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Abstract 

This research proposes the Split-Window0 (SW) and Mono-Window0 (MW) algorithms for obtaining Land 

Surface Temperature (LST) from Landsat-09 TIRS-02 data. Given this, there are several chances to research land 

dynamics using remote sensing techniques thanks to LANDSAT data. Compared to other conventional ways, this 

one is not only less time-consuming but also far more efficient. It also costs less. The present Tigris River study 

was carried out in the Wasit region of Iraq, where we measured the LST difference over a 136(km) section of the 

Tigris River in 2024 for both the winter and spring seasons. The land surface emissivity (LSE) determination was 

carried out with the help of the NDVI threshold value. The spatial distribution of LST for winter using an MW 

was (10.926 − 12.357°𝐶), RMSE of (1.9526°𝐶), and the Bias of (1.9436°C), while for spring, it was (14.589 −

16.7434°C), RMSE0 of (1.2864°C), and the Bias of (1.2164°𝐶). The spatial distribution0 of LST using a SW in 

winter was (9.275 − 10.651°𝐶), RMSE of (0.4684°C), and the Bias (0.3660°C), and in spring, it was (13.4141 −

15.8087°C), RMSE of (0.5231°C), and the Bias of (0.2259°C). The regression study between SW and MW 

algorithms for LST retrieval shows an R2 value of 0.844 in winter and an R2 value of 0.9819 in spring. The results 

were validated by juxtaposing0 them with LST measurements taken at the twelve research sites during the satellite 

picture acquisition for both seasons. In conclusion, the proposed split window algorithm gave very similar results 

with little difference from the in situ recorded results and is predictable to be an authoritative method for retrieval 

LST0 from Landsat-9 TIRS-02data. 

Keywords: Remote Sensing (RS), Land Surface Temperature (LST), Landsat-9 thermal infrared0 sensor-2 

(TIRS-2) data, Split-Window0 Algorithm (SW), Mono-Window Algorithm (MW). 

1. Introduction 

Iraq is facing a significant problem, otherwise called 

climatic change, and the effects of global 

warming[1]. Land Surface Temperature0 (LST) is 

regarded as one of the paramount indices of climate 

fluctuation on a global scale. It is employed in 

numerous applications, including hydrological, 

meteorological, climatological, heat balance 

research, and vegetation water stress[2]. There is 

tremendous potential for remote sensing in the fields 

relating to climatology, hydrology, agriculture, and 

natural resource management; one of the most 

important utilization of remote sensing is in 

estimating the change in Earth's surface 

temperature[2, 3]. Remote sensing as a technology 

provides input towards efficient and effective 

collection of information on Earth's surface 

temperature, enhancing information on 

environmental and climate change and enhancing 

decision-making affecting many important fields. 

There is a need to use remote sensing methods to 

evaluate the spatial distribution of stream 

temperatures of rivers and lakes in a way that 

correlates with water quality problems [4, 5]. LST is 

the main agent for computing a location's highest 

and lowest temperatures. LST is a vital 

meteorological parameter used to estimate surface 

soil moisture to a large extent[6, 7], estimate 

evaporation in crops and transpiration, the 

temperature of water bodies, the intensity of heat in 

metropolitan islands, compute surface radiative flux, 

etc.[8, 9]. Information concerning the long-term 

features of time-related and regional allocation of 

LST is highly important for understanding the 

dynamics of exterior energy and water equilibrium, 

the patterns of the carbon cycle0 in the Earth's 

atmosphere, and the processes of global climate 

change [10, 11]. Recognizing the current usage, the 
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International Geosphere-Biosphere-Programme 

(IGBP) has identified Land Surface Temperature 

(LST) as very important. LST can be reliably 

attained by applying thermal infrared remote sensing 

(RS) techniques to directly determine the radiance 

level of the thermal infrared radiant energy emitted 

by the land surface[12-14]. On September 27, 2021, 

the Landsat program successfully deployed Landsat-

9, the most recent addition to the satellite series, 

extending its continuous fifty-year data 

collection[15]. Landsat-9 is mostly identical to 

Landsat-8 since it has two sensors: an operational 

land imager2 (OLI-2) and a thermal infrared sensor2 

(TIRS-2)[16]. Landsat-9 TIRS-2, like the Landsat-8 

TIRS-1, has two TIR0 bands integrated to perform 

thermal calculations. This sensor is mainly built to 

feature two side bands for sensing thermal infrared 

radiation. Namely, band 10 operates in the range of 

(9.8 𝑡𝑜 11.8𝜇𝑚) and band011 in the range 

(11 𝑡𝑜 13𝜇𝑚)[15, 17, 18]. The retrieval0 of LST 

considered the OLI sensor from bands (2 𝑡𝑜 5), 

which were used in estimating the Land Surface 

Emissivity (LSE), making considerations for the 

Fractional Vegetation Cover (FVC). Numerous 

recent research attempts have been made to 

determine the SW approach to obtaining the 

Landsat-8 TIR data's LST following wander light 

correction. The LST retrieval efficiency achieved by 

these efforts is comparable to that of a single-

channel method [19-21]. This study shows the use 

of the SW in the LST retrieval to utilize its benefits 

and improve the achievement of its results. Besides, 

two new features built on physical properties 

illustrating the land surface and atmospheric 

conditions have existed and developed. These 

features, known as When leaving the ground 

temperature of brightness (TB) and water vapor 

index0 (W), were derived from the thermal radiance 

transfer equation by using the top-of-atmosphere 

temperature0 of brightness [15]. Countless research 

has enhanced the SW approach by incorporating the 

effects of LSE0, viewing zenith angle (VZA), and 

atmospheric water vapor (W) in the retrieval of LST 

[16]. Such items have been loaded regarding the 

coefficients of the SW method. USGS has lately 

published the analysis-ready data (ARD) LST item, 

which was advanced from Landsat-9 TIRS-2 data 

utilizing the operational single-channel approach, 

after the release of the same product for Landsat-8 

TIRS-1[22, 23]. In general, Landsat0-9TIRS-2 can 

be considered a refined model of Landsat0-8 TIRS-

1 with a solution of two main problems: the failure 

of the scene selects mirror and the influence of the 

stray light effect[22]. On the other hand, two 

contingent TIR bands of Landsat0-9TIRS-2 enable 

the application of the SW method to obtain the LST. 

The SW technique is the most popular algorithm for 

obtaining LST utilizing thermal infrared remote 

sensing (TIR) data. This method works out the 

distinction in the absorption of atmospheric between 

two neighboring TIR pathways with a central 

wavelength of (10 − 12𝜇𝑚)[24]. Price was the first 

to create a SW approach. Since then, other SW 

approaches have been suggested for LST0 

retrieval[13, 25]. These methods can be categorized 

into two classes, i.e., linear SW method and 

nonlinear SW method [16, 26-28]. The linear SW 

technique is an addition technique that estimates the 

LST based on the linear combination of the two TIR 

bands using their brightness temperatures. The SW 

approach, on the other hand, computes this ratio of 

brightness temperatures more nonlinearly through 

the addition of an extra term that is the square of the 

contrast between the two temperatures of brightness 

in the linear calculation[13, 16]. Some researchers 

have expanded the SW approach by including the 

impact of LSE, which affects the estimation of LST, 

and by combining these aspects regarding the 

coefficients of the SW procedure [18, 29, 30]. 

Moreover, later studies have modified the basic two-

channel SW approach and have developed the three-

channel0 and four-channel0 SW techniques. These 

researches have shown that three- and four-channel 

SW methods yield better results than the two-

channel method[31]. Nevertheless, the threechannel 

and fourchannel SW are not the right choices for 

processing the Landsat-8TIRS-1 data because of the 

availability of only two thermal bands[32]. As a 

result, we have developed an extremely precise SW 

approach for the LST retrieval, and the simplified 

radiative transfer equation still retains a sizable 

portion of the experimentally observed Planck 

function. The mono-window (MW) technique uses 

data from sensors mounted on satellites or aircraft to 

compute LST, gathering inforamation from a broad 

sources range. This covers bands in the thermal 

infrared0(TIR), shortwave infrared0(SWIR), and 

visible and near0-infrared(NIR) spectrums. Since 

surface temperatures are closely related to surface 

physical features, the normalized difference 

vegetation0 index (NDVI) analysis is a perfect 

method for calculating LST. The application 



Letters in High Energy Physics 
ISSN: 2632-2714 

Volume 2024 

 

 

323 

involves vegetation statistical status estimation 

utilizing parameters like NDVI [33]. Data like 

Landsat-9 have a medium spatial resolution, making 

it good for mapping out land cover, vegetation, or 

even water cover areas at the local or regional level. 

Landsat-9 satellite has two devices: an Operational 

Land Imager2, also known as (OLI-2), and a 

Thermal Infrared Sensor2, also known as (TIRS-2). 

OLI-2 gathers data with a ground sampling of 30 

meters having eight spectral bands in the visible, 

nearinfrared, and shortwave infrared portions of the 

electromagnetic spectrum and an extra 

highresolution panchromatic band at a ground 

sampling of 15 meters. TIRS-2 measures TIR 

radiation with a resolution of spatial of 100 meters 

and is equipped with two bands ranging from (10 −

12𝜇𝑚), which in this context is known as the 

Atmospheric Window[17]. There are many 

scientific disciplines in which LST holds 

significance. As mentioned earlier, the LST is the 

thermostat that controls the flow of water and energy 

between the atmosphere and the Earth's surface. It 

is, therefore, crucial to use it in the climate change 

field and during development to assess how changes 

in land cover affect the temperature of the surface. 

2. Description of Study Sites 

Tigris River is a major river in Iraq traversing across 

many governorates and through Wasit governorate 

(Fig 1). It can be said to be situated at the center of 

the country. This region is basically a farming area 

due to the presence of the Tigris River. The research 

area lies between latitude 32.6111°N to 32.1167°N 

and a longitude of 45.7611°E to 45.8833°E. The 

region's elevation is 35 meters higher than the 

average sea level [34]. Remote sensing can supply 

proper and uninterrupted data to forecast the surface 

temperature of the Tigris River in the study area. To 

validate temperature retrieval over the research area, 

we sampled 12 stations on the stretch of the river 

(136 km) (Table 1). The SW and the MW algorithm 

calculated the thermal condition of the river's 

surface. We compared it to the temperature obtained 

at the study site by an infrared thermometer (IR 

thermometer) synchronized with satellite image 

capture. 

 

Fig 1. The study area of Wasit District. 

Table 1. Location of temperature coordinates. 

Station 
Coordinates 

Latitude (N) Longitude (E) 

St1 32°57'56.38"N 44°45'30.94"E 

St2 32°55'30.42"N 44°48'26.63"E 

St3 32°54'10.15"N 45° 3'21.02"E 

St4 32°52'34.77"N 45° 4'36.86"E 

St5 32°49'21.65"N 45° 2'58.77"E 

St6 32°45'56.39"N 45°10'30.10"E 

St7 32°34'55.46"N 45°24'55.74"E 

St8 32°35'9.11"N 45°31'49.95"E 

St9 32°32'44.10"N 45°42'6.89"E 

St10 32°31'54.61"N 45°52'29.40"E 

St11 32°39'19.90"N 46° 7'57.48"E 

St12 32°33'21.91"N 46°17'49.51"E 

3. Methodology of Research 

The present study uses the SW and MW algorithm 

techniques, in which LST extraction is done using 

data from Landsat-9 Thermal Infrared Sensor, 

known by the abbreviation TIRS-2. Besides the 

TIRS-2 data, the SW and MW algorithms also 

require the data on OLI-2 to compute LST. We 

should layer the Landsat-9 OLI-2 sensor bands on 2, 

3, 4, and 5, one above the other. Bands 4 and 5 are 

used to create the NDVI image. The fractional 

vegetation cover (FVC) is determined by calculating 

the percentage of the total area covered by 

vegetation. The SW Algorithm uses the FVC picture 

to create the LSE picture. The LSE image quantifies 

the intrinsic properties of the surface of the Earth, 

namely its capacity to transform thermal0 or heat 

energy into radiant radiation. We require the 

emissivity values for soil and vegetation0 at bands 

(10 and 11) in order to calculate the LSE. After 
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obtaining the LSE pictures for bands (10 and 11) 

separately, we compute the average and difference 

of LSE. We provide distinct NDVI images for each 

class based on our classification into the soil and 

vegetation classes. The Landsat-9 also features two 

TIRS bands. For bands (10 and 11), we estimate 

brightness temperature (TB). In the thermal 

calibration, the TB converts the digital number 

values from the TIRS thermal raw bands 

(10 and 11) to the atmosphere's spectral peak 

(TOA). These SW parameter values, TB, mean LSE, 

LSE difference, and water vapor constant are used 

to calculate the LST. Conversely, MW uses LSE, 

wavelength of emitted light, and top-of-atmosphere 

brightness temperature to determine LST. Figs. 2 

and 3 show a flowchart of the suggested SW and 

MW algorithm for LST calculation utilizing TIRS-2 

bands (10 and 11) and OLI-2 sensor0 bands (2– 5). 

 

Fig.2 Flowchart of the SW. 

 

Fig.3 Flowchart of the MW. 

3.1 Principle of Split-Window (SW) Algorithm  

A novel technique called the SW algorithm takes 

into consideration how the environment absorbs two 

radiometric channels in the wavelength range of 

(10– 12.5μm) [35]. The original idea was to 

develop real-time patterns of surface temperature for 

water bodies, such as oceans, presuming that the 

outer layer is a black body. Subsequent research 

showed that the SW method effectively reduces the 

influence of low surface emittance on the calculation 

of sea surface temperature (SST). Additionally, the 

surface emittance consequence is cancelled within a 

tolerable scope of the total amount of the vapor of 

water in the atmosphere due to a little overestimation 

of the water vapor absorbed by the atmosphere0 [5, 

36]. The SW approach performs an atmospheric 

influence cancelation by taking benefit of the 

differential absorption of atmospheric light in the 

two neighboring thermal infrared avenues, with 

peak values at (11 and 12μm). After that, it 

retrieves LST using nonlinear or linear combinations 

of temperatures of the brightness (TB)[30]. Since 

most sensors do not rely on precise knowledge about 

atmospheric profiles during data gathering, many 

split-window methods have been developed and 

optimized to consistently extract LST from diverse 

sensors[5]. The attempt to leverage a nonlinear 

structure of TB in the recovery of LST from the 

TIRS-2 of Landsat-9 led to the operationalization of 

an enhanced version of the modified SW method. 

Founded on the (10– 12µm) band range that TIRS-

2 bands use, the suggested SW algorithm works on 

the principle of attenuating radiance for atmospheric 

assimilation, which corresponds to the disparity in 

brightness of synchronous dimensions at two 

distinct wavelengths that are each influenced by 

differing degrees of atmospheric assimilation [24, 

37]. The mathematical formula for the SW algorithm 

for retrieval of the LST is given as follows[35, 38, 

39]: 

𝐋𝐒𝐓 =  𝐓𝐁𝟏𝟎 +  𝐂𝟏 (𝐓𝐁𝟏𝟎 −  𝐓𝐁𝟏𝟏) +

 𝐂𝟐(𝐓𝐁𝟏𝟎 −  𝐓𝐁𝟏𝟏)𝟐 +  𝐂𝟎 +  (𝐂𝟑 +

𝐂𝟒𝐖)(𝟏 −  𝛆)  +  (𝐂𝟓 + 𝐂𝟔𝐖)(𝚫𝛆) …… Eq.1 

In this case, W stands for total atmospheric water 

vapor content (gm/cm2), TB10, TB11 are the 

temperatures of the brightness of bands (10,11) in 

(°𝐶), 𝛆 is the mean0 of the LSE of the TIRS-2bands 

(the emissivity of the mean), Δε is the difference of 

emissivity, and C0 to C6 are the SW coefficients0 to 
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be found from the simulated data. 𝛆 =  (𝛆𝟏𝟎 +

 𝛆𝟏𝟏)/𝟐 is the mean emissivity, while 𝚫𝛆 =

 (𝛆𝟏𝟏 –  𝛆𝟏𝟎) is the emissivity difference. 

The sequential process for implementing the 

Split-Window0 algorithm is Namely: 

Step 1:- Top of Atmosp0here (TOA) Radiance. 

The radiance of spectral of theTIRS-2 bands 

(10 and 11) and the OLI-2 sensor bands (2– 5) are 

independently evaluated using Eq. (2) to determine 

the TOA values and convert the DN to radiance[40]. 

The computing is executed utilizing the raster 

calculator in ArcGIS 10.8.  

𝐋𝛌 =  (
𝐋𝐦𝐚𝐱−𝐋𝐦𝐢𝐧

𝐐𝐜𝐚𝐥𝐦𝐚𝐱−𝐐𝐜𝐚𝐥𝐦𝐢𝐧
) 𝐐𝐜𝐚𝐥 +  𝐀𝐋 

………………………………..Eq.2 

Where: -  

Lλ : - TOA Spectral0 Radiance (W (m-2 * sr-1 * μm-

1)). 

Lmax : - Maximum0 Adiance (W (m-2*sr-1*m-1)). 

Lmin : - Minimum0 Radiance (W (m-2*sr-1*m-1)). 

Qcalmax : - Maximum DN0 Value of pixels. 

Qcalmin : - minimum DN0 Value of pixels. 

Qcal : - Quantized and Calibrated0 Standard Product 

Pixel0 Values (DN). 

 AL : - Radiance0 Add Band (No.). 

Step 2:- Conversion to Top of Atmosphere (TOA) 

Brightness Temperature. 

Bands (10 and 11) are used to compute the 

temperature of brightness (TB). The 

electromagnetic irradiation that rises originating in 

the Earth's atmosphere is known as TB. After the TB 

was corrected, the Thermal Infrared Sensor (TIRS) 

underwent thermal calibration, which required 

translating the values of the thermal digital number 

of its raw thermal bands (10 and 11) into top-of-

atmosphere (TOA) spectral radiation. The thermal 

infrared bands must be converted using the given 

metadata and the following equation in order to 

determine their brightness temperature (BT) [1]. 

𝐓𝐁 =
𝐊𝟐

𝐥𝐧(
𝐊𝟏  
𝐋𝛌

+𝟏)
−

𝟐𝟕𝟑. 𝟏𝟓…………………………………….Eq.3 

Where: - K1  and K2 :- The metadata file states the 

thermal constants for bands (10 and 11). Lλ = 

Denotes the highest point of spectral radiation in the 

Earth's atmosphere. 

 

Step 3:- Normalized0 Differential Vegetation0 

Index (NDVI).  

An indicator that has been normalized for measuring 

vegetation is called the NDVI. In this instance, the 

NDVI was computed utilizing the collected optical 

bands (4 and 5), which are part of the OLI sensor 

band set. The NDVI scales its values from (−1 to +

1). The normalized difference of the near infrared 

(0.851 − 0.879µm) and red (0.636 − 0.673µm) 

bands of a picture is used to calculate the NDVI for 

each pixel. The normalization formula that is applied 

is [1]: 

𝐍𝐃𝐕𝐈 =  
𝐁𝐚𝐧𝐝𝟓−𝐁𝐚𝐧𝐝𝟒

𝐁𝐚𝐧𝐝𝟓+𝐁𝐚𝐧𝐝𝟒
=  

𝐍𝐈𝐑−𝐑𝐄𝐃

𝐍𝐈𝐑+𝐑𝐄𝐃
 

…………………………. Eq.4 

Step 4:- The Fractional Vegetation Cover (FVC). 

The application of Eq. 4 to the NDVI image 

produced in Step 3 yields the FVC image. It 

quantifies the amount of land surface area that is 

covered by vegetation. The SW approach used the 

FVC picture to obtain the LSE image. LSE is simply 

a measure of the capability of accommodating long-

wave radiation in the electromagnetic spectrum of a 

given surface[41]. Some of the primary drivers 

affecting LSE are features relating to the target 

surface, for example, soil type, surface roughness, 

and vegetation cover of the area in question. The 

NDVI image is categorized into two separate 

classes: that of vegetation and soil[42]. The NDVI 

values for the soil and vegetation of the study area 

are calculated independently using ArcGIS 10.8. Eq. 

5 is used to compute the image of FVC[5]. 

𝐅𝐕𝐂 =
𝐍𝐃𝐕𝐈−𝐍𝐃𝐕𝐈𝐬

𝐍𝐃𝐕𝐈𝐯−𝐍𝐃𝐕𝐈𝐬
 

………………………………………….. Eq.5 

Where: - NDVIv= NDVI of vegetation. NDVIs= 

NDVI of soil. 

Step 5:- Land Surface0 Emissivity (LSE). 

Planck's equation of black body radiance is adjusted 

by the LSE, a scalar factor, to measure the brightness 

that is emitted. It shows how thermal energy can be 

transferred from the surface to the atmosphere [43]. 

An essential component of all LST retrieval 

techniques is LSE. Using the SW approach outlined 

in Eq. 6, the LSE picture is obtained originating in 

the FVC image obtained in step 4. The emissivity 

data for the vegetation and soil in bands (10 and 11) 

are necessary for the computation of LSE. [44]. For 
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each of the bands 10 and 11, two distinct LSE 

pictures are calculated. In comparison to land 

surfaces, the emissivity value of water bodies is 

significantly less changeable [43]. The NDVI can be 

utilized to assess the emissivity of various terrestrial 

surfaces in the (10 − 12μm) range after accounting 

for this wavelength dependency. Table 2 provides 

these emissivity values [5]. 

𝐋𝐒𝐄 = 𝛆𝐬  ×  (𝟏 − 𝐅𝐕𝐂) + 𝛆𝐯  ×  𝐅𝐕𝐂 +  𝑪𝝀 

………………… Eq.6 

In this case, 𝛆s & 𝛆v  :-The emissivities refer to the 

soil and vegetation, respectively. 𝐶𝜆 =  represents the  

surface  roughness     (C =  0 for uniform and level 

surfaces)  acquired as a constant value of  0.005. 

Table 2. Values of the emissivity. 

Emissivity   Band 

10 

  Band 

11 

εs 0.971 0.977 

εv 0.987 0.989 

Then,  to find the mean of the emissivity and the 

difference between the emissivity of Bands 

(10 and 11), as in Eqs. (7 and 8) [35]. 

Mean. of the LSE = 𝛆 =  
𝐋𝐒𝐄𝟏𝟎+ 𝐋𝐒𝐄𝟏𝟏

𝟐
  

………………………………….Eq.7 

Difference of the LSE =  𝚫𝛆 =  𝐋𝐒𝐄𝟏𝟏 −  𝐋𝐒𝐄𝟏𝟎 

………………….…....Eq.8 

Step 6: Estimate Atmospheric Water Vapor (W). 

When calculating LST using the S-W algorithm, we 

must assess the quantity of water vapor in the 

atmosphere (W). The W depends on temperature and 

relative humidity[45], according to the following 

mathematical relationship. 

𝐖 = 𝐡 × 𝛒𝐰 ………………….………Eq.9 

Where:-  h:- Effective atmospheric height. ρw:- 

water vapor density (g/m³). 

To calculate the partial pressure of water vapor, we 

use the following relationship[46]. 

𝐄 =  
𝐄𝐬 × 𝐇𝐫

𝟏𝟎𝟎
……………………………. Eq.10 

Where:- E:- Partial water vapor pressure. Hr:- the 

relative humidity in percentage. Es :- Saturated 

water vapor pressure. 

The Es  depends on temperature (T) and is calculated 

using the Magnus-Tetten equation, which is the 

equation for calculating the Es at a given 

temperature. They are widely used in hydrology and 

meteorology[47]. 

𝐄𝐬 = 𝟔. 𝟏𝟏𝟐 ∗ 𝐞𝐱𝐩 (
𝟏𝟕.𝟔𝟕∗𝐓

𝐓+𝟐𝟒𝟑.𝟓
) 

………………………...Eq.11 

To estimate the density of water vapor, we use the 

following relationship[46]. 

𝛒𝐰 =  
𝐄

𝐑 ×𝐓
 ……………………………. Eq.12 

Where:- R:- gas constant (461.5 J/kg*Kelvin). T:-

Temperature in Kelvin. 

Step 7: Calculate the LST 

The final step is calculating the LST utilizing the 

brightness of the band's temperature (TB10, TB11) 

and the mean and difference LSE extracted from 

FVC and NDVI. The LST can be recovered using 

Eq. 1. 

3.2 Principle of Mono-Window (MW) Algorithm 

The MW algorithm underwent several stages to 

develop and reach the final version [48]. It was also 

developed by [49] and the work of [50] to obtain the 

final expression for the MW algorithm for LST 

retrieval, as in the equation below. 

𝐋𝐒𝐓 =  𝐓𝐁 / (𝟏 +  𝛌 ∗ (
𝐓𝐁

𝛒
 )  ∗  𝐥𝐧(𝐋𝐒𝐄)) 

………………..Eq.13 

Where:- LST:- land_ surface_ temperature (℃).  

TB :- Atmospheric radiance is measured at the top of 

the Earth's atmosphere, expressed as temperature. λ 

= wavelength of the radiated light (11.5μm). ρ =

(h /c σ) a constant, and its value is equal to 

1.4388 ∗ 10−2 mK. LSE = land surface_emissivity 

calculated from Eq.6. 

3.3 Assessment criteria 

In this research, the RMSE and Bias equations were 

chosen to evaluate the performance of the 

algorithms adopted in this study. RMSE assesses the 

LST using the algorithm and the actual surface 

temperature measured at the site. Bias assesses the 

mean discrepancy between the surface temperature 

determined by the algorithm and the actual 

temperature registered at the site. The smaller the 

Bias, the closer the algorithm values are to the values 
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measured at the site. The following two equations 

give RMSE and Bias [51].  

𝐑𝐌𝐒𝐄 = √
∑ (𝐲𝐢−𝐲̂𝐢)

𝟐𝐧
𝐢=𝟏

𝐧
       ………………………… 

Eq.14 

Where: - yi: -actual observed values. ŷi = the 

predicted value. n = number of stations 

𝐁𝐢𝐚𝐬 =
𝟏

𝒏
 ∑ (𝐓𝐋𝐒𝐓 − 𝐓𝐬𝐢𝐭)

𝒏
𝒊=𝟏  

…………………………………. Eq.15 

Where: -  TLST =  LST by algorithm.  Tsit = LST 

measured on site                                                  

4. Software Used and Data  

In the present study, Landsat-9TIRS-2 

bands0(10 and 11) were exercised to rate the 

amount of TB and OLI-2 spectral bands (2 − 5) 

were used to extract the vegetation index image of 

the Tigris River Basin. This study used The 

following software to process the Landsat-9 data: 

ENVI 5.3, ArcGIS 10.8, and SPSS 25. The thermal 

constants obtained from thermal constants were out 

from the used study area consisting of more than one 

scene (Table 3). The algorithms utilized in this study 

use metadata in the form of rescaling factors and 

thermal constants extracted from Landsat-9 L1TP 

bands as the main inputs for the LST estimation 

process. 

Table 3. Metadata of Landsat-9 satellite image 

details of TIRS-2 and OLI-2[52].  

Sensor OLI-2 TIRS-2 

Acquisition of Data 

6/1/2024 

and 

4/4/2024 

- 

Elevation of Sun 

30.1672169

3 and 

55.7571757

4 

- 

Path/Row 
167/38 and 

168/37 
- 

Bands 9 2 

Resolution 30 m 100 m 

Radiance − Mult

− Band − 10 
- 0.00038 

Radiance − Mult

− Band − 11 
- 0.000349 

Radiance − Add

− Band − 10 
- 0.10000 

Radiance − Add

− Band − 11 
- 0.10000 

K1_Constant_Band_10 - 799.0284 

K2_Constant_Band_10 - 
1329.240

5 

K1_Constant_Band_11 - 475.6581 

K2_Constant_Band_11 - 
1198.349

4 

4. Results and Discussion 

4.1 Retrieval LST by SW Algorithm 

The NDVI  images were generated using Eq. 4 and 

the ArcGIS 10.8 application by the data obtained 

with the help of the OLI2 sensor bands 4 and 5. 

Figure 4 presents the NDVI of the Tigris River in 

Wasit Governorate during the two study seasons. It 

is evident from these figures that the NDVI in the 

study area differs between (0.535743 to - 0.264062) 

in winter and (0.62717 to – 0.378722) in spring. 

High NDVI values closer to 1 indicate an area of 

healthy vegetation. The NDVI image was taken as 

the primary input image, which was then classified 

into some soil and vegetation categories. The 

average NDVI soil in winter was 0.13584, while in 

spring, it was 0.12422; the average NDVI of 

vegetation in winter was 0.39990, and in spring, it 

was found to be 0.502946. The NDVI value was 

used as information input to find the FVC using 

Eq.5; the raster maps acquired show the FVC during 

the two study seasons, as shown in Fig. 5. 
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Fig. 4 NDVI image during the two study seasons. 

 

Fig. 5 FVC image during the two study seasons. 

 

The Raster Calculator in ArcGIS 10.8 was used to 

execute the mathematical map calculations after 

LSE pictures for bands 10 and 11 for the two 

research seasons were acquired using Eq. 6. Figs. 6 

and 7 display the raster maps that illustrate the mean 

LSE and difference for the bands 10 and 11 over the 

course of two seasons. 

 

 

Fig. 6 Mean LSE image during the two study seasons. 
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Fig. 7 Diff. LSE image during the two study seasons. 

 

Furthermore, Eq.7 displays that the average LSE0 

value for bands (10 and 11) ranges from (1.0002 to 

0.957798) during January and (0.997592 to 

0.960408 ) during April for the Tigris River Basin, 

as shown in Figure 6. Eq. 8 shows that the difference 

in LSE for the two thermal bands ranges from 

(0.0120578 to -0.00005769) in January and 

(0.011312 to 0.000688076) in April during the study 

period, as shown in Figure 7. From the NDVI values, 

we notice that this index is high in the areas close to 

the river, while the index values decrease in the 

regions far from the river. Also, in spring, the NDVI 

values increase in the study area, in contrast to 

winter, when the NDVI value decreases. The mean 

value of LSE in winter was (1.00023 to 0.951769) 

while it was (0.997592 to 0.960408) in spring. 

Therefore, the areas close to the river have higher 

LSE because they are agricultural areas, and the LSE 

decreases the further away from the river. 

From Eq. 3, we estimated the temperature of the 

Tigris River using TRIS2 bands (10 and 11) at 

twelve stations and for two different seasons. 

Figures 8 and 9 display the calculated TB10 and 

TB11 for the study area for bands (10 and 11), 

respectively. Table 3 presents TB10 and TB11 data 

for both seasons. On 6 January, TB10 recorded the 

greatest temperature at ST1 (12.352℃) and the 

lowest temperature at ST8 (10.922℃). TB11 

recorded Table 3 presents TB10 and TB11 data for 

both seasons. On 6 January, TB10 recorded the 

greatest temperature at ST1 (12.352℃) and the 

lowest temperature at ST8 (10.922℃). temperature 

in ST1 (14.720℃) and the lowest temperature in 

ST8 (12.845℃) in the study time. On 4 April, TB10 

recorded the highest temperature (16.732℃) at 

ST10 and the lowest (14.583℃) at ST5. TB11 

recorded the highest temperature (17.810℃) in 

ST10 and the lowest (15.956℃) in ST5 during the 

study time. 

 SW coefficients in Eq. 1, based on the non-linear 

multiple regression equation and using the SPSS 25 

program, were found to be (C0 = −0.268, C1 =

1.387, C2 = 0.183, C3 = 54.3, C4 = −2.238, C5 =

−129.2, and C6 = 16.4) in this study. Regarding 

the water vapor in the atmosphere of the study area, 

relying on the region's temperature and humidity 

percentage and using Eqs. (9, 10, 11, and 12), it was 

found that W (1.467 g/cm2) in winter and 

(1.256 g/cm2) in spring. 

 

 

Fig. 8 Displays the TB10 and TB11 for the research area in Winter. 
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Fig. 9 Displays the TB10 and TB11 for the research area Spring. 

Using Eq. 1 and utilizing all the variables and 

constants we have determined, we can calculate the 

value of LST using the suggested SW algorithm for 

the research area. Table 3 presents LST data for both 

seasons. Fig. 10 also shows the amount of LST 

during the study time. In this algorithm, in winter, 

the St5 recorded the lowest LST (9.275℃), whereas 

the St2 recorded the highest LST (10.651℃). In 

spring, the St5  station recorded the lowest LST 

(13.4141℃), while the St10  recorded the highest 

LST (15.8087℃). 

 

 

Fig. 10 Displays the LST retrieval from the SW algorithm for the two research seasons. 

 

4.2 Retrieval LST by MW Algorithm 

To find the LST for the MW algorithm, we use 

Eq.13, where the LST for both TIRS-2 bands (10 

and 11) will be retrieved separately. Figure 11 

displays the LST retrieval from the MW method. 

Table 3 shows the LST values for the MW algorithm 

in the study area and each season. It is essential to 

mention that because of the ability of band 11 to 

capture the water vapor signals intensely, it is 

inclined to severe variations in atmospheric profiles 

[53]. Thus, band 10 is employed to extract the LST 

using the MW method in this work. In this 

algorithm, in winter, the St8 recorded the lowest 

LST (10.926℃), whereas the St1 recorded the 

highest LST (12.357℃). In spring, the St5  station 

recorded the lowest LST (14.589℃), while the St10  

recorded the highest LST (16.7434℃). 
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Fig. 11 Displays the LST retrieval from the MW algorithm for the two research seasons. 

Table 3. The LST values for the MW and SW algorithm, as well as TB10 and TB11 in the study area and each 

season. 

6 January / Winter 4 April / Spring 

Stati

on 

TB10 

(℃) 

TB11 

(℃) 

LST 

in Site 

(℃) 

LST 

(MW) 

(℃) 

LST 

(SW) 

(℃) 

TB10 

(℃) 

TB11 

(℃) 

LST 

in Site 

(℃) 

LST 

(MW) 

(℃) 

LST 

(SW) 

(℃) 

𝐒𝐭𝟏 
12.35

2 
14.720 10.28 12.357 10.554 

15.603 16.891 13.9 15.610 14.502

9 

𝐒𝐭𝟐 
12.27

1 
14.337 10.34 12.276 10.651 

15.807 16.996 14 15.815 14.807

0 

𝐒𝐭𝟑 
11.24

2 
13.63 9.63 11.246 9.4507 

15.515 16.598 14.1 15.523 14.626

7 

𝐒𝐭𝟒 
12.07

5 
14.334 9.74 12.0801 10.352 

15.676 16.822 14.3 15.683 14.722

6 

𝐒𝐭𝟓 
11.06

8 
13.472 9.35 11.07 9.275 

14.583 15.956 13.8 14.589 13.414

1 

𝐒𝐭𝟔 
11.30

6 
13.341 9.43 11.310 9.725 

15.202 16.224 14.5 15.209 14.356

3 

𝐒𝐭𝟕 
11.18

1 
13.389 9.27 11.185 9.506 

15.243 16.555 14.6 15.250 14.104

7 

𝐒𝐭𝟖 
10.92

2 
12.845 9.13 10.926 9.426 

15.384 16.754 14.7 15.391 14.199

5 

𝐒𝐭𝟗 11.15 12.912 9.31 11.158 9.771 
16.521 17.532 14.9 16.529 15.646

0 

𝐒𝐭𝟏𝟎 
11.61

5 
13.233 9.63 11.620 10.321 

16.732 17.810 15.1 16.7434 15.808

7 

𝐒𝐭𝟏𝟏 
11.28

7 
12.849 9.19 11.300 10.082 

16.433 17.428 15.4 16.446 15.619

2 
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𝐒𝐭𝟏𝟐 
11.76

6 
13.552 9.82 11.911 10.393 

16.598 17.676 15.5 16.604 15.702

6 

RMSE 

Bias 

1.9526 0.4684 RMSE 

Bias 

1.2864 0.5231 

1.9436 0.3660 1.2164 0.2259 

 

4.3. Comparison of Algorithms 

LST of the selected region of the Tigris River has 

been calculated using the available data originating 

in Landsat-9TIRS 2. To verify the validity of the 

LST, air temperature is measured near the surface or 

through ground measurements. The results of this 

study are compared between the LST found by the 

MW algorithm, the LST found by the SW algorithm, 

and the actual temperature measured at the study 

site. Validation has shown that retrieved surface 

temperatures can differ by up to 5°C contrasted to in 

situ measurements[5, 13]. We note from the results 

that the LST calculated by the WS algorithm 

recorded an RMSE of (0.4684℃) and a bias of 

(0.3660℃) in winter; this algorithm also recorded an 

RMSE of (0.5231℃) and bias of (0.2259℃) in the 

spring. While the LST measured by the MW 

algorithm recorded an RMSE of (1.9526℃) and a 

bias of (1.9436℃) in winter, this algorithm also 

recorded an RMSE of (1.2864℃) and a bias of 

(1.2164℃) in spring. From the results, we see that 

the SW algorithm has retrieved the temperature very 

close to the actual temperature measured at the site, 

and this is proven by RMSE and bias, where the 

reduced the RMSE value is than one, the closer the 

practical results are to the results calculated at the 

site (actual). While the bias, the higher the value is 

greater than one, the model may be very simple and 

cannot express the relationship between the 

temperature retrieved by the algorithm and the 

actual temperature correctly. In contrast, the case of 

a very low bias indicates that the model is very 

complex and does not express an ideal case for the 

model. Fig. 12 shows the in-situ calculated river 

surface temperature and the river surface 

temperature obtained using the SW and MW 

algorithms from Landsat-29 on January 6 and April 

4, 2024, at twelve different stations along the river. 

For the comparison, the air temperature was used, 

and the difference may be quite big due to the 

different resolutions of LANDSAT 9 for different 

bands. The thermal band was at 100 m, while the red 

and the nearinfrared bands were limited to 30 m. The 

variations could sometimes be considerable relying 

on the weather and other factors being experienced. 

 

 

Fig. 12 Comparison between in situ temperature0 and the LST retrieval originating in the MW and SW 

algorithms for the two study seasons. 

 

A comparison between the LST values calculated by 

applying the suggested SW algorithm and those 

estimated through the MW algorithm was made, and 

what has been observed is that the values are of a 

similar distribution. However, it is observed that the 

MW algorithm always produces LST values that are 

approximately two degrees different or less from the 

onsite LST. [13] discovered a discrepancy of 0.7 °C 

when retrieving LST compared to the average 

measurement of near-surface air temperature. An 
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algebraic test also reveals that should the 

temperature of LST(MW) go up by 1 °C, the 

temperature of LST(SW) would rise by 

approximately 0.905°C. The detailed regression 

analysis results for both LST techniques are shown 

in Fig. 13. The regression study between SW and 

MW algorithms for LST retrieval shows an R2 value 

of 0.844 in winter and an R2 value of 0.9819 in 

spring. Since the LST calculated from the studied 

data with the help of the SW algorithm is in good 

agreement with the LST estimated from the MW 

technique despite the difference between their 

temperatures and the actual site temperature of the 

river surface, it means that the transfer between them 

is linear, and no significant loss of accuracy is 

observed. The discrepancy in LST appreciation 

between the Split-Window0 (SW) and the Mono-

Window (MW) methods can be ascribed to the 

difference in spectral bands and atmospheric0 water 

vapor levels utilized to retrieve LST. 

 

 

Fig. 13 The detailed regression analysis results for both LST techniques. 

 

The variation in spectral bands and atmospheric0 

water vapor levels utilized to obtain LST can be used 

as an explanation for the variance in LST 

appreciation between the SW and MW approaches. 

Bands 10 and 11 are the two bands used in the SW 

technique. The wavelengths at which these bands 

function are roughly 11 and 12 μm, respectively. In 

contrast, the MW method only employs band 10, 

which is located in the atmospheric window at a 

wavelength of roughly 11.5 μm. Furthermore, an 

accurate evaluation of the current conditions at the 

location is made possible by the SW algorithm, 

which depends on the location-specific atmospheric 

water vapor content. Nevertheless, the atmospheric0 

water vapor quantity is not utilized in the MW 

approach. A major determinant of weather, water 

vapor content in the atmosphere, is particularly 

significant in regions with high surface 

temperatures. Emissionsivity and brightness 

temperature are computed by the SW technique 

using two spectral bands. The LST is subsequently 

obtained using these values along with the 

atmospheric0 water vapor content. In terms of 

delivering better results and precisely capturing field 

circumstances, the SW algorithm performs better 

than the MW method. On a variety of surfaces, this 

is more apparent. 

5. Conclusions 

The current research explores the viability of using 

remote sensing to measure surface temperatures in 

the Tigris River Basin in Wasit, where Landsat9 

pictures were utilized to calculate LST using two 

methods (SW and MW). To estimate LST, the SW 

approach makes use of a dynamic mathematical tool. 

This algorithm depends on the amount of water 

vapor in the studyenvironment, the temperature of 

the brightness of the thermal bands from the TIRS2 

sensor0, and the LSE factor that is determined by 

FVC using the optical bands from the OLI2 sensor. 

Of all the operational techniques that are used to 

derive LST based on atmospheric factors, this one is 

the most often employed. LST retrieval at high 

spatial resolution greatly benefits from the presence 

of both bands, which increases the likelihood of 

notable gains. The LSE factor and one of the thermal 

bands from TIRES2 serve as the foundation for the 
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MW algorithm. The SW algorithm was assessed by 

contrasting its output with that of the MW method, 

as well as by utilizing in-situ (real) observations of 

the Tigris River's surface temperature in the Wasit 

Governorate. Both the SW and MW methodologies' 

LST values exhibit a similar order. In contrast to the 

SW algorithm and site temperatures, the MW 

algorithm predicts greater river surface temperature 

values. Based on the findings, RMSE, and Bias 

values, the SW algorithm demonstrated a significant 

convergence between its LST and the Tigris River 

surface LST. This is brought on by both the quantity 

of water vapor in the atmosphere0 and the 

application of TIRS2 bands. An R2 value of 0.9819 

in the spring and 0.844 in the winter is found in the 

regression analysis comparing the MW and SW 

algorithms for LST retrieval. Since there is no 

discernible loss of accuracy, the transfer between the 

LST estimated from the MW technique and the LST 

derived from the examined data using the SW 

algorithm is linear. The results show that LST can be 

recovered using the proposed SW approach. 

However, a thorough evaluation of the correctness 

of the SW algorithm in all seasons is still necessary. 

Furthermore, in order to evaluate the precision of the 

technique more effectively, more validation work 

for Land Surface Temperature (LST) must be 

conducted in the research area across a range of 

weather conditions and land cover types. 
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