

Healthcare Approach to Asthma: Essential Collaboration Among Preventive Medicine, Nursing, Pharmacy, Laboratory Services, Emergency Care, Obstetrics, and Dental Health

Zahra Mohammed Ahmed Tahifah¹, Basail Naji Ali Alnahab², Salman Ali Alaliwi³, Manal Hassan Alshakhs⁴, Nabilah Abdullah Buhayri Alqarni⁵, Jamilah Mohsen Hussain Alshahrani⁶, Khalid Abdullah Alharbi⁷, Farah Abdullah Alahmadi⁸, Ahmed Qalit Almohammadi⁹, Rawa Fahad Alhmiani¹⁰

¹ General Practitioner, Sarrar PHC, Saudi Arabia

² OB/GYN Senior Registrar, Jubail General Hospital

Email: Basail91@hotmail.com

³ Senior Registrar, Emergency Medicine, King Fahad Hospital Hofuf

Email: Saalaliwi@moh.gov.sa

⁴ Dental Assistant, Alyahya PHC

Email: Manal85h@gmail.com

⁵ Nurse Technician, Makkah Health Cluster, Namera General Hospital

Email: Nynwalgarni@gmail.com

⁶ Nursing, Khamis Mushayt General Hospital

Email: Jmlh34@gmail.com

⁷ Medical Laboratory, Alsafa PHC, King Fahad General Hospital

Email: kalharbi145@moh.gov.sa

⁸ Pharmacist, Alharam Hospital

Email: Farah-Abdullah94@hotmail.com

⁹ Pharmacist, Alharam Hospital, Madinah

Email: ahmedqalet@gmail.com

¹⁰ General Physician, Wastalmadinah PHC

Email: Dr.rawafahad@gmail.com

Abstract:

Effective management of asthma, a complex chronic inflammatory airway disease, necessitates a decisive shift from fragmented care to a structured, multidisciplinary collaboration. This holistic approach strategically integrates the unique expertise of preventive medicine specialists in environmental control and primary prevention, nurses in patient education and daily self-management empowerment, and pharmacists in optimizing medication safety and adherence. It is further strengthened by diagnostic services enabling precise phenotyping, emergency teams adept at managing acute crises while bridging patients back to long-term care, and obstetricians ensuring safe management through pregnancy. Even dental health professionals contribute by mitigating oral side effects of therapy. This synergistic model, supported by integrated health informatics, creates a continuous, patient-centered care continuum that addresses the biomedical, behavioral, and environmental dimensions of asthma, ultimately aiming to close the gap between therapeutic potential and real-world outcomes by improving control, reducing exacerbations, and enhancing quality of life.

Keywords: Multidisciplinary Collaboration, Integrated Asthma Care, Chronic Disease Management, Preventive Medicine, Nursing Education, Pharmaceutical Care

Introduction

Asthma, a chronic inflammatory disorder of the airways characterized by variable and recurring symptoms, bronchial hyperresponsiveness, and underlying inflammation, remains a formidable global public health challenge [1]. Its prevalence has escalated dramatically over recent decades, affecting an estimated 300 million individuals worldwide, with projections suggesting an increase to 400 million by 2025 [2]. The burden of asthma is not merely statistical; it manifests in diminished quality of life, significant morbidity, substantial economic costs from both direct medical expenditures and indirect costs such as lost productivity, and, tragically, preventable mortality [3]. Despite advances in pharmacotherapy, particularly the widespread use of inhaled corticosteroids (ICS) as a mainstay of controller therapy, suboptimal asthma control persists as a common and troubling reality for a large proportion of patients [4]. This gap between therapeutic potential and real-world outcomes underscores a critical flaw in the traditional, fragmented model of asthma care, where management is often siloed within the domain of a single primary care physician or pulmonologist.

The pathophysiology of asthma is now understood as a complex interplay of genetic predisposition and environmental exposures leading to a persistent, though variable, inflammatory process [5]. This inflammation involves a symphony of cells—mast cells, eosinophils, T lymphocytes, macrophages, neutrophils, and epithelial cells—and the mediators they release, which ultimately cause the clinical hallmarks of the disease: recurrent episodes of wheezing, breathlessness, chest tightness, and coughing [6]. Trigger factors are diverse and individualized, ranging from aeroallergens (e.g., house dust mites, pollen, pet dander), occupational sensitizers, tobacco smoke, and air pollution to respiratory infections, exercise, cold air, and even strong emotions [7]. This inherent complexity means that effective management transcends simple prescription writing. It demands a comprehensive, patient-centered strategy that addresses not only the biochemical cascade of bronchoconstriction and inflammation but also the environmental, behavioral, psychological, and social determinants that influence disease expression and control.

It is within this context of complexity that the imperative for a multidisciplinary, collaborative approach becomes unequivocally clear. The historical model of episodic, reactive care, focused predominantly on relieving acute symptoms, is insufficient for a lifelong chronic condition. Asthma management is a continuous process requiring education, monitoring, adjustment, and support—tasks too vast and multifaceted for any single healthcare professional to master alone. The goal of modern asthma care is to achieve and maintain long-term clinical control, defined by the absence of symptoms, minimal need for reliever medication, no emergency visits, normal or near-normal lung function, and no activity limitation [8]. Attaining this goal necessitates a seamless, integrated effort from a team of professionals, each contributing their unique expertise.

The Foundational Role of Preventive Medicine and Public Health

The discipline of Preventive Medicine provides the essential bedrock upon which individual asthma management is built, operating at both the population and individual patient level to reduce the burden of disease. Its role is proactive rather than reactive, focusing on the identification and mitigation of risk factors before they precipitate illness or exacerbate existing conditions. At the public health level, this involves epidemiological surveillance to track asthma prevalence, identify high-risk populations, and monitor trends in hospitalizations and mortality [9]. Such data are crucial for informing policy and allocating resources. Furthermore, preventive medicine advocates for and designs interventions aimed at reducing population-level exposures to known asthma triggers. This includes promoting regulations to improve air quality, reduce industrial and vehicular emissions, and control indoor air pollutants [10]. Public health campaigns led by preventive medicine specialists can raise awareness about the dangers of tobacco smoke—both primary and secondhand—and implement smoking cessation programs, which are arguably the single most effective preventive measure for asthma exacerbations [11].

At the individual patient level, the preventive medicine approach is embodied in the thorough assessment of environmental and occupational

exposures. A meticulous environmental history is a cornerstone of asthma management, yet it is often overlooked in time-pressed clinical encounters. Preventive medicine practitioners, or clinicians trained in its principles, systematically evaluate a patient's home, work, and school environments for allergens like dust mites, cockroaches, mold, and pet dander [12]. They investigate potential occupational asthma triggers, which are responsible for a significant proportion of adult-onset asthma, including chemicals, dusts, and fumes encountered in various industries [13]. Based on this assessment, they provide tailored, evidence-based recommendations for environmental control. These may include the use of allergen-impermeable mattress and pillow covers, strategies for humidity control to inhibit mold and mite growth, integrated pest management, and advice on pet management [14]. By addressing these root environmental contributors, preventive medicine interventions aim to reduce the underlying inflammatory stimulus, thereby decreasing medication needs and improving overall control.

Nursing: The Cornerstone of Patient Education, Empowerment, and Continuity

The nursing profession occupies a central, irreplaceable position in the collaborative asthma care model, serving as the primary bridge between the medical plan and the patient's daily life. Nurses are the frontline educators, counselors, and coordinators whose sustained engagement is critical for translating clinical guidelines into practical self-management. A core nursing function is the comprehensive education of patients and their families. This goes beyond simple instruction on inhaler technique—though that is a vital and frequently deficient area where nurses excel through demonstration and "teach-back" methods [15]. Nurses provide education on the nature of asthma as a chronic inflammatory condition, the purpose and differences between controller (preventive) and reliever (rescue) medications, the critical importance of adherence even when symptoms are absent, and the early recognition of worsening symptoms [16].

Perhaps the most powerful tool nurses implement is the guided creation of a personalized Asthma Action Plan (AAP). This written plan, developed in partnership with the patient and physician, provides clear, color-coded (green/yellow/red) zones based

on symptoms and peak expiratory flow (PEF) readings. It specifies daily management in the green zone, actions to intensify therapy in the yellow zone, and explicit instructions for when to seek emergency care in the red zone [17]. The nurse ensures the plan is understood and actionable. Furthermore, nurses provide continuity of care through regular follow-up, which may be via clinic visits, telephone calls, or even digital health platforms. They monitor control using validated questionnaires like the Asthma Control Test (ACT), track adherence, reassess technique, and identify barriers to optimal management, such as cost concerns, health beliefs, or social challenges [18]. By building a trusting, longitudinal relationship, nurses empower patients to move from passive recipients of care to active managers of their own health.

Pharmacy: Ensuring Optimal Medication Management and Safety

Pharmacists are the medication experts whose contribution is vital to ensuring the safety, efficacy, and appropriateness of asthma pharmacotherapy. Their role begins at the point of dispensing, where they perform a crucial final check on the prescription for accuracy, potential drug-drug interactions, and appropriateness for the patient's age and condition [19]. A critical and frequent intervention is the assessment and correction of inhaler technique. Studies consistently show that a majority of patients use their pressurized metered-dose inhalers (pMDIs) incorrectly without a spacer, and errors are common even with dry powder inhalers (DPIs) [20]. Pharmacists are ideally positioned to observe technique during medication pick-up, provide real-time feedback, and recommend alternative devices if coordination issues persist. They also educate patients on the proper care and cleaning of devices.

Beyond technique, pharmacists conduct medication therapy management (MTM), reviewing the entire regimen for appropriateness. They can identify over-reliance on short-acting beta-agonists (SABAs), a red flag for poor control and increased risk of severe exacerbations, and counsel patients on the importance of regular controller therapy [21]. For patients with complex regimens or comorbidities, pharmacists collaborate with prescribers to simplify dosing schedules where possible to improve adherence. They also address practical barriers, such as the high cost of some biologics or newer inhalers,

by helping patients navigate insurance formularies, patient assistance programs, or identifying therapeutic alternatives in consultation with the prescriber [22]. In community and ambulatory care settings, pharmacists can run asthma management clinics, providing structured reviews, monitoring, and dose adjustments under collaborative practice agreements, thereby extending the reach of specialized care [23].

Laboratory and Diagnostic Services: Guiding Precision in Diagnosis and Management

Accurate diagnosis and phenotyping of asthma are prerequisites for effective management, and this relies heavily on the contributions of Laboratory Services and diagnostic departments. Spirometry, performed by trained pulmonary function technologists, is the gold standard for objectively confirming the diagnosis by demonstrating reversible airflow obstruction—an increase in Forced Expiratory Volume in one second (FEV1) by >12% and 200 mL after administration of a bronchodilator [24]. Regular spirometry is also essential for monitoring disease progression and treatment response over time. Beyond spirometry, bronchial challenge tests (e.g., with methacholine or mannitol) can diagnose asthma in patients with suggestive symptoms but normal baseline spirometry, assessing airway hyperresponsiveness [25].

Laboratory immunology plays a key role in identifying specific allergic triggers. Skin prick testing or serum-specific IgE (sIgE) testing, guided by a detailed clinical history, can pinpoint sensitizations to aeroallergens, informing targeted environmental avoidance strategies and identifying candidates for allergen immunotherapy (AIT) [26]. For patients with severe asthma, advanced laboratory testing is crucial for phenotyping and guiding biologic therapy. Blood eosinophil counts and fractional exhaled nitric oxide (FeNO) measurements, a biomarker of type 2 airway inflammation, help identify patients with eosinophilic or T2-high asthma who are most likely to benefit from targeted biologics such as anti-IgE (omalizumab), anti-IL5 (mepolizumab, reslizumab), anti-IL5R (benralizumab), or anti-IL4/13 (dupilumab) therapies [27]. Thus, diagnostic services move asthma care from a one-size-fits-all approach towards precision medicine.

Emergency Medicine: Managing the Acute Crisis and Bridging to Long-Term Care

The Emergency Department (ED) represents a critical safety net and a pivotal point of intervention in the asthma care continuum. The primary, immediate role of emergency care teams—including emergency physicians, nurses, and respiratory therapists—is to provide rapid, aggressive management of life-threatening status asthmaticus. This involves the prompt administration of high-dose inhaled bronchodilators (often via continuous nebulization), systemic corticosteroids to quell inflammation, supplemental oxygen, and, in severe cases, adjunctive therapies like magnesium sulfate or non-invasive ventilation [28]. The goal is to stabilize the patient, reverse bronchoconstriction, and prevent respiratory failure.

However, the ED's responsibility must not end with discharge. An ED visit for asthma is a sentinel event, signaling a profound failure of outpatient management and a major risk factor for future exacerbations and mortality [29]. Therefore, emergency care providers have a vital secondary role as critical interveners in the long-term care pathway. This includes ensuring that every patient discharged from the ED has a clear, understandable AAP, a prescription for a short course of oral corticosteroids, and, most importantly, a follow-up appointment scheduled with a primary care provider or asthma specialist within a strict timeframe (e.g., 7-14 days) [30]. Many innovative programs embed asthma educators or navigators within the ED to provide immediate education, assess inhaler technique, and facilitate this follow-up connection before the patient leaves. By viewing the ED encounter not as an isolated event but as an opportunity to re-engage a high-risk patient with the longitudinal care system, emergency medicine transforms from a reactive service to an active participant in chronic disease management.

Obstetrics and Prenatal Care: Managing Asthma for Two

Asthma management during pregnancy requires specialized knowledge and a delicate balance, as the health of both the mother and the developing fetus are at stake. Uncontrolled asthma poses significant risks, including maternal preeclampsia, gestational hypertension, premature birth, low birth weight, and increased perinatal mortality [31]. Conversely, well-

controlled asthma is associated with pregnancy outcomes similar to those in non-asthmatic women. Obstetricians, in close collaboration with the patient's primary care physician or pulmonologist, are essential in navigating this period. A key principle is that the safety of asthma medications for use in pregnancy is generally well-established, and the risk of untreated asthma far outweighs the risk of recommended pharmacotherapy [32]. Maintaining optimal control with ICS and other controllers is paramount.

Obstetric teams play a crucial role in monitoring asthma control throughout pregnancy, as its course can be variable—it may worsen, improve, or remain unchanged. Regular assessments of lung function (e.g., spirometry) and symptoms should be integrated into prenatal visits [33]. Furthermore, obstetric providers must be vigilant for common pregnancy-related conditions that can mimic or exacerbate asthma, such as gastroesophageal reflux disease (GERD) or rhinitis of pregnancy. They also oversee the management of labor and delivery, ensuring that the patient's regular asthma medications are continued and that appropriate precautions are taken, such as avoiding prostaglandin F2 α for postpartum hemorrhage in asthmatic patients due to its bronchoconstrictive potential [34]. This collaborative, vigilant approach ensures the best possible outcomes for both mother and child.

Dental Health: An Overlooked Axis in Asthma Management

The connection between oral health and asthma management is an emerging and important area of interdisciplinary concern. Dentists and dental hygienists are in a unique position to identify and mitigate oral health complications associated with asthma and its treatment. The most direct link is through the local effects of inhaled medications. ICS, the cornerstone of asthma therapy, can deposit in the oropharynx and increase the risk of local side effects, most notably oropharyngeal candidiasis (thrush) and dysphonia [35]. Dentists can diagnose these conditions and counsel patients on preventive measures, such as rinsing the mouth with water (and spitting out) after each inhaler use and using a spacer device with pMDIs to reduce oropharyngeal deposition.

Furthermore, there is a well-documented association between asthma and an increased risk of dental caries and erosion. This is partly due to the xerostomic (drying) effect of some asthma medications, particularly anticholinergic bronchodilators, which reduces the protective flow of saliva [36]. Additionally, patients with poorly controlled asthma may adopt a habit of mouth breathing, which further dries the oral mucosa. Acidic beverages sometimes consumed for perceived relief of bronchospasm can contribute to dental erosion. Dental professionals can provide targeted preventive care, including high-fluoride treatments, saliva substitutes, and dietary counseling [37]. Importantly, poorly controlled oral disease, such as periodontitis, is a source of systemic inflammation, which could theoretically contribute to worsening airway inflammation. Thus, maintaining good oral hygiene may have indirect benefits for overall asthma control, highlighting the need for awareness and communication between dental and medical providers [38].

The Critical Importance of Integrated Care Models and Health Informatics

For the collaboration described above to move from theory to practice, it must be operationalized through deliberate care models and supported by technology. Traditional fee-for-service structures often inhibit communication and shared responsibility. Innovative models such as the Patient-Centered Medical Home (PCMH) or integrated care pathways specifically for asthma are designed to foster this teamwork [39]. These models formally assign coordination roles, establish clear communication protocols (e.g., standardized referral forms, shared care plans), and often co-locate services to improve access. A central component is the use of a shared electronic health record (EHR) that is accessible to all members of the care team across different settings, from the primary care clinic to the pharmacy and the emergency department.

Health informatics is the glue that binds the collaborative model together. A robust EHR allows the preventive medicine specialist to document environmental triggers, the nurse to update the AAP, the pharmacist to log inhaler technique training, the lab to post eosinophil counts and FeNO results, and the ED physician to record the details of an exacerbation—all in a single, shared patient record

[40]. Clinical decision support tools embedded in the EHR can alert providers to overuse of SABA

References:

1. Department of Statistics Malaysia Official Portal. Population & demography. Demographic statistic fourth quarter 2019, Malaysia.
2. Price C, et al. Large care gaps in primary care management of asthma: a longitudinal practice audit. *BMJ Open*. 2019;9:e022506.
3. Pinnock H, et al. Systematic meta-review of supported self-management for asthma: a healthcare perspective. *BMC Med*. 2017;15:64.
4. Merican I, bin Yon R. Health care reform and changes: the Malaysian experience. *Asia. Pac. J. Public Health*. 2002;14:17–22.
5. Baren JM, et al. A randomized, controlled trial of a simple emergency department intervention to improve the rate of primary care follow-up for patients with acute asthma exacerbations. *Ann. Emerg. Med*. 2001;38:115–122.
6. Pinnock H, et al. Implementing supported self-management for asthma: a systematic review and suggested hierarchy of evidence of implementation studies. *BMC Med*. 2015;13:127.
7. Reddy AP, Gupta MR. Management of asthma: the current US and European guidelines. *Adv. Exp. Med. Biol*. 2014;795:81–103.
8. Rannan-Eliya RP, et al. Improving health care coverage, equity, and financial protection through a hybrid system: Malaysia's experience. *Health Aff*. 2016;35:838–846.
9. Amal NM, Paramesarvathy R, Tee GH, Gurpreet K, Karuthan C. Prevalence of chronic illness and health seeking behaviour in Malaysian population: results from the Third National Health Morbidity Survey (NHMS III) 2006. *Med. J. Malays*. 2011;66:36–41.
10. Fawibe AE, et al. General practitioner reported follow-up visits among asthma patients in North Central Nigeria. *Ann. Afr. Med*. 2011;10:209–213.
11. To T, et al. Global asthma prevalence in adults: findings from the cross-sectional world health survey. *BMC Public Health*. 2012;12:204.
12. McGrath AM, Gardner DM, McCormack J. Is home peak expiratory flow monitoring effective for controlling asthma symptoms? *J. Clin. Pharm. Ther*. 2001;26:311–317.
13. Kennedy A, Rogers A, Bower P. Support for self care for patients with chronic disease. *BMJ*. 2007;335:968–970.
14. Ozoh OB, Ndukwu CI, Desalu OO, Adeyeye OO, Adeniyi B. Knowledge and practice assessment, and self reported barriers to guideline based asthma management among doctors in Nigeria. *Niger. J. Clin. Pract*. 2019;22:692–700.
15. Patton, M. Qualitative Research and Evaluation Methods.
16. Villa-Roel C, et al. Effectiveness of educational interventions to increase primary care follow-up for adults seen in the emergency department for acute asthma: a systematic review and meta-analysis. *Acad. Emerg. Med*. 2016;23:5–13.
17. Chima EI, Iroeziindu MO, Uchenna NR, Mbata GO, Okwuonu CG. A survey of asthma management practices and implementation of Global Initiative for Asthma guidelines among doctors in a resource-limited setting in Nigeria. *Niger. J. Clin. Pract*. 2017;20:984–991.
18. Lurslurchachai L, et al. Metered dose inhaler technique among inner-city asthmatics and its association with asthma medication adherence. *Clin. Respir. J*. 2014;8:397–403.
19. Wiener-Ogilvie S, Huby G, Pinnock H, Gillies J, Sheikh A. Practice organisational characteristics can impact on compliance with the BTS/SIGN asthma guideline: qualitative comparative case study in primary care. *BMC Fam. Pract*. 2008;9:32.
20. Crimi C, et al. Comparability of asthma control test scores between self and

physician-administered test. *Respir. Med.* 2020;170:106015.

21. Braun V, Clarke V. Using thematic analysis in psychology. *Qual. Res. Psychol.* 2006;3:77–101.

22. Slejko JF, et al. Asthma control in the United States, 2008–2010: indicators of poor asthma control. *J. Allergy Clin. Immunol.* 2014;133:1579–1587.

23. Schor D, et al. Home-made spacer as an auxiliary device in administration of beclomethasone via pressurized metered dose inhaler for asthma control. A randomized controlled pragmatic trial. *Respir. Med.* 2017;126:52–58.

24. Gibson PG, Ram FSF, Powell H. Asthma education. *Respir. Med.* 2003;97:1036–1044.

25. Arif NBM, Lee PY, Cheong AT, Ananthan RNA. Factors associated with improper metered-dose inhaler technique among adults with asthma in a primary care clinic in Malaysia. *Malays. Fam. Physician.* 2021;16:58–66.

26. Khoo EM, et al. The changing face of primary care: a cross sectional study in Malaysia. *Sains Malays.* 2015;44:741–746.

27. Levy, M. L. et al. Why asthma still kills: the National Review of Asthma Deaths (NRAD).

28. Rodriguez, C., Sossa, M. & Lozano, J. M. Commercial versus home-made spacers in delivering bronchodilator therapy for acute therapy in children.

29. Williams S, et al. Respiratory research funding is inadequate, inequitable, and a missed opportunity. *Lancet Respir. Med.* 2020;8:e67–e68.

30. Reddel HK, Sawyer SM, Everett PW, Flood PV, Peters MJ. Asthma control in Australia: a cross-sectional web-based survey in a nationally representative population. *Med. J. Aust.* 2015;202:492–497.

31. Gold LS, Thompson P, Salvi S, Faruqi RA, Sullivan SD. Level of asthma control and health care utilization in Asia-Pacific countries. *Respir. Med.* 2014;108:271–277.

32. Hodkinson A, et al. Self-management interventions to reduce healthcare use and improve quality of life among patients with asthma: systematic review and network meta-analysis. *BMJ.* 2020;370:m2521.

33. van Uden CJT, et al. Follow-up care by patient's own general practitioner after contact with out-of-hours care. A descriptive study. *BMC Fam. Pract.* 2005;6:23.

34. Daines L, et al. Systematic review of clinical prediction models to support the diagnosis of asthma in primary care. *NPJ Prim. Care Respir. Med.* 2019;29:19.

35. Aaron SD, et al. Reevaluation of diagnosis in adults with physician-diagnosed asthma. *JAMA.* 2017;317:269–279.

36. Powell, H. & Gibson, P. G. Options for self-management education for adults with asthma.

37. Lai CKW, et al. Global variation in the prevalence and severity of asthma symptoms: phase three of the International Study of Asthma and Allergies in Childhood (ISAAC) *Thorax.* 2009;64:476–483.

38. Members of the Development Group. Clinical practice guideline: management of asthma in adults.

39. Rabe KF, et al. Worldwide severity and control of asthma in children and adults: the global asthma insights and reality surveys. *J. Allergy Clin. Immunol.* 2004;114:40–47.

40. Jaafar, S., Mohd Noh, K., Abdul Muttalib, K., Othman, N. H. & Healy, J. The health system in transition. Malaysia health system review.

41. Braun V, Clarke V. What can “thematic analysis” offer health and wellbeing researchers? *Int. J. Qual. Stud. Health Well-Being.* 2014;9:26152.