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Abstract—The DevOps cross-training model has become widespread in industry, with deep specialization in
either produc- tion support or software engineering among teams in a service environment. Software Reliability
Engineering (SRE) emphasizes a balance between these disciplines by aiming for minimal technical debt in
production systems and aligning ownership with the engineering and product teams responsible for application
reliability. Many organizations recognize the importance of Pre- dictive Monitoring to avoid production
incidents and the use of Machine Learning for CI/CD optimization, as these can reduce alert noise and deal with
the mail problem of Too Many Widgets. However, achieving Al-augmented DevOps requires Al-based
Predictive Monitoring for Engineering and Site Reliability Engi- neering (SRE) teams, which covers delivery
velocity and resource utilization. Al-augmented DevOps encompasses both Predictive Monitoring to avoid
production incidents and Machine Learning- driven Continuous Integration/Continuous Delivery (CI/CD) Op-
timization to improve delivery velocity and resource utilization. It is primarily expressed in terms of
development and produc- tion environments of Software Development Life Cycle (SDLC) pipelines. These
aspects are critical for minimizing Time to Detect (TTD) and Time to Recover (TTR) during incident response,
and optimization with respect to Machine Learning models is essential to avoid over-engineering and needless
expenses. Information Technology (IT) Decision Makers across all industries prioritize these areas of focus in
2022-2023. Al-augmented DevOps is mainly articulated in terms of DevOps principles and Machine Learning
utilization for Predictive Monitoring and CI/CD opti- mizations.

Index Terms—Al-augmented DevOps, predictive monitoring, ML in SRE, time-series forecasting, root-cause
ML, CI/CD optimization, data lineage, reproducibility.

L INTRODUCTION
Reliably delivering software that meets both ‘ \“

functional and quality requirements is a daunting @
challenge in practice, especially for organizations
Irhanced Collaborgtion Prodictive Analytcs

that strive to release software frequently. SRE
principles prescribe Service Level Objectives to
formalize and are expected to fulfill that reliability.

Pre- dictive monitoring and ML-driven CI/CD Conisunn iy \°’

optimization offer collaborating engineering teams
novel means to proactively address these Fig. 1. Al and ML are Transforming DevOps
challenges. Monitoring of online systems is a

precondition for the operational integrity and by optimizing testing strategy, tooling design, and

infras- tructure measurement and management.
Such application of ML constitutes a natural
extension of governances that aim to continually
align real-world operations with real-world risk—
all the way through the software-engineering
lifecycle, from experimentation and validation to
deployment and repro- ducibility. In organizations

quality assur- ance of deployed software.
Integrating Al in observability enables anticipating
future incidents and outages to miti- gate their
impact—and even to fulfil ultimate contracts by
avoiding service disruptions. Similarly, ML
applied to CI/CD pipelines enhances delivery

velocity and resource consumption . .
characterized by a high degree of software-

engineering automation, the motivation for Al
implementation revolves not so much around
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augmenting technological capabilities but rather
around risk mitigation: that is, an incremental,
conservative, and natural towards
convenience and assurance on the engineering
side. From this perspective, the intersection of
containment of the overall Cost of Failure and of
the overall Successfully Fulfilled Failure Contract
provides an ideal focus for Al in observability and
for Al in pipeline optimization, simply because
explicit investments in observability and
infrastructure  support risk- software-
engineering practices. Predictive monitoring in
particular privileges integration in incident response
playbooks through actionability and anticipation
modulo the natural tim- ing constraints of the
continual real-time synthesis of incident forecasts.

evolution

aware

A.  Motivation and scope

Like many other industries Today’s financial
institutions rely on services and technologies
that are highly sensitive to availability and quality
issues—as highlighted by grow- ing success in
online banking, trading, and cryptocurrency
services. Consequently, directors and senior
management are

compelled by the relevant supervisory authorities
to ensure that services operate with a reliability
level that is in line with stakeholders’ service-
level agreements. Furthermore, to reduce the
impact of incidents, the services must be equipped
with alert mechanisms capable of anticipating
incidents and triggering suitable reaction
procedures. Implementation of a predictive
monitoring capability enables such anticipation
and must therefore be a priority at the operating
level. A natural objective for engineering teams
specializing in building and running such services
is to reach the highest possible level of
governance, which aligns the delivery of
technology and services with operational costs
while optimizing delivery speed. Machine learning
(ML) has the potential to address these two
objectives coherently and efficiently, resulting in a
better alignment between operational teams
(responsible for running the services)
engineering teams (responsible for creating and
evolving the services).

and

B. Key concepts: ML, and Al

augmentation

DevOps,

Al augmentation encompasses three main areas:

421

the auto- matic execution of known tasks, the
assistance of a human- centric (but not yet fully
automatic or competent) task exe- cution, and the
establishment of propitious conditions for the
governance of these practices. In the DevOps
context, this translates into the automation of the
entire software delivery pipeline and system
operation, information retrieval to assist the
responsible personnel in decision making, and the
evolu- tion of the organization toward a governance
model capable of continuously verifying and
validating the numerous artifacts generated by the
DevOps practices. the ongoing
integration of machine learning (ML) and Al
technologies into the DevOps practice ecosystem
be characterized? It is evident that a large part of
the ongoing integration of ML techniques and tools
into the DevOps practice ecosystem aims to
enhance the velocity of delivering business value.
The delivery monitor components are being
progressively adapted to efficiently consider two
key metrics that require non-trivial planning: the
delivery cost and the incident-failure contract
costs. How the predictive monitoring and ML-
driven pipeline optimization building blocks of the
ML-augmented DevOps ecosystem address the

How can

aforementioned velocity-durability in- tegration
dilemma has also been specified.

II. FOUNDATIONS OF AI-DRIVEN

OBSERVABILITY

Data play a crucial role in enabling the practical
application of Al to observability. Telemetry data
can empower ML approaches to predictive
monitoring for improved reliability. Sufficient
volumes of well-structured, high-quality telemetry
data across a wide range of systems and services is
a precondition for time-series forecasting of
incidents and outages, supported by a causality
framework for ML-driven root-cause analysis.
Telemetry data types and collection strategies
embrace the full range of telemetry data: metrics,
traces, logs, events, and security-related signals.
Adequate fidelity and sampling of these data are
vital to the effective identification and response
to software-related incidents,
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Service Latency with Forecast and SLO Threshold
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Fig. 2. Service Latency with Forecast and SLO
Threshold

Service Incidents SLO Target Uptime
(mo) %

Payments- 5 99.95

API

Orders-API |8 99.9

Search 3 99.9

Checkout-UI |6 99.95

TABLE I

SLO & FAILURE-CONTRACT COST BREAKDOWN

security  threats, and privacy violations.
Observability, in the broader sense that includes
predictive monitoring, can thus be understood as
the effort to increase the confidence in software
development and operation by, among other things,
ensuring that sufficient amounts of high-quality
telemetry data are available to enterprising data
scientists seeking to solve key engineering
problems. This requirement recasts the question of
predictive monitoring in the context of engineering
and business collaboration, since the telemetry data
required to feed ML models deployed for
predictive monitoring are the very same data assets
needed to build predictive models for pipeline
optimization, delivery efficiency, site reliability,
and cost management; indeed, the ability to satisfy
the reliability targets defined in such a
collaboration can in turn be regarded as a
contractual obligation.

Equation 01: Telemetry & SLO exceedance
probability Modeling assumption

Yt+h|Ft ~NQ'+ h, st+ h2)
(H

Tail probability derivation

Pr(Yt+h>t|Fty=1-Pr(Yt+h<t| (2

Fty=1—F(st+ht—y +h) 3)

A.  Telemetry data types and collection
strategies

Issue explicit (and implicit) sources and kinds of
telemetry data—metrics, traces, events, logs—and
the strategies used to collect them. Emphasize
factors that affect the fidelity of the raw data, such
as sampling rates. Address data sampling and
obfuscation in relation to confidentiality and
privacy. Connect with the engineering incident-
management motivation and

Exceedance Probability P(Y>1) by Horizon
08
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Forecast horizon {steps)

Fig. 3. Exceedance Probability P(Y;t) by
Horizon

with section 3.1. Data lineage—the logical flow of
different data sources—and the capability to revert
to previous versions of imminent-ML-data are a
process-enabled necessity that, if undertaken,
could enormously (help) improve the costs and
timeliness of handling ML within a DevOps
Environment. Kinds of Al and ML-Enabled data
are important as they are not manually detailed or
explored, or often neglected entirely; this crosses
with optimized model life-cycle management. The
emerging class of DevOps Policy Management
Infrastructure tools enables continuous low-touch
governance through con- tinuous classification of
resources, data, models, and access while ensuring
that auditing remains simple and low-cost. Some
examples of these initiatives include Microsoft
Azure’s Policy, AWS CloudFormation, Google’s
Policy Library, and Open Policy Agent by Open
Policy. Properly exposed data volume and detailed
meta-data are monitored, and all activities
performed against the environment are continually
assessed through this infrastructure.
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B. FC and SLO alignment for AI observability

Factorized circuit cost serves as a pricing
mechanism for valuable incidents, while failure
contracts define a develop- ment team’s
responsibilities with respect to those incidents, thus
allowing for integration of machine learning with
incident SLO guarantees. These concepts
generalize the notion of a single SLO contract for a
service’s incidents with a given monitoring or
incident-response budget and enable observabil- ity
effectiveness to be measured in a manner
compatible with performance-on-demand
investments in Al models. Machine learning can be
deemed a valid investment as long as the ex-
pected savings exceed the associated cost. The full
aggregation of operating-overhead SLOs into a
market-like pricing for ser- vice owners enables
costs of expert incident-remediation users to be
factored into the incident SLO value for the owner
of the individual incident. The failure contract
aggregates an incident SLO into a total SLO for a
development team in terms of its incidents.
Regression,  classification,
prediction models can be brought back into
predictive  monitoring incident-response
playbooks applying procedure maps; they help
Teams in relation to Deployment Changes. An
orga- nization’s telemetry infrastructure and
playbook mappings, covering general incident
detection, response playbooks, and time-to-remedy

and  time-series

via

estimation, determine whether any time-series
series can be acquired for predictive monitoring,
and the nature of any such plays, including planned
incident-remedy plays with learning and estimating
components.

111 PREDICTIVE MONITORING

DEVOPS

FOR

Machine learning can anticipate incidents that
impact site reliability. Predictive monitoring
provides alerts that enable site reliability engineers
(SREs) to avert or mitigate problems before users
are affected, thus preserving both quality of
experience and user confidence. Forward-looking
predictions are integrated with incident response
playbooks to enhance the completeness and
rapidity of responses. Predictive monitoring closes
the information gap that hampers these operational
safety nets by applying time-series forecasting to
incident- related telemetry such as service-level
objectives (SLOs) for error rates, SLOs for latency
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increases, deployment signals, and observability
indices. Such forecasts provide lead times on the
order of several hours and are practical to
produce on a daily basis. Complementing this
approach, machine learning techniques can aid
root-cause analysis (RCA) to help SREs
understand the underlying causes of incidents more
rapidly and accurately. Such analyses partly
automate the time-consuming process of
diagnosing incidents at scale, while also serving to
reduce rates through remediation
actions. Causality techniques from the field of
causal inference support more reliable conclusions
on root causes than feature attribution techniques
trained on incident-telemetry pairs, but the two
approaches  are treated  as
complementary. The fidelity and completeness of
the underlying telemetry remain critical to the

recurrence

increasingly

success of both predictive monitoring and
predictive root-cause analysis, reinforcing the
connections to earlier discussions on telemetry

data quality and architecture.

A.  Time-series forecasting for incidents and
outages

Time-series forecasting models anticipate service
degrada- tion or outages in the next hours or
days, fitting the need for proactive incident
management. Publicly available incident records
support model training, research, and evaluation for
the entire incident life cycle. Models can
recommend preemptive actions based on
predicted outage type and location and be
integrated into incident response playbooks to
facilitate ~ response  prioritization.  Timely
predictions enable allocation of experienced
resources during critical periods, focusing atten-
tion at runbook steps most likely to fail, and
speeding overall incident resolution. The models
draw on historical records of all incidents in
production services. Training uses past history to
predict future incidents, while a dedicated test set
evaluates out-of-sample seasonality adjustment.
Leading models support multi-horizon prediction,
where the next N incidents across the whole
organization are predicted N days in advance, with
varying degrees of granularity.  Finally,
emergency incident
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Fig. 4. Time series forecasting methods in
emergency contexts

types are predicted weeks in advance to trigger
long-lead-time preventive measures such as cloud-
region capacity adds.

B. Root-cause analysis with ML and causality

A crucial component of incident anticipation is
root-cause analysis and mitigation. While ML does
not replace root- cause analysis, it can augment
the process and make it more accessible. ML and
causality constitute powerful tools for incident
investigation and remediation, providing deeper
and broader insights into causes and enabling more
effective anticipation and avoidance of future
incidents. Several classes of causality-based ML
algorithms have emerged over the past decade and
have been applied successfully in domains such
as recommendation and medicine. These
algorithms operate on principle. A proxy for the
causal model — a structural causal model — is
learned together with a predictive model. A
perturbation (intervention) is introduced — e.g.,
simulating a drop in ads or changing HTML layout
— and the response of the outcome or target
(treatment) is estimated. The result of a
perturbation captures which features are causes (or
inhibitors) of a treatment response. These
can be automated and applied
systematically, serving to surface associations
between all telemetry data and alerts, incidents,
and outages; support follow-up inquiries; and
guide remediation efforts by indicating relevant
features to tune, inspect, or monitor during future
incidents. Causality-based techniques mitigate a
common criticism of feature  attribution
approaches, which focus on prediction accuracy
but do not consider explanatory power.
Explanatory power in a causal sense can be
quantified, allowing easy comparison of multiple
candidate models on this

analyses
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Aggregate Failure-Contract Cost (Monthly)
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Fig. 5. Aggregate Failure-Contract Cost
(Monthly)
Test |Fail Prob. (p [Severity (w
i) i)
T03 10.076 3
TO5 10.353 3
T12 0.261 3
TO2 [0.184 3
TO6 |0.183 3
T04 |0.203 2
TOl 0.359 1
T09 [0.154 2
T10 |0.265 1
TABLEII

TEST SELECTION PRIORITY (VALUE DENSITY
RANKING)

balancing the cost of pause-and-resume operations
against the time savings. Marked A/B/n and
shadow tests are completed faster by concentrating
effort only on relevant configurations. Finally,
internal and external resources can be best
utilized by dedicated scheduling. Ordinarily
unused but cheap spare compute capacity — spot
instances — can be effectively harnessed for both
training and broader support tasks. Greater load
can be absorbed on open-source tools. Tools
known to consume more and/or be slower than
available alternatives can be sidelined, either
temporarily or permanently, for cost-sensitive
operations.
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Equation 02: Multi-horizon quantile

Pinball (quantile) loss. For residual u =y —y

basis. However, as in other domains, causality-
based analyses rely on the quality of underlying
data.

IV. ML-DRIVEN PIPELINE
OPTIMIZATION
p )= . u=0

(g—Du, u<o0
Objective over horizons & quantiles

4)

ML is a technology for improving delivery velocity
and efficiency. Its application
enhances overall delivery speed while reducing the
costs of rushed delivery. Pipeline activities
generate signals that ML can exploit to identify

resource-use

when success is doubted, and therefore when
costs of delivery can be relaxed. Trained gating
functions enable automatic stopping of risky
parts of the pipeline. Pruning of non-essential
build and test stages happens dynamically,

V' + h(qg)minh = 1 HgeQt
paern =" M(q))
®)
A.  Continuous  integration and  delivery

optimization with ML

Machine Learning can help reduce the risk and
resource costs associated with Continuous
Integration (CI) and Contin- uous Delivery (CD).

In CI, the growing frequency of commits

can overwhelm the system and cause regressions.
ML can be used to analyze historic build and test
data to identify the changes and change
combinations that are more likely to break the
build, and gate builds based on the test history of
the changed components. When complete builds
become impracti- cal, Test Selection can be applied
to prune the test set. Machine Learning can also
prioritize tests based on their relation to reported
issues and failure patterns. Released software can
be A/B or N tested to guide
experimentation. In CD, the decision to deploy can
be gated using signals from the production
environment. ML can help deploy to only a subset
of the deployment targets by finding valid anti-

risk-aware
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forecastiifim {igpenaltion fdly rthochusdte)ployment targets and

predicting the probability of failure for the
deployment. Shallow shadow deployments can
also be enabled. Resources required for delivery
must be planned for; apart from having sufficient
capacity, systems must be able to scale up as
demand increases and make use of low-cost spot
instances. ML can assist by detecting traffic
patterns and automating scaling decisions. Tools
that are costly to use can also be avoided during
peak times. 4

B. Resource scheduling and cost-aware tooling

Autoscaling, the use of spot instances, and prudent
onboard- ing of tools and frameworks to balance
developer velocity and resource costs play an
important role in controlling operational costs
within DevOps. The right velocity and process
induce some experimentation to better understand
the cost-benefit ra- tio of each tool used and the
potential monthly or daily impact on the cloud bill.
This effort should be aligned with the overall costs
associated with deployment and running the
product being built or maintained, considering that
every process can naturally execute at different

speeds, and the associated costs can be higher or
lozwer depending on the cost-risk trade-off of a

bus As ginghas
B ized in
section 4.2,  controlling  costs  without
compromising higher-order quality levels in

production and observability remains one of the
most important guiding principles behind a mature
Site Reliability Engineering (SRE) practice.

V. MODEL LIFECYCLE AND GOVERNANCE
IN DEVOPS

The model lifecycle is an integral part of a DevOps
setup. Just as application code, models require a
defined practice for monitoring,
validation, and deployment, enabling changes in
feature extraction and model configuration or

continuous

architecture to be handled in a controlled way. It is
equally important to allow experimentation with
different types of models and provide governance
for those experiments while making it easy to
understand and reproduce the experimental setup
and results. Traditionally, governance around
machine learning has been quite loose or
nonexistent. Many compa- nies rely on “shadow”
production deployments to monitor a model’s
performance before promoting it into production.

function or



Letters in High Energy Physics
ISSN: 2632-2714

Volume 2023
December

The decisions about promotion, however, are often
based on little more than gut feeling. Proper
governance implies that models are treated as part
of a business process, so that any decision to
change them can be documented, reviewed, win
approval,

L MAP
2. VALIDATE

3. APPROVE

Model
Governance

o =

& MONITOR

5. IMPROVE

Fig. 6. Model Lifecycle and Governance in
DevOps

and be audited in the future. The purpose of
auditing is to ensure compliance with the
documented process and check whether it results in
better decisions. The following elements allow a
strong governance framework to be established
within DevOps: data versioning and lineage,
experiment cataloging and validation, defined
deployment strategies, and ML signal integration.
Difficulties caused by the lack of a strong gov-
ernance framework stem from many sources. Even
if models are quality tested, a poor data pipeline
may lead to suspicious results as soon as the
model is deployed into production. It is therefore
critical to keep track of the data used for training
and monitoring the model so that it can be properly
examined when issues are detected. Reasons for
failure can stem from a model flying under the
radar, wasting CPU cycles for little return, or
introducing harm when it is need-driven. Clear exit
criteria and early-warning signals mitigate these
issues.

A.  Data versioning, lineage, and reproducibility

Data versioning, lineage, and reproducibility are
essential for ML models embedded in CI/CD
pipelines. Datasets, fea- ture assets, and derived
features should be listed in a data catalog linked to
the resources that use the assets. It should be
possible to trace the lineage of data used for
building, validating, and monitoring models.
Formal version control is essential for both
datasets used to build models and for feature assets
(which constitute a separately managed set of
signals). Model performance monitoring tools can
automate the registration of model performance
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metrics. Access to the monitoring signals should be
easy and low-cost, allowing continuous model
validation. Continuous model monitoring enables
auto-remediation mechanisms: to replace a model
automatically if it stops meeting validation criteria,
the signal alerting the replacement should be made
available upstream. Data versioning, lineage
tracing, and formal version con- trol should also

support  external  experimentation. Machine
learning can make delivery faster, improve
resource  usage, and boost engineering

productivity. These benefits can be achieved on
CI/CD pipelines if signals from previous runs
are used to prioritize tests, gates are added based
on business expectations, and model performance
is monitored for fast rollbacks. Because data and
model performance are them- selves change
signals, they are key to making experimentation

risk-aware and to trigger external experiments in
production. Connected to failed change signals,
alerts on data anomalies determine when it is
important to reproduce and validate the external
experiment. Iterations of ML models in external
experimentation that returns better performance
than the last version can trigger automatic
deployment.

B. Experimentation, validation, and
deployment strategies

Various strategies apply for ML model
deployment. Experimental-validation schemes

such as A/B/n testing, shadow deployment, or
rolling-out to a small fraction of users offer means
to minimize risk. Validation on a different dataset
can also help mitigate exposure while further
validating the model. A successful deployment can
trigger promotion to production; for instance, a
promotion pipeline may least a
prescribed performance C on records stored on the
validation dataset, and have the model evaluated on
the device and promoted to production
environments once performance exceeds that of the
model deployed earlier. These strategies are jointly
supported by data versioning and lineage. For
continuous testing and data-driven exploration, one
should be able to find the small areas in which an
experimental algorithm is worse than others, and
perform A/B/n testing or real shadow tests in these
decided areas. Periodically, for all algorithms up to
the current production model, the predictions must
also be evaluated in the context of other aspects

require at
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than metrics only (like runtime or memory
consumption), in order to know if any other
algorithm up to now is worth to deploy in real
cases at the moment, or any other combination of
them rather than only the main production one.
These principles align strategies for any new ideas.

VI CONCLUSION

The combination of predictive monitoring and
Machine Learning-driven pipeline optimization
enables reliability guarantees while improving
delivery velocity and resource efficiency.
Predictive monitoring identifies incidents, and
deployment outages, anticipating their occurrence
and facilitating timely response. These benefits
rely on the availability of a wealth of quality
telemetry data covering all aspects of the
system, the business logic that drives service
reliability—incurred costs and accepted failure
probabilities—and the alignment with SLO
aggregation in the incident-response playbooks.
Conversely, the ML-driven approach to pipeline
optimization minimizes the impact of changes by
surfacing potential risks early, through CI and
CD gating, and refining testing efforts. The
integration of ML operations completes the
picture, ensuring reproducibility and correctness
throughout the pipeline. The whole chain thus
becomes more resilient, providing more direct
information on the root cause of incidents and,
crucially, on the causality behind them, all of
which significantly reduces time to remediation.
Al-augmented DevOps encompasses the growing
integration of Al among other tools and practices
toward fulfillment of the four main objectives of
automation maturity, service reliability, delivery
velocity, and risk-aware security

Test Selection Priority by Value Density

Value Density
=
=
2

=
=
2
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Test

Fig. 7. Test Selection Priority by Value Density
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Category USD
Before (C0) 200000.0
After (C1) 140000.0
ML Program Cost (C [35000.0
ML)

INet Benefit (D) 25000.0

integration, together with a natural evolution of
observability  into  predictive = monitoring.
Concerning security, the growing integration of
security practices within DevOps enshrined by
the SDevOps acronym, as well as tools and
techniques to surface potential vulnerabilities,
constitute essential areas for further exploration.
Al augments, rather than replaces the human
element within these processes. Implemented
quality, safety, and the conscious
adoption of modern machine-learning-based tools
and processes should support generating business-

correctly,

value, and in any case should not by themselves
represent a direct goal of any business initiative
within an organization. Development teams are
most certainly not the sole responsible for these
goals, the process is continuous and auditable
and DevOps teams, with engineering, product,
finance, sales, and support, are all accountable
for ensuring that product and service quality is
aligned with targets, at both product line and
business levels.

Equation 03: Investment rule for ML CO0:
expected pre-ML cost,

C1: expected post-ML cost,
CML: cost of building/running ML.

D =(CO0—C1)—CML (6)
A. Emerging Trends

The goal of DevOps is the combination of
continuous speed and continuous reliability. Al-
augmented pipelines are an important piece, but
ultimately only form an ingredient for reliable
software delivery: a growing maturity of Al-
augmented automation also holds hope for greater
security and lower-cost supervision. The future of
Predictive Monitoring for DevOps, a driving
DevOps theme of anticipation, demands increasing
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time-shifting of signals predictive of incidents and
failures upstream, as close to applications as
feasible. Predic- tive Monitoring for the integration
and deployment pipelines of automated software
development seeks to solve the complex machine
learning and data-informed Experiments of Artifi-

cial

Intelligence problem in a principled way

for Software

Technology. For continuous hardware and/or

software  vulner-  ability management,
moreover, DevSecOps aims to shift the Cyber
Security DevOps signal closer to visualisation
at CI/CD pipeline error gates. Both delivery
velocity and security are only subsets of the
overall costs associated with Al-augmented
DevOps pipelines. The final potential gain,
with realistically smaller Hardware and/or
Software assets dedicated to CI/CD, is when
Risk Assessment of Cost is integrated with
the other minimisation objectives. Risk Trial
involves Choice of Trials to Best Access a
Minimised, Expected Value—cost Opening for
Production and Evolution of delivery
pipelines. Continuous su- pervision is always
needed to guide failing, exploring choices
towards the Success and World-Wide-
MostWard Potential Minimisation of Cost.
Watchput and Alert notifications are still
necessary to cope with Alert, and both
Machine Learning Development and Data-
Informed Experimentation need con- stant
support from Data Management and Data
Handling.
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