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Abstract 

Cardiovascular diseases(CVDs), including abnormal arrhythmias and congestive heart failure, are a leading cause of 

mortality worldwide, with electrocardiogram (ECG) signals serving as a critical diagnostic tool. This study introduces a 

novel approach for classifying diseases in ECG signals into three categories: normal sinus rhythm (NSR), abnormal 

arrhythmia (ARR), and congestive heart failure (CHF). The classification is based on a combination of features 

extracted from both the time domain (mean and standard deviation) and the frequency domain (power spectral density 

and spectral centroid) of the ECG signals. Additionally, energy values from selected frequency bands are utilized. To 

enhance the model’s robustness, incorporate data augmentation techniques, including time-shifting and flipping of the 

signals. These augmented datasets are then employed with various classifiers, and an optimization process using grid 

search is applied to enhance the classification performance. This methodology presents a promising framework for 

automated ECG signal analysis, the results of the proposed work have been exceptionally promising, showcasing a 

remarkable specificity rate of 99.7% and achieving an accuracy level of 99.58%. These findings hold significant promise 

for advancing early detection methods and enhancing patient outcomes in the realm of CVDs. 
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1 Introduction 

Cardiac arrhythmias, characterized by abnormal heart 

rhythms, pose significant health risks and require an 

accurate and timely diagnosis for effective treatment. 

The automatic detection and classification of these 

conditions have become a focal point in biomedical 

research, with the aim of creating dependable, non-

invasive diagnostic tools. Among the various 

diagnostic tools for cardiovascular diseases (CVDs), 

the electrocardiogram (ECG) is a fundamental, non-

invasive technique that records the electrical activity of 

the heart over time. It provides crucial information 

about the heart’s condition, including the presence of 

arrhythmias and signs of congestive heart failure. 

However, the manual interpretation of ECG signals can 

be time-consuming and requires a high level of 

expertise, leading to potential delays in diagnosis and 

treatment. The application of machine learning (ML) 

techniques to ECG signal analysis has been an area of 

active research in recent years. Several studies have 

demonstrated the potential of ML to enhance the 

accuracy and efficiency of ECG interpretation. 

Sharma et al. [1] conducted a study on feature 

extraction in the context of heart- beat classification and 

arrhythmia detection. They utilized optimal orthogonal 

wavelet filters and obtained an accuracy rate of 98%. 

Jing et al. [2] introduce an enhanced ResNet-18 model 

tailored for ECG heartbeat classification. They employ 

a slicing technique for data labelling, resulting in an 

impressive accuracy of 96.50%. An effective approach 

for detecting ventricular late potential based on an 

ECG signal and SVM classifier is proposed by Giorgio 

et al. [3], resulting in a positive predictively of 

88.52%. Jha et al. [4] introduced a highly efficient 

method for classifying ECG beats, distinguishing 

between normal beats and seven types of arrhythmias. 

Their approach utilizes tunable Q-wavelet-based 

features and achieved an impressive average accuracy of 

99.27%. Arumugam et al. [5] introduced a 

methodology centered around wavelets to identify and 

classify Arrhythmia, resulting in a positive predictively 

rate of 95.92%. Zhao et al. [6], introduced a Deep CNN 

approach that utilized a 24-layer CNN to extract 

features from ECG data through cross-size convolution 

kernels. The proposed method achieved an accuracy of 

87.1% in ECG classification. Wang et al. [7] 

demonstrated a high accuracy of 98.74% in early 

arrhythmia detection by employing continuous wavelet 

transform (CWT) and convolutional neural networks 

(CNNs). A study conducted by Mohonta et al. [8] 

introduced a deep learning 2D-CNN model combined 

with wavelet transform for arrhythmia classification, 

achieving an impressive accuracy of 99.65% In their 
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research, Eltrass et al. [9] presented a hybrid approach 

that integrates deep neural networks, ECG features, 

and HRV measures to improve the accuracy of ECG 

classification. The proposed system surpasses existing 

methods with remarkable results, achieving an 

accuracy of 98.75%. This hybrid approach holds 

promise for real-time clinical implementation, 

potentially assisting cardiologists in ECG diagnosis. 

Losada et al. [10] used the k-Nearest Neighbor 

algorithm on 9000 ECG signals from the PhysioNet 

database, demonstrating high accuracy in normal 

signal classification but challenges with arrhythmias 

due to data imbalance. A study proposes an ECG 

identification method leveraging wavelet transform and 

probabilistic neural networks optimized by the whale 

optimization algorithm (WOA-PNN). This method 

detects Q, R, and S waves through wavelet transform and 

P, T waves via local windowed wavelet transform, 

significantly reducing ECG data dimensions. By 

integrating the probabilistic neural network and 

employing the mean impact value algorithm, less 

influential characteristic values are eliminated, 

simplifying the model. The WOAPNN approach 

intelligently optimizes hyperparameters, achieving 

high identification accuracy rates of 96.97% for a single 

ECG cycle and 99.43% for three cycles across the ECG-

ID, MIT-BIH Normal Sinus Rhythm, and MIT-BIH 

Arrhythmia databases [11]. In 2022, Hammad et al. [12] 

have shown that multimodal approaches can 

significantly improve classification accuracy and 

efficiency in detecting arrhythmias compared to single 

models. Deriche et al. [13] proposed a study employing 

13 ECG geometric features, based on the Pan-

Tompkins QRS model, to classify five abnormal 

heartbeat types using the MIT-BIH arrhythmia 

database. The method achieves over 92% accuracy. 

Different features optimally identify various heartbeat 

abnormalities. Haleem et al. [14] proposed a method for 

the automatic detection of CVD via ECGs that rely on 

rule-based diagnosis models, which are inefficient and 

require significant analysis. In this paper, a two-stage 

multiclass algorithm is proposed, achieving 100% 

accuracy for congestive heart failure, 97.9% for 

arrhythmia, and 100% for predicting sudden cardiac 

deaths, surpassing state-of-the-art algorithms. The 

primary goal of this research is to enhance the accuracy 

of cardiac arrhythmia classification, thereby 

contributing to the development of more effective 

diagnostic tools. Provide a comprehensive overview of 

the methodology and present the results of the 

experiments, which demonstrate the efficacy of the 

approach. Moreover, the development of such 

automated systems could have far-reaching 

implications beyond individual patient care. They could 

potentially streamline workflows in healthcare 

settings, reduce the burden on healthcare professionals, 

and contribute to more sustainable and efficient 

healthcare systems. The remainder of this paper will 

detail the methodology, present the findings, and 

discuss their implications for both clinical practice and 

future research. 

The remainder of this paper is structured as follows: 

In Section 2, present the materials and methodology, 

encompassing the ECG dataset, classifiers used, and 

the evaluation metrics. Moving on to Section 3, delve 

into the proposed methods, including a detailed 

explanation of feature extraction, classification and 

optimization. The subsequent Section 4 outlines the 

experimental setup, while Section 5 showcases the 

experimental results, encompassing accuracy scores, 

and confusion metrics and these findings are compared 

with related work. Finally, in Section 6, we conclude 

the paper by summarizing key points and suggesting 

potential directions for future research. 

2 Material and Methods 

2.1 Dataset 

This paper utilizes the ECG signal dataset, that consists 

of Cardiac arrhythmia (ARR), Congestive heart failure 

(CHF), and Normal sinus rhythm (NSR) signals. The 

dataset comprises 162 ECG recordings obtained from 

Physionet databases: MIT-BIH arrhythmia database 

(containing 96 ARR recordings), BIDMC congestive 

heart failure database (containing 36 CHF recordings), 

and MIT-BIH normal sinus rhythm database 

(containing 30 NSR recordings) [15]. The data matrix 

is structured as a 162∗65536 array, representing a total 

of 162 ECG signals, each with 65536 samples. Each 

signal is labeled to indicate its type, enabling 

identification of the ECG signal category. The database 

is organized such that rows 1 to 96 correspond to ARR 

signals, rows 97 to 126 represent CHF signals, and 

rows 127 to 162 contain NSR signals. All ECG signals 

are resampled to a fixed sampling frequency of 128 Hz 

and normalized to remove any offset effect. Figure 1 

illustrates a sample ECG signal. 
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Fig. 1: Sample of ECG signals 

The database is first processed at the record level. 

Each record, which consists of 65536 samples, is 

divided into smaller signals of length 1000 samples. This 

partitioning strategy aims to increase the size of the 

database. Additionally, to achieve a balanced dataset, 

30 recordings of each type (ARR, CHF, and NSR) are 

selected. Consequently, the final dataset comprises 500 

ECG signals from each category, with each signal 

having a length of 1000 samples. 

2.2 Classifiers 

Several classifiers are trained and evaluated using the 

input dataset. The classifiers employed in this research 

included the Random Forest (RF), XGBoost (XGB), 

Gradient Boosting (GB), Support Vector Machine 

(SVM), K-Nearest Neighbors (KNN), and Gaussian 

Naive Bayes (GNB). The training process involved 

fitting each classifier to the input features and their 

corresponding target labels. The input dataset, 

consisting of the features and target labels, is divided 

into training and testing sets. The training set is used to 

train the classifiers, allowing them to learn the 

underlying patterns and relationships in the data. After 

training, the classifiers are used to make predictions on 

the testing set. 

2.3 Evaluation Standards 

The effectiveness of the neural-based model system is 

assessed using the following metrics: accuracy, 

specificity, precision, sensitivity or recall, f1-score, 

and confusion matrix. A brief discussion of these 

Metrics is given below. Accuracy is the percentage of 

correctly categorized data instances overall data 

instances. 

 Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
            (1) 

Specificity indicates the percentage of true negatives 

that the model accurately detects. A model with high 

specificity will accurately identify most of the negative 

outcomes, whereas one with low specificity may 

incorrectly classify many negative results as positive. 

Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                      (2) 

Precision indicates what percentage of identifications 

are actually correct. 

Precision =
TP

(TP + FP)
                   (3) 

Recall indicates the percentage of actual positives that 

are detected correctly. 

Sensitivity or Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
     (4) 

score is computed by calculating the harmonic 

mean of two Metrics (Precision and recall).   It is used 

to compare the performance of two classifiers. 

 

F1 score =
2 × ( Precision ×  Recall )

 Precision +  Recall 
    (5) 

Here, TP stands for “True Positive,” FP for “False 

Positive,” TN for “True Negative,” and FN for “False 

Negative.” 

3 Proposed Method 

The objective of this study is to design an automated 

classification system using ECG signals to accurately 

identify three different cardiac conditions: NSR, ARR, 
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and CHF. The basic block diagram illustrating the proposed method is depicted in Figure 2. 

 

Fig. 2: Block Diagram of Proposed Method 

In this experiment, taken a dataset X containing 

N ECG signals, each represented as a vector of M 

features: X = {x1, x2, ..., xN }, where xi = [xi1, xi2, ..., 

xiM ] for i = 1, 2, ..., N . To enhance model robustness, 

data augmentation techniques are applied, including 

time-shifting and flipping the signals. Augmented data 

includes the original signal, a flipped version (xflipped), 

and a time-shifted version (xtime-shifted). Feature 

extraction encompasses the analysis of both time-

domain and frequency- domain features from each 

ECG signal. Time domain features include the mean 

(mean(xi)) and standard deviation (std(xi)). Frequency 

domain features are obtained using the Wavelet Packet 

Transform (WPT) at level 3 and include the energy of 

selected wavelet coefficients: Eaad, Eadd, Edad, and Eddd 

as shown in fig 5. This study examined eight distinct 

features, which are subsequently subjected to various 

classification models. further, employed Grid Search to 

fine-tune the hyperparameters of each classifier for 

optimal performance. The algorithm of the proposed 

model is illustrated in algo. 1. 

Algorithm 1: Proposed Method for ECG Signal 

Classification 

Data: Dataset X with N ECG signals, each 

represented as xi with M features 

Result: Classification of ECG signals using various 

classifiers Input: Extracted features from time and 

frequency domains Output: Predicted disease for 

ECG signal 

1 Step 1: Database Initialization and Signal 

Segmentation 

2 Load and initialize the ECG signal dataset: X = 

{x1, x2, . . . , xN }, where each 

xi = [xi1, xi2, . . . , xiM ] for i = 1, 2, . . . , N  

3 Step 2: Generate augmented datasets that include 

the original signal, a flipped version (xflipped), and a 

time-shifted version (xtime-shifted) 

4 Step 3: Feature Extraction 

5 Step 3.1: Extract time domain features for each ECG 

record 

6 Mean(xi) and Std(xi) 

7 Step 3.2: Apply Wavelet Packet Transform (WPT) 

with Sym4 wavelet to decompose the ECG signals at 

level 3  

8 Step 3.3: Select Appropriate Bands (AAD, ADD, 

DAD, DDD) 

9 Step 3.4: Calculate the energy of each selected 

frequency band  

10 Step 3.5: Compute the Power Spectral Density 

(PSD) and Spectral Centroid (SC) from the selected 

energy bands 

11 Step 4: Train classifiers (RF, XGB, SVM, GNB, 

KNN) using the extracted features: Mean, Std, AAD, 

ADD, DAD, DDD, PSD, and SC 

12 Step 5: Apply Grid Search for Hyperparameter 

Optimization and Select the best hyperparameters 

based on cross-validation performance 

13 Step 6: Generate predicted outputs 

3.1 Data Augmentation 

Two augmentation techniques have been meticulously 

implemented in this study: signal flipping and 

time−shifting. Despite the abundance of ECG data 

available for the classification task, these 

augmentation strategies offer several compelling 

advantages. They play a pivotal role in bolstering the 

model’s robustness by exposing it to an expanded 

spectrum of data variations. This significance arises 

from the fact that, even within a single category of ECG 

signals, inherent variations persist. Augmentation 

augments this inherent variability, affording the model 
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the capacity to generalize effectively across novel 

instances and exhibit enhanced performance in real-

world scenarios. Furthermore, the application of 

augmentation techniques fosters superior 

generalization capabilities that transcend the confines 

of specific instances within the dataset. By simulating 

divergent recording conditions, electrode placements, 

and signal quality variances, augmentation equips the 

model with the acumen to discern more resilient and 

broadly applicable features. In addition to its 

generalization benefits, augmentation acts as a form of 

regularization, a vital safeguard against overfitting. It 

promotes the model’s capacity to generalize 

proficiently, even when confronted with extensive 

datasets. Therefore, even with sufficient data, 

augmentation techniques remain valuable for 

improving the performance and reliability of ECG 

signal classification models. This augmentation 

technique can potentially improve the model’s ability 

to detect and classify abnormal arrhythmias and 

congestive heart failure ECG signals. 

Table 1: Model Performance with and without Data 

Augmentation 

Classifier Accuracy (Without 

Augmentation) 

Accuracy (With 

Augmentation) 

Random Forest 92.33% 95.00% 

XGBoost 92.00% 99.58% 

SVM 41.67% 37.5% 

KNN 52.00% 67.00% 

 

Data augmentation significantly enhances the 

performance of the ECG signal classification model. As 

shown in Table 1, the accuracy of Random Forest 

increased from 92.33% to 95.00%, XGBoost from 

92.00% to 99.58%, and KNN from 52.00% to 67.00%. 

This demonstrates that augmentation techniques 

improve model robustness and accuracy, even when 

the original dataset is sufficient. 

3.1.1 Flipping 

Flipping is a data augmentation technique that involves 

inverting the polarity of the signal. Flipping the signal 

can make the classification model more robust to 

changes in signal orientation. ECG signals can vary in 

their orientation due to factors such as 

electrodeplacement, patientpositioning, or 

recordingartifacts. By augmenting the dataset with 

flipped signals, the model can learn to recognize 

patterns regardless of the signal’s original orientation. 

Figure 3 illustrates a comparison between the original 

signal and its corresponding flipped signal. Given an 

input signal S, the flipped signal S flipped is obtained 

by multiplying each sample in S by -1: 

𝑆𝑓𝑙𝑖𝑝𝑝𝑒𝑑 = −1 · 𝑆      (6) 

 

 

 

 

Fig. 3: Flipped Signal with Original Signal 

3.1.2 Time Shifting 

Figure 4 displays a comparison between the original 

signal and the time-shifted signal. Time-shifting is a 

data augmentation technique that involves shifting the 

signal in the time domain by a certain number of units. 

In this research work, a time shift of 5 units is used. 

The time-shifted signal S shifted can be obtained as 

displayed in the equation 7. Given an input signal S, the 

time-shifted signal (S shifted) is obtained by circularly 

shifting the samples in S by a shift amount k: 
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𝑆𝑠ℎ𝑖𝑓𝑡𝑒𝑑[𝑖] = 𝑆[(𝑖 + 𝑘)𝑚𝑜𝑑𝑁]           (7) 

where N is the length of the signal S. 

3.2 Detailed Architecture of the Proposed Model 

for Feature Extraction 

Features are extracted from ECG signals in both the 

time domain and the frequency domain using the WPT. 

Figure 5 illustrates the detailed architecture of the 

proposed model offering insights into the methodology 

behind the process of feature extraction. 

3.2.1 Time Domain Features 

This process aimed to capture important statistical and 

spectral characteristics of the signals. In the time 

domain, the mean (µ) and standard deviation (σ) of the 

signal are computed. These statistical measures provide 

basic information about the signal’s central tendency 

and variability. By calculating these features, obtain 

information about the average amplitude and the 

variability of the ECG signal. These measures can help 

 

Fig. 4: Time Shifted with Original Signal 

differentiate between normal and abnormal patterns in 

the ECG. NSR, ARR, and CHF exhibit distinct patterns 

in the ECG signals. Mean and standard deviation can 

highlight differences in signal morphology among 

these rhythm types. The standard deviation provides an 

indication of how much the signal values deviate from 

the mean. In the context of ECG analysis, CHF can lead 

to increased variability in the signal due to irregular 

heart contractions. Considering the standard deviation 

can capture this increased variability, potentially aiding 

in the identification of congestive heart failure. Mean 

and standard deviation can serve as informative 

features for classification algorithms. By extracting 

these features and combining them with other relevant 

features, can construct a feature vector that characterizes 

different ECG rhythm types. 

• Mean (µ): Calculated as the average value of the 

signal. 

𝜇 =
1

𝑁
∑  

𝑁

𝑖=1

𝑥𝑖                (8) 

Here, µ represents the mean value of the signal. N is 

the total number of samples 

in the signal. xi represents the ith sample of the 

signal. 

• Standard Deviation (σ): Measured as the square root 

of the variance of the signal. 

. 

𝜎 = √
1

𝑁 − 1
∑  

𝑁

𝑖=1

(𝑥𝑖 − 𝜇)2        (9) 

Here, σ represents the standard deviation of the signal. 

N is the total number of samples in the signal. xi 

represents the i-th sample of the signal. µ represents 

the mean value of the signal. 
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Fig. 5: Detailed Architecture of the Proposed Method 

3.2.2 Frequency Domain Features Extraction 

using Wavelet Packet Transform 

In the feature extraction process, the WPT is utilized to 

analyze the signal, employing the ′sym4′ wavelet, 

which represents the fourth-order symlet wavelet—a 

symmetric extension of the Daubechies wavelet. WPT 

is an extension of the Discrete Wavelet Transform 

(DWT) that offers a more detailed decomposition of 

the signal. In the DWT, subsequent levels of the 

transform operate on the outputs of the Lowpass 

(Scaling) filter, which may not provide a complete 

analysis of all frequency components. In contrast, the 

WPT enables simultaneous processing of the results 

obtained from both the Lowpass (Scaling) filter and the 

Highpass (Wavelet) filter at each level. The key 

difference is that in the undecimated discrete wavelet 

transform, the outputs are not downsampled. This 

means that the full frequency content of the signal is 

preserved at each level of the transform, giving a more 

complete analysis of the signal. For a one-dimensional 

signal x[n], the WPT can be expressed as: 

𝑊𝑃𝑇𝑗[𝑛] = ∑  

𝑘

𝑥[𝑘] ⋅ 𝜓𝑗,𝑘[𝑛]         (10) 

Where, WPTj[n] represents a WPT coefficient at a 

particular node. x[k] is the input signal and ψj,k[n] is the 

wavelet function with scale j and translation k. 
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Table 2: Comparative Analysis of Different Wavelets 

Wavelet Classifier Accuracy Best Parameters 

Sym4 RF 95.00% Max Depth: 20, Min 

Samples Split: 2, 

Estimators: 50 

 XGBoost 99.58% Learning Rate: 0.1, 

Max Depth: 7, 

Estimators: 200 

 SVM 37.50% C: 1, Kernel: Linear 

 KNN 67.00% Neighbors: 3, Metric: 

Minkowski (P=1), 

Weights: Distance 

 GNB 55.20% Var Smoothing: 1e-9 

db4 RF 97.11% Max Depth: None, 

Min Samples Split: 2, 

Estimators: 10 

 XGBoost 90.67% Learning Rate: 0.1, 

Max Depth: 3, 

Estimators: 50 

 SVM 79.22% C: 10, Gamma: Auto 

 KNN 70.22% Neighbors: 3 

coif1 RF 95.22% Max Depth: None, 

Min Samples Split: 2, 

Estimators: 10 

 XGBoost 89.00% Learning Rate: 0.1, 

Max Depth: 3, 

Estimators: 50 

 SVM 78.00% C: 10, Gamma: Auto 

 KNN 69.56% Neighbors: 3 

Haar RF 95.56% Max Depth: None, 

Min Samples Split: 2, 

Estimators: 10 

 XGBoost 88.22% Learning Rate: 0.1, 

Max Depth: 3, 

Estimators: 50 

 SVM 80.22% C: 10, Gamma: Auto 

 KNN 70.67% Neighbors: 3 

 

In table 2, results demonstrated that the ’sym4’ 

wavelet provided the highest accuracy with the 

XGBoost classifier, achieving an impressive accuracy 

of 99.58%, surpassing other wavelets in performance 

metrics. The comparative results for each classifier and 

their optimal parameters obtained through grid search 

optimization are summarized in the above table 2. This 

comparative analysis validates the selection of the 

’sym4’ wavelet for the proposed ECG signal 

classification methodology. Furthermore, WPT offers 

a notably versatile approach to signal analysis, 

especially when the objective is to concentrate on 

distinct frequency bands or individual components 

within the signal. This technique enables researchers and 

analysts to discern and examine specific aspects of a 

signal with a high degree of precision and selectivity, 

making it a valuable tool in the realm of signal 

processing and analysis. In this work, one-dimensional 

ECG signal x[n] decomposes using WPT with the 

Symlet-4 wavelet at level 3. Here’s how the 

decomposition proceeds: 

Level 1 Decomposition (j = 1) 

At the first level, the ECG signal is decomposed into 

approximation and detail coefficients using the Sym4 

wavelet. Figure 6 displays the ECG signal graph at level 

1 (A & D coefficients) with the original signal. The 

approximation coefficients at this level represent the 

low-frequency components of the ECG signal, and the 

detail coefficients capture high-frequency details. The 

decomposition is given by: 

𝑊𝑃𝑇1[𝑛] = ∑  

𝑘

𝑥[𝑘] ⋅ 𝜓1,𝑘[𝑛]       (11) 

Here, ψ1,k[n] represents the Sym4 wavelet function at 

level 1. 

 

Fig. 6: WPD level 1 bands with original ECG signal 
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1 

2 

2 

Level 2 Decomposition (j = 2) 

At the second level, both the approximation and detail 

coefficients from level 1 are further decomposed into 

their own approximation and detail coefficients. Figure 

7 displays the ECG signal decomposition at level 2 with 

the original signal. This results in a more detailed 

representation of the ECG signal, capturing both low 

and high- frequency components. The decomposition 

equations are as follows: 

𝑊𝑃𝑇2
𝐴[𝑛] = ∑  

𝑘

𝑊𝑃𝑇1
𝐴[𝑘] ⋅ 𝜓2,𝑘[𝑛]              (12) 

𝑊𝑃𝑇2
𝐷[𝑛] = ∑  

𝑘

𝑊𝑃𝑇1
𝐷[𝑘] ⋅ 𝜓2,𝑘[𝑛]             (13) 

Here, ψ2,k[n] represents the Sym4 wavelet function 

at level 2. WPTA[k] and WPTD[k] are the 

approximation and detail coefficients obtained at level 

1. Equ. 12 and Equ. 13 are employed in the 

computation of approximation coefficients (AA and 

AD) and detailed coefficients (DA and DD) 

respectively. 

Level 3 Decomposition (j = 3) 

At the third level, the process continues, with both the 

approximation and detail coefficients from level 2 

undergoing further decomposition. Figure 8 displays 

the ECG signal decomposition at level 3 with the 

original signal. The equations for the third- level 

decomposition are as follows: 

 

Fig. 7: WPD level 2 bands with original ECG signal 

𝑊𝑃𝑇2
𝐴[𝑛] = ∑ 𝑊𝑃𝑇1

𝐴 [𝑘].
𝑘

𝜓2,𝑘[𝑛]            (14) 

𝑊𝑃𝑇3
𝐷[𝑛] = ∑ 𝑊𝑃𝑇2

𝐷

𝑘

[𝑘] ⋅ 𝜓3,𝑘[𝑛]           (15) 

Here, ψ3,k[n] represents the Sym4 wavelet function 

at level 3. WPTA[k] and WPTD[k] are the 

approximation and detail coefficients obtained at level 

2. Equ. 14 and Equ. 15 are employed in the computation 

of approximation coefficients (AAA, AAD, ADA, and 

ADD) and detailed coefficients (DAA, DAD, DDA, and 

DDD) respectively. 

 

Fig. 8: WPD level 3 bands with original ECG signal 
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By performing this three-level decomposition 

using the Sym4 wavelet, obtain a detailed 

epresentation of the original one-dimensional ECG 

signal x[n] that captures different frequency 

components at various levels of detail. This multi-

resolution analysis is valuable for tasks such as feature 

extraction in ECG data. Figure 9 depicts a plot of all 

the bands at level 3 alongside the original signal. 

 

Fig. 9: WPD level 3 bands with original ECG signal 

Selection of Bands at Level 3 in WPT 

In the context of WPT, at level 3, there are a total of 

eight available bands for decomposition. These bands 

represent different combinations of approximation (A) 

and detail (D) coefficients, each capturing specific 

information about the signal. The eight bands at level 3 

are AAA, AAD ADA, ADD, DAA, DAD, DDA, and 

DDD, where each letter represents whether the 

coefficient is an approximation (A) or a detail (D) 

coefficient. 

For a particular signal analysis, it may be necessary 

to focus on specific frequency components or details 

within the signal. In this scenario, we have selected four 

bands out of the available eight for further analysis. 

The selected bands are as follows: 

1. AAD (Approximation-Approximation- Detail): 

AAD combines two levels of smoothed, lower-

frequency information (AA) with the detailed high-

frequency information specific to the third level. 

This sub-band is capturing characteristics related to 

the intermediate frequency range in a signal, 

potentially revealing details about the morphology 

of ECG waveforms and different heart conditions. 

AAD band plot displayed in Figure 10 

 

Fig. 10: AAD plot 

2. ADD (Approximation-Detail- Detail): It provides 

insights into both smoothed and highly localized 

changes within the signal, offering a comprehensive 

view of the signal’s frequency components. ADD is 

valuable for analyzing various features, making it 

useful for applications like ECG analysis and the 

detection of cardiac conditions. Figure 11 illustrates 

the ADD plot. 

 

Fig. 11: ADD plot 

3. DAD (Detail-Approximation- Detail): DAD band 

highlights high-frequency details while still preserving 

essential approximation components.DAD band plot 

displayed in Figure 12 
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Fig. 12: DAD plot 

4. DDD (Detail-Detail-Detail): This band is selected to 

provide a comprehensive analysis, capturing detailed 

high-frequency information without approximation. 

This sub-band is sensitive to fast and localized changes 

within the signal, making it invaluable for detecting 

specific cardiac events, arrhythmias, and other 

irregularities in the ECG waveform. Figure 13 

displayed a DDD plot. 

 

Fig. 13: DDD plot 

The choice of these specific bands allows for a more 

targeted analysis of the signal, tailored to the 

requirements of the task at hand. The selection of 

bands in WPT provides the flexibility to focus on the 

aspects of the signal that are most relevant to analysis. 

3.2.3 Energies, Power Spectral Density (PSD) and 

Spectral Centroid (SC) Calculation 

By the meticulous selection of specific nodes during 

wavelet packet decomposition(WPD), along with the 

subsequent computation of their energy values 

(represented as the sum of squares of the coefficients), 

significant frequency components and their 

corresponding contributions to the signal’s energy are 

discerned. These calculated energy values are then 

leveraged to derive essential spectral features, 

including PSD and Spectral Centroid. These spectral 

features provide valuable insights into the frequency 

distribution within the signal, enriching the 

understanding and analysis. The energy is calculated as 

follows. 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑐𝑖
2

𝑁

𝑖=1

         (16) 

Here, ‘energy’ represents the energy of a selected node 

from the WPD. N is the total number of coefficients in 

the selected node. ci represents the ith coefficient of the 

selected node. 

PSD: The PSD is derived from the energies of the 

selected nodes. By examining the PSD, which 

represents the power distribution across different 

frequency bands, it can identify the dominant 

frequencies and their relative strengths. This 

information helps in understanding the underlying 

mechanisms of cardiac disorders. 

𝑃𝑆𝐷 =
1

𝑁
∑ Energy

𝑖

𝑁

𝑖=1

       (17) 

 

where ’PSD’ represents the PSD, N is the total 

number of selected nodes, and energyi represents the 

energy value of the ith selected node. 

SC: The SC is computed as the weighted average of 

the energies, indicating the 

distribution of spectral energy. 

SC =
∑ 𝑖𝑁

𝑖=1 ⋅ Energy
𝑖

∑ Energy
𝑖

𝑁

𝑖=1

          (18) 

The SC represents the weighted average of the energy 

values of N selected nodes. 

Let N be the total number of selected nodes, i be the 

index of the selected node, and energyi be the energy 

value of the ith selected node. Then, the SC can be 

calculated as above Equ. 18 changes in the PSD and 

SC can provide quantitative measures of alterations in 

the frequency characteristics of ECG signals. These 

changes may indicate the progression or severity of 

cardiac conditions, including CHF. Tracking these 

measures over time can assist in monitoring the 



Letters in High Energy Physics 
ISSN: 2632-2714 

Volume 2024 

 

110 

effectiveness of treatments or interventions. The 

process commences with the extraction of informative 

features from the input ECG signals. Both time and 

frequency domain analyses are deployed to encapsulate 

pertinent characteristics. In the time domain, statistical 

attributes, specifically the mean and standard deviation, 

furnish insights into the overall signal morphology. 

Meanwhile, in the frequency domain, the ’sym4’ 

wavelet is employed for WPT, and energy values are 

derived from selectively chosen nodes at level 3. These 

energy values provide valuable insights into the 

spectral attributes of the ECG signals. Each classifier 

acquires the distinctive attributes associated with 

ARR, CHF, and NSR ECG signals. 

3.2.4 Feature Importance 

A total of eight features are derived from both the time 

and frequency domains. Within the time domain, we 

calculate the mean (µ) and standard deviation (σ) of the 

signal. In the frequency domain, assess the energies 

within four specific bands through the WPT, as well as 

evaluate the PSD and the SC. The visual 

representations of these extracted features, depicted in 

Figure 14, offer a visual means of understanding their 

distribution and patterns. 

 

Fig. 14: Features Visualization 

The Displayed Figure 14 comprises a 3 x 3 grid of 

subplots, each displaying a feature’s distribution 

extracted from signals. The x-axis represents feature 

values, while the y-axis depicts occurrence density via 

Kernel Density Estimation (KDE). Histogram shapes 

reveal value distribution, with taller bars indicating 

higher density. KDE curves offer insights into 

underlying probability density functions. The analysis 

yields insights such as unimodal or bimodal 

distributions, spread, skewness, and overall shape, 

aiding anomaly detection, feature selection, and data 

insights. The graph represents the distribution of 

different features extracted from the dataset. Each 

subplot in the graph shows the histogram of a specific 

feature, and the histograms are differentiated by the 

target labels (0, 1, 2). In the graph, each subplot 

corresponds to one of these features. The x-axis 

represents the value range of the respective feature, and 

the y-axis represents the density of occurrences within 

that value range. The legend at the top right corner of 

the graph represents the target labels. In this case, the 

labels 0, 1, and 2 represent different classes or 

categories of the data. These labels could correspond to 

different types of signals or patterns that are being 

classified or analyzed. By observing the histograms and 

the differentiation based on the target labels, we can 

gain insights into the distribution and patterns of the 

features across different classes. It allows us to 

understand how the feature values are distributed 

within each class and whether there are noticeable 

differences or similarities between the classes. 
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3.3 Hyperparameters Optimization 

The optimization of hyperparameters is achieved 

through the utilization of grid search, and methodical 

exploration of predefined hyperparameter values to 

maximize their performance. This iterative process 

serves to finely adjust the models and capture intricate 

relationships within the ECG signal data. In the 

thorough evaluation of diverse machine learning 

classifiers for the classification of ECG signal classes, an 

investigation is conducted into the performance of RF, 

XGB, GB, SVM, KNN, and Gaussian Naive Bayes 

algorithms. Among these classifiers, XGBoost emerges 

as the leading model following an exhaustive 

hyperparameter tuning process involving grid search. 

Through the grid search, identified the optimal 

hyperparameters for the XGBoost model that led to the 

best results in terms of classification accuracy and 

performance. Specifically, achieved superior results 

with a learning rate of 0.1, a maximum depth of 7 for 

each boosting tree, and the use of 200 estimators. This 

combination of hyperparameters resulted in a well-

generalized and robust model, capable of accurately 

distinguishing between different ECG signal classes. 

Table 3 presents the optimal parameters corresponding 

to each classifier. 

4 Experimental Setup 

The experimental setup involved implementing the 

proposed ECG signal classification method using 

Python and libraries such as NumPy, pandas, scikit-

learn, XGB, pywt, and matplotlib. These tools are 

employed for data processing, manipulation, machine 

learning, boosting, feature extraction through Wavelet 

Packet Transform, and visual representation of results. 

5 Experimental Results & Discussion 

Based on the experimental results, indicating its ability 

to accurately classify ECG signals. RF and GB 

demonstrated exceptional performance, achieving both 

high specificity and accuracy, with specificity values of 

97.00% and 98.15%, and accuracy values 

Table 3: Optimal Hyperparameters for Proposed 

Model’s Classifiers using Grid Search 

Classifier Parameter Value 

XGBoost learning rate 

max depth 

estimators 

0.1 

7 

200 

RF max depth 

min samples 

split 

estimators 

20 

2 

50 

SVM cost 1 

parameter 

kernel 

linear 

KNN n neighbors 

p 

weights 

3 

1 

’distance’ 

Gaussian 

Naive Bayes 

var 

smoothing 

default (1 × 10−9) 

 

of 95.00% and 96.25%, respectively, making them 

effective tools for cardiac condition identification. 

KNN and GNB also delivered notable results, with 

specificity and accuracy values around 83.6% and 

77.61%, indicating their competence in classifying 

ECG signals. SVM, however, exhibited comparatively 

lower values for both specificity and accuracy, with 

values of 73.3 and 37.5%, suggesting that SVM may 

not be the optimal choice for this specific classification 

task. XGB displayed impressive specificity at 99.7% 

and accuracy at 99.58%, indicating its potential for 

detecting cardiac conditions. Figure 15 illustrates the 

performance Metrics for all the classifiers. 

A comprehensive overview of performance metrics 

for various classifiers, including RF, GB, SVM, KNN, 

GNB and the proposed work, represented as “XGB” 

These metrics encompass essential evaluation criteria 

such as Precision, F1-Score, Sensitivity, Specificity, 

Accuracy, ARR, CHF, and NSR. Notably, the ”XGB” 

classifier, representing the proposed approach, 

demonstrates remarkable performance across the 

measured metrics, with detailed insights provided in 

Table 4. 

Using the same dataset, several additional methods 

are explored to optimize feature selection in 

classification. The first experiment utilized Particle 

Swarm Optimization (PSO) to enhance the accuracy of 

the RF, achieving an impressive 98%. In the second 

experiment, the Genetic Algorithm (GA) is employed 

for feature subset evolution and achieved 89.33% or 

accuracy with RF. The third experiment introduced a 

novel hybrid approach, PSO-GA, which synergized 

PSO’s convergence speed and GA’s adaptability, 

yielding a remarkable 97.78% accuracy in classifying 

ECG signals. Ultimately, the proposed method, 

incorporating the XGB classifier, attained the highest 

accuracy of 99.58%. 

5.1 Confusion Metrics Analysis 

To ensure a balanced representation, a subset of the 

testing set containing a fixed number of samples (80 

samples per class) is selected for generating the 

confusion Metrics. Figure 16 displayed the confusion 

Metrics for different classifiers. 
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Fig. 15: performance Metrics graph 

 

Fig. 16: Confusion Metrics 

Table 5 displayed the distribution of true positive, 

false positive, true negative, and false negative 

predictions of the XGB classifier. 

The confusion matrix table 5 reveals the number of 

true positives (TP), false positives (FP), and false 

negatives (FN) for each class. Notably, the classifier 

achieved perfect detection of Actual ARR, Actual CHF 

and Actual NSR cases, with TP counts of 80 for both 

classes. However, for Actual CHF, there is 1 FN 

instance, indicating cases where the model failed to 

correctly classify CHF. The absence of FP in the 

Actual ARR and NSR categories suggests high 

precision in prediction. Overall, the confusion matrix 

highlights the strengths of the classifier in 

differentiating between the classes, and these models 

hold great promise for accurate cardiac disease 

diagnosis and patient care. 

 

 

Table 4: Performance metrics 

Classifiers Performance 

Metrics 

ARR CHF NSR Over all 

Specificity 

Over all 

Accuracy 

 Precision 1 0.925 0.925   

RF F1-Score 

Sensitivity 

0.993 

0.987 

0.931 

0.937 

0.925 

0.925 

0.97 0.95 

 Specificity 0.993 0.968 0.962   

 Precision 0.987 0.961 0.938   

GB F1-Score 

Sensitivity 

0.993 

1 

0.949 

0.937 

0.944 

0.95 

0.9813 0.9625 
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 Specificity 1 0.969 0.974   

 Precision 0.166 0.518 0.362   

SVM F1-Score 

Sensitivity 

0.0232 

0.012 

0.261 

0.175 

0.522 

0.937 

0.733 0.375 

 Specificity 0.662 0.69 0.848   

 Precision 0.73 0.659 0.621   

KNN F1-Score 

Sensitivity 

0.721 

0.71 

0.69 

0.725 

0.597 

0.575 

0.836 0.67 

 Specificity 0.858 0.855 0.795   

 Precision 0.87 0.594 0.433   

GNB F1-Score 

Sensitivity 

0.701 

0.587 

0.376 

0.275 

0.554 

0.766 

0.7761 0.552 

 Specificity [0.831 0.727 0.769   

 Precision 1 1 0.987   

XGB F1-Score 

Sensitivity 

1 

1 

0.993 

0.987 

0.993 

1 

0.997 0.995 

 Specificity 1 0.993 1   

 

Table 5: Confusion Metrics 

Classifier  XGBoost  

 Predicted ARR Predicted CHF Predicted NSR 

Actual ARR TP = 80 FP = 0 FN = 0 

Actual CHF FP = 0 TP = 79 FN = 1 

Actual NSR FP = 0 FP = 0 TP = 80 

 

furthermore, the proposed model boasts high 

accuracy (99.58% with XGBoost), robust data 

augmentation using flipping and time-shifting, and 

optimized feature extraction via Wavelet Packet 

Transform (WPT) with ’sym4’ wavelet. Its 

comprehensive evaluation with multiple classifiers 

demonstrates superiority over traditional and deep 

learning methods, with significant implications for 

improving diagnostic accuracy, operational efficiency, 

and scalability in healthcare. However, the model 

requires substantial computational resources, relies on 

a relatively small dataset, and shows lower 

performance with SVM. Additionally, its dependence 

on data augmentation and the need for further real-

world validation are notable limitations. 

5.2 Comparison with related work 

In comparison to existing methods, proposed method 

stands out as it attains an impressive accuracy of 

99.58% on the MIT-BIH dataset, surpassing the 

performance of several existing methods. Porumb et al. 

[16] employs a CNN and achieves an accuracy of 

97.8%, while Avanzato and Beritelli [17] utilizes a 1-

D CNN with five layers and reports an accuracy of 

98.33%. Kaspal et al. [18] combines ECG feature 

extraction and CNN, reaching accuracy levels of 

90.60% and 93.24% for different datasets. In contrast, 

Oh et al. [19] utilizes deep learning techniques such as 

CNN and LSTM, yielding an accuracy of 98.10%. 

Huang et al. [20] applies STFT spectrogram and 2D- 

CNN, achieving an accuracy of 99.00%, while Singh et 

al. [21] relies on RNN LSTM, resulting in an accuracy 

of 88.1%. Orhan [22] uses a CNN and reports an 

accuracy of 98.97%. Kaouter et al. [23] combines 

CNN with Continuous Wavelet Transform (CWT), 

obtaining an accuracy of 93.75%, and Kumari et al. 

[24] utilizes CWT and SVM, reaching an accuracy of 

95.92%. Proposed approach, excels in accuracy, 

showcasing its potential for advanced healthcare 

applications. Comparison of the proposed method with 

several existing methods are displayed in Table 6. 

Table 6: Comparison of proposed work with existing 

Reference Method Dataset Results 

[16] CNN MIT-BIH 

NSR 

BIDMB 

CHF 

97.8% 

[17] 1-D CNN, 5-

layer 

MIT-BIH 

NSR 

MIT-BIH 

Arrhythmia 

98.33% 

[18] ECG features 

extraction, 

CNN 

SCD Holter 

MIT-BIH 

Arrhythmia 

90.60% 

93.24% 

[19] Deep learning, 

CNN and 

LSTM 

MIT-BIT 

Arrhythmia 

98.10% 

[20] STFT 

spectrogram 

2D-CNN 

MIT-BIH 99.00% 

[21] RNN LSTM MIT-BIH 88.1% 
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Arrhythmia 

[22] CNN CHF, NSR 98.97% 

[23] CNN + CWT NSR, CHF, 

ARR 

93.75% 

[24] CWT + SVM CHF, NSR 95.92% 

Proposed 

Work 

Time & freq. 

domain 

features 

,WPT 

Energy, PSD, 

SC 

MIT-BIH 99.58% 

 

6 Conclusion 

This study presents a novel approach to ECG signal 

classification by leveraging advanced data 

augmentation techniques and optimized feature 

extraction using Wavelet Packet Transform with the 

’sym4’ wavelet. The proposed model demonstrates 

exceptional performance, achieving a high accuracy of 

99.58% with XGBoost. These results underscore the 

model’s robustness and effectiveness in accurately 

classifying arrhythmias. The use of dual data 

augmentation techniques, including flipping and time-

shifting, significantly enhances the model’s ability to 

generalize to unseen data, making it more reliable in 

practical applications. The comprehensive evaluation 

with multiple classifiers further validates the 

superiority of the proposed method over traditional and 

deep learning models, highlighting its efficiency and 

lower computational complexity. 

The high accuracy and robust performance of the 

model have significant managerial implications, 

including improved diagnostic accuracy, operational 

efficiency, cost savings, scalability, and the potential 

for real-time patient monitoring. These benefits make 

the proposed method a valuable tool in advancing 

automated cardiac disease detection and enhancing 

patient care. 

Future research could explore the integration of this 

model into wearable devices and telemedicine 

platforms, as well as its application to larger and more 

diverse datasets. The potential for continuous, real-

time monitoring and early intervention underscores the 

transformative impact this technology can have on 

cardiovascular healthcare. 
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