to
identify the quickest straightforward circuit
for. For more information, see [5,7,9,11,12].

Theorem[6]:

A cyclic group is cyclic in all of its subgroups.

If G =(a) is cyclic, then alGl/d can generate
by only one of the subgroup have order d for
each divisor d of |G].

Theorem[6]:

Every group of composite order has proper
subgroups.

2- Main Results

The our idea in the section, we will provide a novel
approach to determine how many subgroups there
are in any order division order group. Ty, X C,. This
algorithm will help in calculating these subgroups
through the number of the subgroups table proposed
in the following results, which will quickly reach the
result while determining the order of these
subgroups.

We will in this section reviewer some of the
standard of claims using information from [1, 2],
Cavior was able to get the bulding of the dihedral
group's subgroups. and shelash in 2020 computed
the set of all subgroups of the dihedral group with
some of cyclic groups.

Lemma 2.1.

Suppose that T,,, be a Dicyclic group have 4n
order and and C,, is a Cyclic finite groups, the
presentation of the direct product of two groups is
given by:

® =T, XC,=(a,p,cla* =ea™=p*=
yP=e,faf~t=a, [, v]=[B,v]=1)
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Proof: Now, we will prove the structure subgroups
for 3; and #,. Becouse the cyclic group G,
is a prime order then it is has cases, in case
one is (e), case two is (y), for case (e), we
obtaian on the following:

Itis clear that, the Dicyclic group Ty,, is define by
Ty = (@, Bla’" =ea™ =p* =¢ fap™ =
a1y, itis generated by «a and p are elements,
where order O(a) = 2n and the order 0(B) = 4.

So, the cyclic group is define by C, = (y|y™ = e), H, X (e) = 3, for each i|2n
By defining the direct product of two groups we
can obtain the following. 3, x (e) = H, for each i|n
Tyn X C, = (@, Bla®" = e,a” = f2 = And for case two, suppose that & and y are
e, Baf~r=a " 1yx(y|y? = e) elements in abelian groups #; and H; respectively
also, their orders are limited as well as co-prime,
={(a,f,yla*" =ea™=p?=y? = then H; X H; = (o, y)
e, faf t=a"1, ay=ya, By=yB) We have the order (o, 7)) =
lem{o(a),0(y)} = o(a)o(y), Consequently
=(a,p,y|la*" =ea=p*=y? = subgroup ({(a,y)) has order o(a)o(y), which
e,faf'=a!, [a,v]=[ B,v]=e) same request of (a) X (y). Presently need to

demonstrate that (a,y) = (a) X {y) Suppose
that u€ (a,y)? be any inconsistent
component of (a,¥), u=(@®y®)= ue

Hence [x,y] = xyx~1y~! foreach x,y € G.

Thus, ay = ya = aya 'y ' =e = [a,y], 50

for By =y = ByB vy ' =e= [B7]. a®, and puey® thus (a®,y®) € {a)Xx(y)
and in final u € {(a) X (y).
Proposition 2.2. Hence (a,y) S {(a) X (y). So {a) X {y) <
{(a,y) by similarly, we can obtain on the
Suppose that n = 2" []ien pfi be a positive integer (a,y) = (@) x {y) thus for each i|2n there
number . Then: exist a cyclic subgroup of type {(a',y).
; H, x (y) = (a!,y) = H; for each i|2n
1) H, =(a") Vi|2n;
2) H,={(a',a/B), Vilnand1 < <i; H, x {y) = (a},a’B,y) = H, for each i|n
3) H; ={a'y), Vil2n;
4) H,={(a',alB,y),Vinand1<j<i. 3- Novel Formula in Number Theory for
the quantity of subgroups of T4, X C,
Are subgroup of Ty, X C,. where pt n
Proof. Theorem 3.1 (Order Subgroup Table)
From [6,7,8,9] the set of all subgroups of the Suppose that n = 2"m is an integer number and
dicyclic group it is given by the strucuter m = pilpgz mpj(i is the prime factorization of j >

resented by H, and ¢,.
P ¥y Jh 2 1. The number subgroups order is given by the

following table:

1- Fisrt Part of Table: if 3|m, then:

k 1 2 3 r+2 r+3
* 1 2 22 2r+1 2r+2
1 1 n+1
1 2r—1 + 1 ?
Am
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Proof.

In the first, we will calculate the total number
of subgroups for columns with k = 1,2. This
is equivalent to the number of positive
divisors of a positive integer m, denoted as
t(m). Let t and m be positive integers, where
t is a divisor of m. As t is a divisor of m,
there exists an integer [ such that m/l =t.
The set {p"t,p"2t,p"3t, ..., p (M —
t),p"m} will be formed when p*t is raised
to various powers. For this set to be a
subgroup, each power of p must generate a
subgroup. This means that every divisor of m
will generate a subgroup of rotations.
Furthermore, any multiple of t that is not a
divisor of m will generate the same subgroup
as p”t, and any power of p that is relatively
prime to m will also generate the same
subgroup as p. In conclusion, the number of
subgroups for k = 1,2 will be z(m) for both
cases.

Now, for k=34,..,r+2, we can explain
this by the
ﬁ+ 1 for each t|m are computing by the
following:

n n n
et 75, 1ttt 1
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1 1 21 S .
m m 2" lm 2'm
Sum First part t(m) t(m) 2"g(m) + t(m) 20(m) + 7(m) o(m)
2-  Fisrt Part of Table: if p(3|m), then:
k 1 2 3 r+2 r+3
* 1 2 22 2T+1 2r+2
1 1 np np .
p (? + 1) (ﬂ + 1) (er
r(3Im)
1 1 np _np (=22
mp (mp +1) (Zr_lmp +1) 2"mp
Sum Second Part T(m) T(m) 2"o(m) + t(m) 20(m) + t(m) o(m)

n
=zr-k+3(n+5+---+1)+(1+1+---+1)

=2""k3g(m) + t(m) foreach 3 <k <r+2
and for last column are equal to a(m).

Now, the summation set of the subgroups of all
subgroups for any columns is given by:

(m) + 1(m)2"a(m) + t(m) + 2" a(m) +
t(m) ..+ 20(m) + t(m) + a(m) =
c(2Mo(m) + rt(m) = o(n) + (r + 2)t(m) =
o(n) + t(2n).

Theorem 3.2

Letn = 2" [[ien pfi be a positive integer number.
The number of subgroups of group @ is given by:

INS(P) = 7(p)(t(Zn) + a(n))
Proof.

From Theorem (2.2), we can computing the all of
the subgroups from using the number subgroups of
table, the summation of columns of the first part we
obtain on the following :

Sub(Fir.Part) =t(m) + 2"a(m) + t(m) + -
+2%20(m) + t(m) + 20(m)
+t(m) + o(m)
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=t(m) +--+1(m) +
2"g(m) + -+ 20(m) + J(m)H

=t(2"YHr(m) + 2" +
2" 4+ 4+ 24+ Do(m)

=t(2" ) (m) +
o(2M)a(m)

= 1(2n) + a(n).

Comparably, the total of all subgroups in the second
section of Table 2.1 should equal t(n)+ o(n).
Since the first table contains all order subgroups that
p does not divide and the second contains all order
subgroups that p divides, the number parts of Table
2 should equal z(p) = 2.

In the final we obtain on the

INS(®) = 2(x(2n) + o(n))

Example 3.3

In the following example, we will present an
application for computing the number of subgroups
order table, using the Theorem [3.1]

Take n = 23252 and p = 7, thus, the direct product
group @ = Tyg00 X C;, thave order 12600, the
number of all subgroups are given by the following
table:

1) k=1234

2) The set of divisors of n are

{1,2,3,5,6,9,10,15,18,25,30,45,50,75,90,150,225,450}

3) Order of subgroups table:
4) If 1|225, then:

=1(p)(x(2n) + o(n))
K 1 2 3 4
* 1 2 2z 2
1 1 1 451 225
3 1 1 151 75
5 1 1 91 45
9 1 1 51 25
3225 15 1 1 31 15
25 1 1 19 9
45 1 1 11 5
75 1 1 7 3
225 1 1 3 1
Sum First part 9 9 2(403) +9 403
5) If 7(3|225), then:
K 1 2 3 4
* 1 2 22 283
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7 1 1 451 225
21 1 1 151 75
35 1 1 91 45
63 1 1 51 25
7(3]1225) 105 1 1 31 15
175 1 1 19 9
315 1 1 11 5
525 1 1 7 3
1575 1 1 3 1
Sum Second Part 9 9 2(403) +9 403

To clarify how these subgroups are calculated. We will calculate all subgroups based on the following

Proposition [2.2].

From this type subgroup H; = (a') V i|900 we get the following subgroups:

Subgroups Order Subgroups Order Subgroups Order
(a) 900 (a®) 60 (a’%) 12
(a?) 450 (a'®) 50 (a®) 10
(a®) 300 (a?) 45 (a100) 9
(a*) 225 (a?5) 36 (a50) 6
(a®) 180 (a3%) 30 (a180) 5
(ab) 150 (a3%) 25 (a??5) 4
(a®) 100 (a*®) 20 (a300) 3

(a'?) 90 (a®%) 18 (a*5%) 2
(al?) 75 (a®0) 15 {e) 1
From this type subgroup {a‘,a’/B), Vi|450and 1 < j < i;
we get the following subgroups:
Subgroups Order Subgroups Order
(a,B) 1800 (a®,a’B), <j<25 72
(a’z’a’jﬁh <js2 900 (a30'aj'3>1 <j<30 60
(a’3'a’jﬁ>1 <js3 600 (a45'ajﬂ>1 <j<45 40
(as,ajﬁh <j<5 360 (a*°, ajﬂh <j<50 36
(aﬁfajﬁ>1 <j<6 300 (a75,aj,8)1 <j<75 24
(a9’ajﬂ)1 <j<9 200 <a9o,aj'8)1 <j<90 20
(alo'ajﬂh <j<10 180 (a150’aj'8>1 <j<150 12
(als'ajﬂh <j<15 120 (azzs,ajﬂh <j<225 8
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l (aw.ajﬂ>1 <js18 ‘ 100 l (0(450,ajﬁ)1 <j<450 4

From this type subgroup Hs = (a',y) V i|900 we get the following subgroups:

Subgroups Order Subgroups Order Subgroups Order
{a,7) 6300 (a'>,y) 420 (a’7%,y) 84
(a?,y) 3150 (a8, y) 350 (a®,y) 70
(ad,7) 2100 (a?0,y) 315 (a0 y) 63
(a*,y) 1575 (a?3,y) 252 (a'0,y) 42
(a®,y) 1260 (a30,y) 210 (a'80y) 35
(ab,y) 1050 (a38,y) 175 (a??5,y) 28
(a®,7) 700 (a*®,y) 140 (a390,y) 21
(a?,y) 630 (a0, y) 126 (a*50y) 14
(a'?,y) 525 (a0, y) 105 ) 7

From this type subgroup {a‘,a’B,y), Vi|450and 1 < j < i;

we get the following subgroups:

Subgroups Order Subgroups Order

(o, B,7) 12600 <a25»aj.8: Yh <j<25 504

(a2, a/B,y); <j<2 6300 (@3, B, y) <j<30 420
(a3, a/B,v), <j<3 4200 (a*s,a/B,y) <j<as 280
(a5, a/B,y)1 <jes 2520 (@, a’B, v} <j<s0 252
(@b a/B,y)1 <j<e 2100 (@”,alB,y)1 <jers 168
(a®, a/B,¥)1 <jso 1400 (@®,a’B,¥)1 <j<o0 140

(@, alB,v) <j<10 1260 (@, a’ B, ¥)1 <jers0 84

(@', a/B,y) <j<15 840 (@®,a/B,v) <j<225 56

(a8, a’/B,v)1 <js1s 700 (a®,alB,¥)1 <jsaso 28

Sum first part = 1236 subgroups
Sum second part = 1236 subgroups
So, we found out that there are a total of 1236+1236=2472 subgroups in ® = T;g¢¢ X C;.

By using the final formula proposed in the gap> i:=IsomorphismPermGroup(T);
Theorem 3.2 to verify the final result, we gap>c:=CyclicGroup(7);
notice that the number be equal to the gap> Tc:=DirectProduct(T,c);
number of calculation in the table. gap> s:=AllSubgroups(Tc);
EINS(Tyg90 X C;) = t(7)(r(900) gap>Size(s);
+ 0(450)) Answer: 2472

= (2)(27 + 1209)

= 2472 4-  The number of CyclicGroup of group
By GAP program. T4n X C, Where p 4 n
gap> n:=450;
gap>F := FreeGroup( "a", "b"); In this section we will present, the cyclic group is
gap>T :=F /[ a®(2*n), b"2/a™n, b(- one of important application group theory.
1)*a*b*a];
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Proposition 4.1

A Cyclic subgroups (a‘), where i|2n; they are
isomorphic with Czn

Proof:

Clear that the sturucture subgroup (a‘) generated
by one element for all i|2n is isomorphic to cyclic
subgroup of group @ . Assume that, there exist k is
an integer number divided 2n, then (a")zn/k =e,

2
thus mean (a*) = { ak, a2, ...,a" 7k} = Can,
i

Proposition 4.2

A Cyclic subgroups (a*, a’8), where k = n and
1 < j < k be isomorphic to C,.

Proof:

Since a" = e, this mean a™ is order 2, and a’/g of
order 4, thus the strucutre subgroup (a™, a’/B) =
{e,a™ a’B, a’™ B}, be isomorphic to C, for all
1<j<k

(a,n’ alﬁ) — {e’ an,alﬁ' (Xl+nﬁ},
(a,n' a2ﬁ> — {e’ an, aZB, a2+n/3}7

(a™,a"B) ={e,a", a"B,a™"p} = {e,a", B> B}
Proposition 4.3

(1) (at,y) is a cyclic subgroups
isomorphic to Cnp for all i|2n
A

(2) (a',a’B,y) is acyclic subgroups
isomorphic to C,,. where i = n and
1<j<n.
Proof. A cyclic subgroup is clearly the type of
subgroup that number (1) belongs to. It is still
necessary to demonstrate that type (2)'s subgroup is
cyclic.

(a/By)?* = alBy.a’By - alPy =

2p times

(@B ()P =e

Definition 4.5

Let G be a finite group. The following are hold:
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1. Qs(a) = {B€G|(a,pB)iscyclic}, The
cyclicizer of an element x of G.
2. 06(G) = NeecQs(a) ={B €
G|{a, B) is cyclicV a € G}
Proposition 4.6

Let G be a finite group. The cyclicizer of an
element « of G is asubgroup of G ifand only if G is
a cyclic group.

Proof:

(=) Assume the cyclicizer of an element « of G is
a subgroup of G foreach a in G

Qs (@) = {B € G| {(a,B)is cyclic}, thus mean G

is a cyclic group.

(&) Let G be a cyclic group, then by definition the
cyclicizer of any elements is define by Q;(a) =
{B € G| (a, B) is cyclic} is a subgroup of G.

Theorem 4.7

Letn = 2" [fien pfi be integer number. The
number of cyclic subgroups of group @ is given by:

ECyS(P) = 1(p)(r(2n) + n)
Proof:

we first show that the set of all
subgroups for each type of
presented in Proposition 2.2 ,

cyclic
subgroups is

its clear that for each subgroup of (a‘) and
i|2n are equal to (2n), so for the subgroup
of (a!, c) is same.

Now, the subgroup (a‘,a’B) is a cyclic
subgroup and isomorphic to C, if i =n, so so
for the subgroup of (a', @/, c) is same.

Example 4.8

In the following example, we will present an
application for computing the number of subgroups
order table, using the Theorem [3.3]

Take n = 23252 and p = 7, thus, the direct product
group @ = Tyg90 X C, thave order 12600, the
number of all subgroups are given by the following
table:
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1) k=1234 3) Order of subgroups table:
2) The set of divisors of n are 4) If 3225, then :
{1,2,3,5,6,9,10,15,18,25,30,45,50,75,90,150,225,450}

k 1 2 3 4
* 1 2 22 23
1 1 1 451 -
3 1 1 1 —
5 1 1 1 —
9 1 1 1 -
3225 15 1 1 1 -
25 1 1 1 -
45 1 1 1 -
75 1 1 1 -
225 1 1 1 -
Sum First part 9 9 450+9
5) If 7(3]225), then:
k 1 2 3 4
* 1 2 22 28
7 1 1 451 -
21 1 1 1 -
35 1 1 1 —
63 1 1 1 —
f3]225) 105 1 1 1 -
175 1 1 1 -
315 1 1 1 -
525 1 1 1 -
1575 1 1 1 —
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Sum Second Part 9 9 450+ 9

To clarify how these subgroups are calculated. We will calculate all subgroups based on the following
Theorem([3.1]

From this type subgroup H; = (a') V i|900 we get the following subgroups:

Subgroups Order Subgroups Order Subgroups Order
{(a) 900 (a'®) 60 (a’%) 12

(a?) 450 (a®) 50 (a®) 10
(a?) 300 (a?%) 45 (a100) 9
(a*) 225 (a?®) 36 (at50) 6
(a®) 180 (a3%) 30 (a189) 5
(a®) 150 (a3%) 25 (a??5) 4
(a®) 100 (a*®) 20 (a300) 3
(a?) 90 (a>%) 18 (a*5%) 2
(a?) 75 (a®0) 15 {e) 1

From this type subgroup {a‘,a’/B), Vi|450and 1 < j < i;

we get the following subgroups:

(a**°, @/ B); <jeaso are cyclic.

From this type subgroup Hs = (a’,¥) V i|900 we get the following subgroups:

Subgroups Order Subgroups Order Subgroups Order
{a,y) 6300 (a'®,y) 420 (a’7%,y) 84
(a?,y) 3150 (a18,y) 350 (a®,y) 70
(a3,y) 2100 (a?,y) 315 (a0, y) 63
(a*,y) 1575 (a?3,y) 252 (a*0,y) 42
(a®,y) 1260 (a30,y) 210 (a'80,y) 35
(ab,y) 1050 (a3, y) 175 (a??5,y) 28
(a®,y) 700 (a*S,y) 140 (a399 y) 21

(a0, y) 630 (a0, y) 126 (a*5%,y) 14
(a'?,y) 525 (a0, y) 105 (y) 7

From this type subgroup {(a’,a’/B,y), Vi|450 and

1<j<i

By using the final formula proposed in the
Theorem 3.2 to verify the final result, we
notice that the number be equal to the

we get the following subgroups: number of calculation in the table.

(a®0,a/B,y) <j<450

Sum first part = 1236 subgroups

Sum second part = 1236 subgroups

So, we found out that there are a total of
1236+1236=2472 subgroups in @ =

Tig00 X C7.
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INS(T1g00 X C7) = 7(7)(z(900)
+ d(450))
= (2)(27 +1209)
= 2472
By GAP program.
gap> n:=450;
gap>F := FreeGroup( "a", "b");
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gap>T =
D*a*b*a];
gap> i:=IsomorphismPermGroup(T);
gap>c:=CyclicGroup(7);

gap> Tc:=DirectProduct(T,c);

gap> s:=AllSubgroups(Tc);

gap>x:=[l;

gap> for tinsdo

gap> dd:=IsCyclic(t);

gap> if dd=true then; Add(xt), fi; od; x;
Size(x);

Answer: 2472

F /[ a2*n), br2/atn, br(-

5- Aplication.
In our work, suppose that the our group is define by:

T4_n><Cp - — (a’ﬁ’ylazn — e’an zﬁz :yp =
e,pap™t =al[a,y]l = [B.y] =€)

be a finite group has order 4np and we denoted by
ICyS(G) isasetof all cyclic subgroups of Ty, X C,,.
Here, we work on an important field of group theory.
T arn"auceanu [7,18,19] proved that a finite group G
has |G| — 1 cyclic subgroups if and only if G is
isomorphic to  C,k = 3,4 or it isomorphic to
Dy, k = 3,4. In this paper, Describe the finite
groups Ty, X C,, satisfying ZCyS(G) = |Tyn X
Gyl — t.

Proposition 5.1

Suppose that where p and q are distinct primes and
p < q and T, X C, be a finite non-abelian group
of order 4qp. If n = q,thent = 2q(2p — 1) — 8

ZCuS(Tyn X Cp) =4pq —2q(2p—1) —8
Proof:

Let n=gq be a prime number, and p is prime
numberand p < q,

By applying Theorem 4.8, we obtain on the
following.

|T4n X Cpl =4qp
2CYS (T % Cy) = T(0)(7(29) + q)
2CyS(Tyn X C,) = 2(z(2)7(q) + q)

2CYS(Tyn X Cp) = 2(4 + q)
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t=4qp—2(4+q)
t=2q(2p—-1)—-8
The proof is done.
Proposition 5.2

Suppose that where p and g2 are distinct primes and
p < q and T,, X C, be a finite non-abelian group
of order 4¢°p. If n = q%, thent = 2¢*(2p — 1) —
12

ICyS(Tyn X Cp) =4q°p —2q°(2p—1)—12
Proof:

Let n =gq? be a prime number, and p is prime
numberand p < q,

By applying Theorem 4.8, we obtain on the
following.

|Tun % C,| = 4¢%p
2CyS(Tan % Cp) = T(0)(1(24%) + ¢°)
2CyS(Tan % C) = 2(2(2)2(a%) + )
2CYS(Tyn X C,) = 2(6 + q%)
t=4q%* —2(6+q?
t=2q*’QRp—-1)—12

The proof is done.

Theorem 5.3

Let n=q" bea primenumber,r > 1 andp < q
, then

t=2q"2p—1) —47(q")
Proof.

Let n=gq" be a prime number, and p is prime
numberand p < ¢q,

By applying Theorem 4.8, we obtain on the
following.

|T4n X Cp| =4q"p
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2CyS(Tun X Cy) = T(P)(T(24") + q")
2CyS(Tan % C,) = 2(x(2)7(q") + q")
2CYS(Tyn X C,) =2Q2(r + 1) + q")
t=4q"p - 22 +1)+4q?
t=2q"(2p—1) - 22 + 1))
t=2q"2p—-1)—-(4(r+1D)
t=2q"(2p—1) - (41(q")
Theorem 5.4

Let n = 2" be an even prime number, r > 1 and
p < q,then

t=2"Qp—1) — 212"
Proof.

Let n = 2" be an even prime number, and p is prime
numberand p < q,

By applying Theorem 4.8, we obtain on the
following.

|Tyn X Cp| =42"p = 27%p
2CYS(Tyn X C,) = T(p)(x(227) + 27)
2CYS(Tyn X Cp) = 2(z(271) +27)
2CYS(Tyn X C,) = 2((r +2) +27)
t=2""2p-2((r+2)+2")
t=2"(22p—1) = 2((r + 2))
t=2"(2% —1) — (27(2"*1))
Theorem 5.5
If n be a positive integer number , then
INS(Typ X C,) < ZCyS(Tyn X Cp)
Proof.
In this proof, we must spilt to two cases:
Case 1, Suppose that n = 1, then it is true.

EINS(Tyn X Cp) = ZCyS(Tyn X C,)
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Case 2,
Suppose that n > 1, thus,
INS(Typ X Cp) =1(p)(t(2n) + a(n))
and
Z’CyS(TM1 X Cp) =1t(p)(t(2n) +n
Suppose that are equal, we obtain on the
©(p)(z(2n) + a(n)) = ©(p)(z(2n) + n)

By using cancel law obtain on the o(n) =n itis
not true forn > 1,

Thus o(n) < n.
Corollary 5.6
If n be a positive integer number , then
INS(Tyn X Cp) < |Tyn X G| — ¢
Forallt € N.
Proof:
Directly from Theorem 5.5
ENS(Typ X C,) < 2CyS(Tyn X Cp)
and by theorem 2.1 in [16]
ZCYS(G) = |Tyn X Cp| — ¢
We obtain on the

EINS(Tyn X C,) < ZCyS(Tyn X Cp)
= |Tap X Cpl =t

INS(Tyn X Cp) < |Tyn X Cp| — ¢
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