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Abstract

Cardiovascular diseases(CVDs), including abnormal arrhythmias and congestive heart failure, are a leading cause of
mortality worldwide, with electrocardiogram (ECG) signals serving as a critical diagnostic tool. This study introduces a
novel approach for classifying diseases in ECG signals into three categories: normal sinus rhythm (NSR), abnormal
arrhythmia (ARR), and congestive heart failure (CHF). The classification is based on a combination of features
extracted from both the time domain (mean and standard deviation) and the frequency domain (power spectral density
and spectral centroid) of the ECG signals. Additionally, energy values from selected frequency bands are utilized. To
enhance the model’s robustness, incorporate data augmentation techniques, including time-shifting and flipping of the
signals. These augmented datasets are then employed with various classifiers, and an optimization process using grid
search is applied to enhance the classification performance. This methodology presents a promising framework for
automated ECG signal analysis, the results of the proposed work have been exceptionally promising, showcasing a
remarkable specificity rate of 99.7% and achieving an accuracy level of 99.58%. These findings hold significant promise
for advancing early detection methods and enhancing patient outcomes in the realm of CVDs.

Keywords: Electrocardiogram, Classification, time domain, frequency domain, wavelets

1 Introduction Jing et al. [2] introduce an enhanced ResNet-18 model
tailored for ECG heartbeat classification. They employ
a slicing technique for data labelling, resulting in an
impressive accuracy of 96.50%. An effective approach
for detecting ventricular late potential based on an
ECG signal and SVM classifier is proposed by Giorgio
et al. [3], resulting in a positive predictively of
88.52%. Jha et al. [4] introduced a highly efficient
method for classifying ECG beats, distinguishing
between normal beats and seven types of arrhythmias.
Their approach utilizes tunable Q-wavelet-based
features and achieved an impressive average accuracy of
99.27%. Arumugam et al. [5] introduced a
methodology centered around wavelets to identify and
classify Arrhythmia, resulting in a positive predictively
rate of 95.92%. Zhao et al. [6], introduced a Deep CNN
approach that utilized a 24-layer CNN to extract
features from ECG data through cross-size convolution
kernels. The proposed method achieved an accuracy of
87.1% in ECG classification. Wang et al. [7]
demonstrated a high accuracy of 98.74% in early
arrhythmia detection by employing continuous wavelet
transform (CWT) and convolutional neural networks

Cardiac arrhythmias, characterized by abnormal heart
rhythms, pose significant health risks and require an
accurate and timely diagnosis for effective treatment.
The automatic detection and classification of these
conditions have become a focal point in biomedical
research, with the aim of creating dependable, non-
invasive diagnostic tools. Among the various
diagnostic tools for cardiovascular diseases (CVDs),
the electrocardiogram (ECG) is a fundamental, non-
invasive technique that records the electrical activity of
the heart over time. It provides crucial information
about the heart’s condition, including the presence of
arrhythmias and signs of congestive heart failure.
However, the manual interpretation of ECG signals can
be time-consuming and requires a high level of
expertise, leading to potential delays in diagnosis and
treatment. The application of machine learning (ML)
techniques to ECG signal analysis has been an area of
active research in recent years. Several studies have
demonstrated the potential of ML to enhance the
accuracy and efficiency of ECG interpretation.

Sharma et al. [1] conducted a study on feature (CNNs). A study conducted by Mohonta et al. [8]
extraction in the context of heart- beat classification and introduced a deep learning 2D-CNN model combined
arrhythmia detection. They utilized optimal orthogonal with wavelet transform for arrhythmia classification,
wavelet filters and obtained an accuracy rate of 98%. achieving an impressive accuracy of 99.65% In their
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research, Eltrass et al. [9] presented a hybrid approach
that integrates deep neural networks, ECG features,
and HRV measures to improve the accuracy of ECG
classification. The proposed system surpasses existing
methods with remarkable results, achieving an
accuracy of 98.75%. This hybrid approach holds
promise for real-time clinical implementation,
potentially assisting cardiologists in ECG diagnosis.
Losada et al. [10] used the k-Nearest Neighbor
algorithm on 9000 ECG signals from the PhysioNet
database, demonstrating high accuracy in normal
signal classification but challenges with arrhythmias
due to data imbalance. A study proposes an ECG
identification method leveraging wavelet transform and
probabilistic neural networks optimized by the whale
optimization algorithm (WOA-PNN). This method
detects Q, R, and S waves through wavelet transform and
P, T waves via local windowed wavelet transform,
significantly reducing ECG data dimensions. By
integrating the probabilistic neural network and
employing the mean impact value algorithm, less
influential characteristic values are eliminated,
simplifying the model. The WOAPNN approach
intelligently optimizes hyperparameters, achieving
high identification accuracy rates of 96.97% forasingle
ECG cycle and 99.43% for three cycles across the ECG-
ID, MIT-BIH Normal Sinus Rhythm, and MIT-BIH
Arrhythmia databases [11]. In 2022, Hammad et al. [12]
have shown that multimodal approaches can
significantly improve classification accuracy and
efficiency in detecting arrhythmias compared to single
models. Deriche et al. [13] proposed a study employing
13 ECG geometric features, based on the Pan-
Tompkins QRS model, to classify five abnormal
heartbeat types using the MIT-BIH arrhythmia
database. The method achieves over 92% accuracy.
Different features optimally identify various heartbeat
abnormalities. Haleem et al. [14] proposed a method for
the automatic detection of CVD via ECGs that rely on
rule-based diagnosis models, which are inefficient and
require significant analysis. In this paper, a two-stage
multiclass algorithm is proposed, achieving 100%
accuracy for congestive heart failure, 97.9% for
arrhythmia, and 100% for predicting sudden cardiac
deaths, surpassing state-of-the-art algorithms. The
primary goal of this research is to enhance the accuracy
of cardiac arrhythmia classification, thereby
contributing to the development of more effective
diagnostic tools. Provide a comprehensive overview of
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the methodology and present the results of the
experiments, which demonstrate the efficacy of the
approach. Moreover, the development of such
automated systems could have far-reaching
implications beyond individual patient care. They could
potentially streamline workflows in healthcare
settings, reduce the burden on healthcare professionals,
and contribute to more sustainable and efficient
healthcare systems. The remainder of this paper will
detail the methodology, present the findings, and
discuss their implications for both clinical practice and
future research.

The remainder of this paper is structured as follows:
In Section 2, present the materials and methodology,
encompassing the ECG dataset, classifiers used, and
the evaluation metrics. Moving on to Section 3, delve
into the proposed methods, including a detailed
explanation of feature extraction, classification and
optimization. The subsequent Section 4 outlines the
experimental setup, while Section 5 showcases the
experimental results, encompassing accuracy scores,
and confusion metrics and these findings are compared
with related work. Finally, in Section 6, we conclude
the paper by summarizing key points and suggesting
potential directions for future research.

2 Material and Methods

2.1 Dataset

This paper utilizes the ECG signal dataset, that consists
of Cardiac arrhythmia (ARR), Congestive heart failure
(CHF), and Normal sinus rhythm (NSR) signals. The
dataset comprises 162 ECG recordings obtained from
Physionet databases: MIT-BIH arrhythmia database
(containing 96 ARR recordings), BIDMC congestive
heart failure database (containing 36 CHF recordings),
and MIT-BIH normal sinus rhythm database
(containing 30 NSR recordings) [15]. The data matrix
is structured as a 162 65536 array, representing a total
of 162 ECG signals, each with 65536 samples. Each
signal is labeled to indicate its type, enabling
identification of the ECG signal category. The database
is organized such that rows 1 to 96 correspond to ARR
signals, rows 97 to 126 represent CHF signals, and
rows 127 to 162 contain NSR signals. All ECG signals
are resampled to a fixed sampling frequency of 128 Hz
and normalized to remove any offset effect. Figure 1
illustrates a sample ECG signal.
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Fig. 1: Sample of ECG signals
The database is first processed at the record level. TP+ TN
Accuracy = €Y)

Each record, which consists of 65536 samples, is
divided into smaller signals of length 1000 samples. This
partitioning strategy aims to increase the size of the
database. Additionally, to achieve a balanced dataset,
30 recordings of each type (ARR, CHF, and NSR) are
selected. Consequently, the final dataset comprises 500
ECG signals from each category, with each signal
having a length of 1000 samples.

2.2 Classifiers

Several classifiers are trained and evaluated using the
input dataset. The classifiers employed in this research
included the Random Forest (RF), XGBoost (XGB),
Gradient Boosting (GB), Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), and Gaussian
Naive Bayes (GNB). The training process involved
fitting each classifier to the input features and their
corresponding target labels. The input dataset,
consisting of the features and target labels, is divided
into training and testing sets. The training set is used to
train the classifiers, allowing them to learn the
underlying patterns and relationships in the data. After
training, the classifiers are used to make predictions on
the testing set.

2.3 Evaluation Standards

The effectiveness of the neural-based model system is
assessed using the following metrics: accuracy,
specificity, precision, sensitivity or recall, f1-score,
and confusion matrix. A brief discussion of these
Metrics is given below. Accuracy is the percentage of
correctly categorized data instances overall data
instances.
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TP+ FN+TN + FP

Specificity indicates the percentage of true negatives
that the model accurately detects. A model with high
specificity will accurately identify most of the negative
outcomes, whereas one with low specificity may
incorrectly classify many negative results as positive.

TN
TN + FP

Precision indicates what percentage of identifications
are actually correct.

Specificity = 2)

TP

Precision = m

(3)

Recall indicates the percentage of actual positives that
are detected correctly.

TP
TP + FN
score is computed by calculating the harmonic

mean of two Metrics (Precision and recall). It is used
to compare the performance of two classifiers.

Sensitivity or Recall =

4)

Fl _ 2 x (Precision X Recall ) c
seore = Precision + Recall ®)

Here, TP stands for “True Positive,” FP for “False
Positive,” TN for “True Negative,” and FN for “False
Negative.”

3 Proposed Method

The objective of this study is to design an automated
classification system using ECG signals to accurately
identify three different cardiac conditions: NSR, ARR,



Letters in High Energy Physics
ISSN: 2632-2714

Volume 2024

and CHF. The basic block diagram illustrating the

proposed method is depicted in Figure 2.

ECG Signal Lo

Preprocessing
(Data Augmentation)

Feature Extraction
{(Time & Freq Domain)

l

Output +——

Hyperparameter tuning
{Grid Search)

Classifiers

Fig. 2: Block Diagram of Proposed Method

In this experiment, taken a dataset X containing
N ECG signals, each represented as a vector of M
features: X = {X1, X2, ..., Xn }, Where Xi = [Xi1, Xi2, ...,
xim] fori =1,2,...,N. To enhance model robustness,
data augmentation techniques are applied, including
time-shifting and flipping the signals. Augmented data
includes the original signal, a flipped version (Xsiipped),
and a time-shifted version (Xime-shified). Feature
extraction encompasses the analysis of both time-
domain and frequency- domain features from each
ECG signal. Time domain features include the mean
(mean(x;)) and standard deviation (std(xi)). Frequency
domain features are obtained using the Wavelet Packet
Transform (WPT) at level 3 and include the energy of
selected wavelet coefficients: Eaad, Eadd, Edad, and Egag
as shown in fig 5. This study examined eight distinct
features, which are subsequently subjected to various
classification models. further, employed Grid Search to
fine-tune the hyperparameters of each classifier for
optimal performance. The algorithm of the proposed
model is illustrated in algo. 1.

Algorithm 1: Proposed Method for ECG Signal
Classification

Data: Dataset X with N ECG signals, each
represented as x; with M features

Result: Classification of ECG signals using various
classifiers Input: Extracted features from time and
frequency domains Output: Predicted disease for
ECG signal

1 Step 1: Database Initialization and Signal
Segmentation

2 Load and initialize the ECG signal dataset: X =

{X1, X2, . . ., Xn}, Where each
Xi = [Xi1, Xi2, . .., Xim] fori=1,2,...,N

3 Step 2: Generate augmented datasets that include
the original signal, a flipped version (Xfiiped), and a
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time-shifted version (Xiime-shifted)
4 Step 3: Feature Extraction

5 Step 3.1: Extract time domain features for each ECG
record

6 Mean(xi) and Std(x;)

7 Step 3.2: Apply Wavelet Packet Transform (WPT)
with Sym4 wavelet to decompose the ECG signals at
level 3

8 Step 3.3: Select Appropriate Bands (AAD, ADD,
DAD, DDD)

9 Step 3.4: Calculate the energy of each selected
frequency band

10 Step 3.5: Compute the Power Spectral Density
(PSD) and Spectral Centroid (SC) from the selected
energy bands

11 Step 4: Train classifiers (RF, XGB, SVM, GNB,
KNN) using the extracted features: Mean, Std, AAD,
ADD, DAD, DDD, PSD, and SC

12 Step 5: Apply Grid Search for Hyperparameter
Optimization and Select the best hyperparameters
based on cross-validation performance

13 Step 6: Generate predicted outputs

3.1 Data Augmentation

Two augmentation techniques have been meticulously
implemented in this study: signal flipping and
time—shifting. Despite the abundance of ECG data
available for the classification task, these
augmentation strategies offer several compelling
advantages. They play a pivotal role in bolstering the
model’s robustness by exposing it to an expanded
spectrum of data variations. This significance arises
fromthe fact that, even within a single category of ECG
signals, inherent variations persist. Augmentation
augments this inherent variability, affording the model



Letters in High Energy Physics
ISSN: 2632-2714

Volume 2024

the capacity to generalize effectively across novel
instances and exhibit enhanced performance in real-
world scenarios. Furthermore, the application of
augmentation techniques fosters superior
generalization capabilities that transcend the confines
of specific instances within the dataset. By simulating
divergent recording conditions, electrode placements,
and signal quality variances, augmentation equips the
model with the acumen to discern more resilient and
broadly applicable features. In addition to its
generalization benefits, augmentation acts as a form of
regularization, a vital safeguard against overfitting. It
promotes the model’s capacity to generalize
proficiently, even when confronted with extensive
datasets. Therefore, even with sufficient data,
augmentation techniques remain valuable for
improving the performance and reliability of ECG
signal classification models. This augmentation
technique can potentially improve the model’s ability
to detect and classify abnormal arrhythmias and
congestive heart failure ECG signals.

Table 1: Model Performance with and without Data
Augmentation

Data augmentation significantly enhances the
performance of the ECG signal classification model. As
shown in Table 1, the accuracy of Random Forest
increased from 92.33% to 95.00%, XGBoost from
92.00% to 99.58%, and KNN from 52.00% to 67.00%.
This demonstrates that augmentation techniques
improve model robustness and accuracy, even when
the original dataset is sufficient.

3.1.1 Flipping

Flipping is a data augmentation technique that involves
inverting the polarity of the signal. Flipping the signal
can make the classification model more robust to
changes in signal orientation. ECG signals can vary in
their  orientation due to factors such as
electrodeplacement, patientpositioning, or
recordingartifacts. By augmenting the dataset with
flipped signals, the model can learn to recognize
patterns regardless of the signal’s original orientation.
Figure 3 illustrates a comparison between the original
signal and its corresponding flipped signal. Given an
input signal S, the flipped signal S flipped is obtained
by multiplying each sample in S by -1:

St =-1-5 6
Classifier Accuracy (Without  Accuracy (With flipped ©
Augmentation) Augmentation)
Random Forest 92.33% 95.00%
XGBoost 92.00% 99.58%
SVM 41.67% 37.5%
KNN 52.00% 67.00%
Flipped Signal with Original Signal
- ~— Original Signal
— Flipped Signal
10
05
s
£ oo ug b:ﬁb:bd MW: p—"jb\'
Q
g Fﬁ' ; [
0.5
-10
-15

200

400

T

€00 800 1000

Time

Fig. 3: Flipped Signal with Original Signal

3.1.2  Time Shifting

Figure 4 displays a comparison between the original
signal and the time-shifted signal. Time-shifting is a
data augmentation technique that involves shifting the
signal in the time domain by a certain number of units.
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In this research work, a time shift of 5 units is used.
The time-shifted signal S shifted can be obtained as
displayed in the equation 7. Given an input signal S, the
time-shifted signal (S shifted) is obtained by circularly
shifting the samples in S by a shift amount k:
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Ssnifteari] = S + k)modN] ™
where N is the length of the signal S.

3.2 Detailed Architecture of the Proposed Model
for Feature Extraction

Features are extracted from ECG signals in both the
time domain and the frequency domain using the WPT.
Figure 5 illustrates the detailed architecture of the
proposed model offering insights into the methodology
behind the process of feature extraction.

3.2.1 Time Domain Features

This process aimed to capture important statistical and
spectral characteristics of the signals. In the time
domain, the mean () and standard deviation (o) of the
signal are computed. These statistical measures provide
basic information about the signal’s central tendency
and variability. By calculating these features, obtain
information about the average amplitude and the
variability of the ECG signal. These measures can help

Time Shifted Signal with Original Signal

Amplitude

090 AM
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-0.50 A

0.50 - QOriginal Signal
—— Time-Shifted Signal
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600 800 1000

Time

Fig. 4. Time Shifted with Original Signal

differentiate between normal and abnormal patterns in
the ECG. NSR, ARR, and CHF exhibit distinct patterns
in the ECG signals. Mean and standard deviation can
highlight differences in signal morphology among
these rhythm types. The standard deviation providesan
indication of how much the signal values deviate from
the mean. In the context of ECG analysis, CHF can lead
to increased variability in the signal due to irregular
heart contractions. Considering the standard deviation
can capture this increased variability, potentially aiding
in the identification of congestive heart failure. Mean
and standard deviation can serve as informative
features for classification algorithms. By extracting
these features and combining them with other relevant
features, can construct a feature vector that characterizes
different ECG rhythm types.

* Mean (l): Calculated as the average value of the

signal.
N
k== (®
i=1

Here, W represents the mean value of the signal. N is
the total number of samples

in the signal. xi represents the i™" sample of the
signal.

* Standard Deviation (c): Measured as the square root
of the variance of the signal.

N
1
o= mz (=12 (9

Here, o represents the standard deviation of the signal.
N is the total number of samples in the signal. xi
represents the i-th sample of the signal. p represents
the mean value of the signal.
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Fig. 5: Detailed Architecture of the Proposed Method

3.2.2 Frequency Domain Features Extraction

using Wavelet Packet Transform

In the feature extraction process, the WPT is utilized to
analyze the signal, employing the 'sym4" wavelet,
which represents the fourth-order symlet wavelet—a
symmetric extension of the Daubechies wavelet. WPT
is an extension of the Discrete Wavelet Transform
(DWT) that offers a more detailed decomposition of
the signal. In the DWT, subsequent levels of the
transform operate on the outputs of the Lowpass
(Scaling) filter, which may not provide a complete
analysis of all frequency components. In contrast, the
WPT enables simultaneous processing of the results
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obtained from both the Lowpass (Scaling) filter and the
Highpass (Wavelet) filter at each level. The key
difference is that in the undecimated discrete wavelet
transform, the outputs are not downsampled. This
means that the full frequency content of the signal is
preserved at each level of the transform, giving a more
complete analysis of the signal. For a one-dimensional
signal x[n], the WPT can be expressed as:

WPT;[n] = Z x[k] - ¥ xn]

k

Where, WPT;[n] represents a WPT coefficient at a
particular node. x[K] is the input signal and y;«[n] is the
wavelet function with scale j and translation k.

(10)
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Table 2: Comparative Analysis of Different Wavelets

In table 2, results demonstrated that the ’sym4’
wavelet provided the highest accuracy with the

\Wavelet  [Classifier Accuracy [Best Parameters . L ) :
Symé RF 95.00% _[Max Depth: 20, Min XGBoost classifier, achieving an impressive accuracy
samples Split: 2, of 99.58%, surpassing other wavelets in performance
Estimators: 50 metrics. The comparative results for each classifier and
XGBoost 99.58% |Learning Rate: 0.1, their optimal parameters obtained through grid search
Max Depth: 7, optimization are summarized in the above table 2. This
Estimators: 200 comparative analysis validates the selection of the
SVM 37.50%  (C: 1, Kernel: Linear sym4” wavelet for the proposed ECG signal
KNN 67.00% Ne.ighbors:.s, Metric: classification methodology. Furthermore, WPT offers
Minkowski (P=1), . . .
Weights: Distance a noFany versatile ap.prof':lch .to signal analysis,
GNB 55.20%  Var Smoothing: 1e-9 especially when the objective is to concentrate on
db RE 97.11% |Max Depth: None, distinct frequency bands or individual components
Min Samples Split: 2, within the signal. This technique enables researchers and
Estimators: 10 analysts to discern and examine specific aspects of a
XGBoost 90.67% |Learning Rate: 0.1, signal with a high degree of precision and selectivity,
Max Depth: 3, making it a valuable tool in the realm of signal
Estimators: 50 processing and analysis. In this work, one-dimensional
SVM 79.22%  C: 10, Gamma: Auto ECG signal x[n] decomposes using WPT with the
oL EEN ;2;;22 ujfr;):pr;:SNone Symlet-4 .\_)vavelet at level 3. Here’s how the
Min Samples Split‘: ) decomposition proceeds:
Estimators: 10 Level 1 Decomposition (j=1)
IXGBoost 89.00% |Learning Rate: 0.1,
Max Depth: 3, At the first level, the ECG signal is decomposed into
Estimators: 50 approximation and detail coefficients using the Sym4
SVM 78.00% |C: 10, Gamma: Auto wavelet. Figure 6 displays the ECG signal graph at level
KNN 69.56%  |Neighbors: 3 1 (A & D coefficients) with the original signal. The
Haar RF 95.56%  [Max Depth: None, approximation coefficients at this level represent the
Min Samples Split: 2, low-frequency components of the ECG signal, and the
Estimators: 10 detail coefficients capture high-frequency details. The
XGBoost 88.22% II;/learnl:l)ng;a’ge: 0.1, decomposition is given by:
ax Depth: 3,
SVM 80.22% E?tlr(;ag;:; Auto WPTi[n] = Z *K] - relnl - (A1)
KNN 70.67%  [Neighbors: 3 ,
Here, y1x[Nn] represents the Sym4 wavelet function at
level 1.
WPD vl 1 Bands with Original ECG Sigral
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D
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{ . | Drignal ECG Ssgnal
8% 3 J_’dv‘
Lcu 1L:] 0% o2 1 i) g 1% ia [18.] 35 410 10

Fig. 6: WPD level 1 bands with original ECG signal

106



Letters in High Energy Physics
ISSN: 2632-2714

Volume 2024

Level 2 Decomposition (j = 2)

At the second level, bbth the approximation and detail
coefficients from level 1 are further decomposed into
their own approximation and detail coefficients. Figure
7 displays the ECG signal decomposition at level 2 with
the original signal. This results in a more detailed
representation of the ECG signal, capturing both low
and high- frequency components. The decomposition
equations are as follows:

WPTAIn] = )" WPTAIK] - ol (12)
k

WPTP[n] = > WPTP[k] - oeln]  (13)
k

Here, w2 x[Nn] represents the Syrq4 wavelet function
at level 2. WPTA[k] and WPTP[k] are the
approximation and detail coefficients obtained at level
1. Equ. 12 and Equ. 13 are employed in the
computation of approximation coefficients (AA and
AD) and detailed coefficients (DA and DD)
respectively.

Level 3 Decomposition (j = 3)

At the third level, the process continues, with both the
approximation and detail coefficients from level 2
undergoing further decomposition. Figure 8 displays
the ECG signal decomposition at level 3 with the
original signal. The equations for the third- level
decomposition are as follows:

WPD Level 2 Bands with Original ECG Signal
AL

10
3 Y N AN Y TN N W Y e e
0
T T T T T T
0 50 100 150 200 50
0.8 AD
1
0
-1 T T T T T
0 50 100 150 200 50
06
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01 |
\ | |
00 | A '-,.‘l‘f‘ Jira~ - A -~ A ‘p - AN
T T r T T T
04 0 50 100 150 200 50
DD
05
00
-05 T T T T T
02 0 50 100 150 200 50
Original ECG Signal
1
0
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0.0
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Fig. 7: WPD level 2 bands with original ECG signal
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A D
WPT{[n] = Z WPT{ [k]. 9 [n] (14) at Iev_el 3 WPT [!(] an_d_ WPT [I.<] are the
k approximation and detail coefficients obtained at level
(15) 2.Equ. 14 and Equ. 15 are employed in the computation

WPTP[n] = > WPTP [k] - s [n]
k

Here, w3 x[n] represents the Sym4 wavelet function

2

of approximation coefficients (AAA, AAD, ADA, and
ADD) and detailed coefficients (DAA, DAD, DDA, and
DDD) respectively. )

WPD Level 3 Bands with Original ECG Signal
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Fig. 8: WPD level 3 bands with original ECG signal
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components at various levels of detail. This multi-
resolution analysis is valuable for tasks such as feature
extraction in ECG data. Figure 9 depicts a plot of all
the bands at level 3 alongside the original signal.

By performing this three-level decomposition
using the Sym4 wavelet, obtain a detailed
epresentation of the original one-dimensional ECG
signal x[n] that captures different frequency

Wavelet Packet Transformation (WPT) of ECG Signal

15
~—— Original ECG Signal
| Level 3 - Band 2aa: aaa Signal
10 Hl| — Level 3. Band aad: aad Signal
~— Level 3 . Band add: add Signal
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2 00 it i Level 3 - Band ddd: ddd Signal
3 { w X AYT — Level 3 - Band dad: dad Signal
05 ; Level 3 - Band daa: daa Signal
V |
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-15
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Time (s)

Fig. 9: WPD level 3 bands with original ECG signal

Selection of Bands at Level 3in WPT within the signal. In this scenario, we have selected four
bands out of the available eight for further analysis.

In the context of WPT, at level 3, there are a total of
The selected bands are as follows:

eight available bands for decomposition. These bands
represent different combinations of approximation (A)
and detail (D) coefficients, each capturing specific
information about the signal. The eight bands at level 3
are AAA, AAD ADA, ADD, DAA, DAD, DDA, and
DDD, where each letter represents whether the
coefficient is an approximation (A) or a detail (D)
coefficient.

1. AAD (Approximation-Approximation- Detail):
AAD combines two levels of smoothed, lower-
frequency information (AA) with the detailed high-
frequency information specific to the third level.
This sub-band is capturing characteristics related to
the intermediate frequency range in a signal,
potentially revealing details about the morphology
of ECG waveforms and different heart conditions.

For a particular signal analysis, it may be necessary AAD band plot displayed in Figure 10

to focus on specific frequency components or details
AAD Band
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=15

o 0 ) &0 ) 100 120
Fig. 10: AAD plot

2. ADD (Approximation-Detail- Detail): It provides valuable for analyzing various features, making it

insights into both smoothed and highly localized
changes within the signal, offering a comprehensive
view of the signal’s frequency components. ADD is

useful for applications like ECG analysis and the
detection of cardiac conditions. Figure 11 illustrates
the ADD plot.

ADD Band
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Fig. 11: ADD plot

3. DAD (Detail-Approximation- Detail): DAD band
highlights high-frequency details while still preserving

essential approximation components.DAD band plot
displayed in Figure 12

108



Letters in High Energy Physics
ISSN: 2632-2714

Volume 2024

DAD Band
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Fig. 12: DAD plot

4. DDD (Detail-Detail-Detail): This band is selected to

provide a comprehensive analysis, capturing detailed
high-frequency information without approximation.
This sub-band is sensitive to fast and localized changes

within the signal, making it invaluable for detecting
specific cardiac events, arrhythmias, and other
irregularities in the ECG waveform. Figure 13
displayed a DDD plot.

DDD Band

02

0.0

1]

Fig. 13: DDD plot

The choice of these specific bands allows for amore
targeted analysis of the signal, tailored to the
requirements of the task at hand. The selection of
bands in WPT provides the flexibility to focus on the
aspects of the signal that are most relevant to analysis.

3.2.3 Energies, Power Spectral Density (PSD) and

Spectral Centroid (SC) Calculation

By the meticulous selection of specific nodes during
wavelet packet decomposition(WPD), along with the
subsequent computation of their energy values
(represented as the sum of squares of the coefficients),
significant  frequency components and their
corresponding contributions to the signal’s energy are
discerned. These calculated energy values are then
leveraged to derive essential spectral features,
including PSD and Spectral Centroid. These spectral
features provide valuable insights into the frequency
distribution within the signal, enriching the
understanding and analysis. The energy is calculated as
follows.

N
Energy = Z c? (16)
i=1

Here, ‘energy’ represents the energy of a selected node
from the WPD. N is the total number of coefficients in
the selected node. ¢; represents the it coefficient of the
selected node.

PSD: The PSD is derived from the energies of the
selected nodes. By examining the PSD, which
represents the power distribution across different

109

frequency bands, it can identify the dominant
frequencies and their relative strengths. This
information helps in understanding the underlying
mechanisms of cardiac disorders.

N
1
PSD = NZ Energy;, a7

i=1

where "PSD’ represents the PSD, N is the total
number of selected nodes, and energyj represents the

energy value of the i selected node.

SC: The SC is computed as the weighted average of
the energies, indicating the

distribution of spectral energy.
YL, i-Energy,

C N
Z Energy;,
i=1

The SC represents the weighted average of the energy
values of N selected nodes.

S (18)

Let N be the total number of selected nodes, i be the
index of the selected node, and energy; be the energy
value of the i selected node. Then, the SC can be
calculated as above Equ. 18 changes in the PSD and
SC can provide quantitative measures of alterations in
the frequency characteristics of ECG signals. These
changes may indicate the progression or severity of
cardiac conditions, including CHF. Tracking these
measures over time can assist in monitoring the
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effectiveness of treatments or interventions. The
process commences with the extraction of informative
features from the input ECG signals. Both time and
frequency domain analyses are deployed to encapsulate
pertinent characteristics. In the time domain, statistical
attributes, specifically the mean and standard deviation,
furnish insights into the overall signal morphology.
Meanwhile, in the frequency domain, the ’sym4’
wavelet is employed for WPT, and energy values are
derived from selectively chosen nodes at level 3. These
energy values provide valuable insights into the
spectral attributes of the ECG signals. Each classifier

acquires the distinctive attributes associated with
Distribution of Mean

Distribution of Std

ARR, CHF, and NSR ECG signals.
3.24  Feature Importance

A total of eight features are derived from both the time
and frequency domains. Within the time domain, we
calculate the mean () and standard deviation (o) of the
signal. In the frequency domain, assess the energies
within four specific bands through the WPT, as well as
evaluate the PSD and the SC. The visual
representations of these extracted features, depicted in
Figure 14, offer a visual means of understanding their
distribution and patterns.

Distribution of aad Energy

— 0 — ) — 0
20
= = 005 =
e R — 4 ——
> 15 2 2 = 00 >
& 3 003
$ 10 7
Q S 002
3 001
0 - ¥ T T 000 T
-2 -1 0 1 2 3 4 S 0 100 200 300
Mean Sd aad Energy
Distribution of add Energy Distnibution of dad Energy Distribution of ddd Energy
'
— 0 o — 0 — O
015 w— ] w—1 3 — ]
> el > 15 —a > —
v 010 @ | 22
& & so I &
005 25 1
000 v r v 00 - - - . 0 - - -
0 20 40 60 80 0 1 2 3 B 5 0 2 4 6 8
add Energy dad Energy ddd Energy
Distribution of PSD Distribution of Spectral Centroid
00125
—_— 0
00100 S - X
—_—2
2 00075
& 00050
0.0025 L

0.0000 v T v r - v
5000 10000 15000 20000 25000 30000
PSD

0

04
Spectral Centroid

06 08

Fig. 14: Features Visualization

The Displayed Figure 14 comprises a 3 x 3 grid of
subplots, each displaying a feature’s distribution
extracted from signals. The x-axis represents feature
values, while the y-axis depicts occurrence density via
Kernel Density Estimation (KDE). Histogram shapes
reveal value distribution, with taller bars indicating
higher density. KDE curves offer insights into
underlying probability density functions. The analysis
yields insights such as unimodal or bimodal
distributions, spread, skewness, and overall shape,
aiding anomaly detection, feature selection, and data
insights. The graph represents the distribution of
different features extracted from the dataset. Each
subplot in the graph shows the histogram of a specific
feature, and the histograms are differentiated by the
target labels (0, 1, 2). In the graph, each subplot
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corresponds to one of these features. The Xx-axis
represents the value range of the respective feature, and
the y-axis represents the density of occurrences within
that value range. The legend at the top right corner of
the graph represents the target labels. In this case, the
labels 0, 1, and 2 represent different classes or
categories of the data. These labels could correspond to
different types of signals or patterns that are being
classified or analyzed. By observing the histograms and
the differentiation based on the target labels, we can
gain insights into the distribution and patterns of the
features across different classes. It allows us to
understand how the feature values are distributed
within each class and whether there are noticeable
differences or similarities between the classes.
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3.3 Hyperparameters Optimization

The optimization of hyperparameters is achieved
through the utilization of grid search, and methodical
exploration of predefined hyperparameter values to
maximize their performance. This iterative process
serves to finely adjust the models and capture intricate
relationships within the ECG signal data. In the
thorough evaluation of diverse machine learning
classifiers for the classification of ECG signal classes, an
investigation is conducted into the performance of RF,
XGB, GB, SVM, KNN, and Gaussian Naive Bayes
algorithms. Among these classifiers, XGBoost emerges
as the leading model following an exhaustive
hyperparameter tuning process involving grid search.
Through the grid search, identified the optimal
hyperparameters for the XGBoost model that led to the
best results in terms of classification accuracy and
performance. Specifically, achieved superior results
with a learning rate of 0.1, a maximum depth of 7 for
each boosting tree, and the use of 200 estimators. This
combination of hyperparameters resulted in a well-
generalized and robust model, capable of accurately
distinguishing between different ECG signal classes.
Table 3 presents the optimal parameters corresponding
to each classifier.

4 Experimental Setup

The experimental setup involved implementing the
proposed ECG signal classification method using
Python and libraries such as NumPy, pandas, scikit-
learn, XGB, pywt, and matplotlib. These tools are
employed for data processing, manipulation, machine
learning, boosting, feature extraction through Wavelet
Packet Transform, and visual representation of results.

5 Experimental Results & Discussion

Based on the experimental results, indicating its ability
to accurately classify ECG signals. RF and GB
demonstrated exceptional performance, achieving both
high specificity and accuracy, with specificity values of
97.00% and 98.15%, and accuracy values

Table 3: Optimal Hyperparameters for Proposed
Model’s Classifiers using Grid Search

Classifier Parameter Value

XGBoost learningrate 0.1
max depth 7
estimators 200

RF max depth 20
min samples 2
split 50
estimators

SVM cost 1
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parameter linear

kernel
KNN n neighbors 3

p 1

weights >distance’
Gaussian var default (1 x1079)
Naive Bayes  smoothing

of 95.00% and 96.25%, respectively, making them
effective tools for cardiac condition identification.
KNN and GNB also delivered notable results, with
specificity and accuracy values around 83.6% and
77.61%, indicating their competence in classifying
ECG signals. SVM, however, exhibited comparatively
lower values for both specificity and accuracy, with
values of 73.3 and 37.5%, suggesting that SVM may
not be the optimal choice for this specific classification
task. XGB displayed impressive specificity at 99.7%
and accuracy at 99.58%, indicating its potential for
detecting cardiac conditions. Figure 15 illustrates the
performance Metrics for all the classifiers.

A comprehensive overview of performance metrics
for various classifiers, including RF, GB, SVM, KNN,
GNB and the proposed work, represented as “XGB”
These metrics encompass essential evaluation criteria
such as Precision, F1-Score, Sensitivity, Specificity,
Accuracy, ARR, CHF, and NSR. Notably, the ”XGB”
classifier, representing the proposed approach,
demonstrates remarkable performance across the
measured metrics, with detailed insights provided in
Table 4.

Using the same dataset, several additional methods
are explored to optimize feature selection in
classification. The first experiment utilized Particle
Swarm Optimization (PSO) to enhance the accuracy of
the RF, achieving an impressive 98%. In the second
experiment, the Genetic Algorithm (GA) is employed
for feature subset evolution and achieved 89.33% or
accuracy with RF. The third experiment introduced a
novel hybrid approach, PSO-GA, which synergized
PSO’s convergence speed and GA’s adaptability,
yielding a remarkable 97.78% accuracy in classifying
ECG signals. Ultimately, the proposed method,
incorporating the XGB classifier, attained the highest
accuracy of 99.58%.

5.1 Confusion Metrics Analysis

To ensure a balanced representation, a subset of the
testing set containing a fixed number of samples (80
samples per class) is selected for generating the
confusion Metrics. Figure 16 displayed the confusion
Metrics for different classifiers.
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Model performance with several classifiers
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Fig. 16: Confusion Metrics

Table 5 displayed the distribution of true positive,
false positive, true negative, and false negative
predictions of the XGB classifier.

The confusion matrix table 5 reveals the number of
true positives (TP), false positives (FP), and false
negatives (FN) for each class. Notably, the classifier
achieved perfect detection of Actual ARR, Actual CHF
and Actual NSR cases, with TP counts of 80 for both
classes. However, for Actual CHF, there is 1 FN
instance, indicating cases where the model failed to

correctly classify CHF. The absence of FP in the
Actual ARR and NSR categories suggests high
precision in prediction. Overall, the confusion matrix
highlights the strengths of the classifier in
differentiating between the classes, and these models
hold great promise for accurate cardiac disease
diagnosis and patient care.

Table 4: Performance metrics

Classifiers | Performance ARR CHF NSR |Overall |Overall
Metrics Specificity |Accuracy
Precision 1 0.925 0.925
RF F1-Score  [0.993 0.931 0.925 0.97 0.95
Sensitivity ~ 0.987 0.937 0.925
Specificity 0.993 0.968 0.962
Precision 0.987 0.961 0.938
GB F1-Score 0.993 [0.949 0.944 0.9813 0.9625
Sensitivity 1 0.937 0.95
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Specificity 1 0.969 0.974
Precision 0.166 0.518 0.362
SVM F1-Score  [0.0232  |0.261 0.522 0.733 0.375
Sensitivity  |0.012 0.175 0.937
Specificity 0.662 0.69 0.848
Precision 0.73 0.659 0.621
KNN F1-Score 0.721 0.69 0.597 0.836 0.67
Sensitivity  [0.71 0.725 0.575
Specificity 0.858 0.855 0.795
Precision 0.87 0.594 0.433
GNB F1-Score 0.701 0.376 0.554 0.7761 0.552
Sensitivity  |0.587 0.275 0.766
Specificity [0.831 0.727 0.769
Precision 1 1 0.987
XGB F1-Score 1 0.993 0.993 0.997 0.995
Sensitivity 1 0.987 1
Specificity 1 0.993 1

Table 5: Confusion Metrics

Classifier XGBoost
Predicted ARR Predicted CHF  Predicted NSR
Actual ARR TP =80 FP=0 FN=0
Actual CHF FP=0 TP=79 FN=1
Actual NSR FP=0 FP=0 TP =80

furthermore, the proposed model boasts high
accuracy (99.58% with XGBoost), robust data
augmentation using flipping and time-shifting, and
optimized feature extraction via Wavelet Packet
Transform  (WPT) with ’sym4’ wavelet. Its
comprehensive evaluation with multiple classifiers
demonstrates superiority over traditional and deep
learning methods, with significant implications for
improving diagnostic accuracy, operational efficiency,
and scalability in healthcare. However, the model
requires substantial computational resources, relies on
a relatively small dataset, and shows lower
performance with SVM. Additionally, its dependence
on data augmentation and the need for further real-
world validation are notable limitations.

5.2 Comparison with related work

In comparison to existing methods, proposed method
stands out as it attains an impressive accuracy of
99.58% on the MIT-BIH dataset, surpassing the
performance of several existing methods. Porumb et al.
[16] employs a CNN and achieves an accuracy of
97.8%, while Avanzato and Beritelli [17] utilizes a 1-
D CNN with five layers and reports an accuracy of
98.33%. Kaspal et al. [18] combines ECG feature
extraction and CNN, reaching accuracy levels of
90.60% and 93.24% for different datasets. In contrast,
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Oh et al. [19] utilizes deep learning techniques such as
CNN and LSTM, vyielding an accuracy of 98.10%.
Huang et al. [20] applies STFT spectrogram and 2D-
CNN, achieving an accuracy of 99.00%, while Singh et
al. [21] relies on RNN LSTM, resulting in an accuracy
of 88.1%. Orhan [22] uses a CNN and reports an
accuracy of 98.97%. Kaouter et al. [23] combines
CNN with Continuous Wavelet Transform (CWT),
obtaining an accuracy of 93.75%, and Kumari et al.
[24] utilizes CWT and SVM, reaching an accuracy of
95.92%. Proposed approach, excels in accuracy,
showcasing its potential for advanced healthcare
applications. Comparison of the proposed method with
several existing methods are displayed in Table 6.

Table 6: Comparison of proposed work with existing

Reference Method Dataset Results
[16] CNN MIT-BIH 97.8%
NSR
BIDMB
CHF
[17] 1-DCNN,5-  MIT-BIH 98.33%
Iayer NSR
MIT-BIH
Arrhythmia
[18] ECG features  SCD Holter 90.60%
extraction, MIT-BIH 93.24%
CNN Arrhythmia
[19] Deep learning, MIT-BIT 98.10%
CNN and Arrhythmia
LSTM
[20] STFT MIT-BIH 99.00%
spectrogram
2D-CNN
[21] RNN LSTM MIT-BIH 88.1%
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Arrhythmia
[22] CNN CHF, NSR 98.97%
[23] CNN+CWT  NSR, CHF, 93.75%
ARR
[24] CWT +SVM  CHF, NSR 95.92%
Proposed Time&freq. MIT-BIH 99.58%
Work domain
features
WPT
Energy, PSD,
SC

6 Conclusion

This study presents a novel approach to ECG signal
classification by  leveraging advanced data
augmentation techniques and optimized feature
extraction using Wavelet Packet Transform with the
’sym4’ wavelet. The proposed model demonstrates
exceptional performance, achieving a high accuracy of
99.58% with XGBoost. These results underscore the
model’s robustness and effectiveness in accurately
classifying arrhythmias. The use of dual data
augmentation techniques, including flipping and time-
shifting, significantly enhances the model’s ability to
generalize to unseen data, making it more reliable in
practical applications. The comprehensive evaluation
with  multiple classifiers further validates the
superiority of the proposed method over traditional and
deep learning models, highlighting its efficiency and
lower computational complexity.

The high accuracy and robust performance of the
model have significant managerial implications,
including improved diagnostic accuracy, operational
efficiency, cost savings, scalability, and the potential
for real-time patient monitoring. These benefits make
the proposed method a valuable tool in advancing
automated cardiac disease detection and enhancing
patient care.

Future research could explore the integration of this
model into wearable devices and telemedicine
platforms, as well as its application to larger and more
diverse datasets. The potential for continuous, real-
time monitoring and early intervention underscores the
transformative impact this technology can have on
cardiovascular healthcare.
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