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Abstract—Commutated tomography (CT) imaging has become more common for medical diagnosis in recent
years. Since a correct diagnosis has a substantial impact on patient outcomes and treatment plans, the rapid
identification of strokes using CT scans is essential for prompt clinical action. In order to train and evaluate deep
learning models, this work made use of a publically available dataset of CT pictures of brain strokes. The collection
includes labelled images reflecting various stroke states. Artefacts like as noise and intensity changes are common
in CT scans and might make it difficult to classify strokes accurately. In order to overcome these obstacles, four deep
learning models, CNN, VGG16, ResNet, and Multilayer Perceptron were used for noise-aware preprocessing in CT
images and for stroke identification. To make the model more generalizable and resistant to imaging discrepancies,
the preprocessing pipeline included noise reduction methods, intensity normalization, and data augmentation. The
F1-score (F1), recall (REC), accuracy (ACC), and precision (PRE) were utilized for a comprehensive evaluation of
the classification abilities. With a remarkable 99.50% accuracy, convolutional neural networks (CNNs) were able to
extract spatial and hierarchical information from noisy images. ResNet came in second with 97.75%, VGG16 third
with 96.50%, and MLP fourth with 96%. These results demonstrate the importance of preprocessing and noise
handling in enhancing classification reliability. The proposed framework shows promise for real-time clinical
deployment, supporting automated and rapid stroke detection to reduce diagnostic errors and improve patient care
outcomes.

Keywords—Computed Tomography, Brain Stroke CT Image Dataset, Image Analysis, Artificial Intelligence,
Machine Learning, CNN, ResNet, MLP, VGG 16, Noise effect in image for CT.

[. INTRODUCTION enhancement of CT image quality a central focus in

Computerized tomography (CT) has emerged as a
crucial diagnostic tool due to developments in cutting-
edge medical imaging technology, which has
revolutionized the healthcare industry [1][2][3]. By
offering quick, painless, and accurate imaging of inside
organs, CT scans enhance the diagnosis, monitoring, and
treatment of a wide range of medical conditions,
including cancer, cardiovascular disease, and
neurological problems [4][5]. Its capability to produce
volumetric scans in a short time makes CT particularly
valuable in emergency environment, oncology, and pre-
surgical planning. However, the diagnostic reliability of
CT is directly dependent on the quality of the acquired
making assessment  and

images, systematic

medical imaging research.

Several factors, including noise, homogeneity,

contrast resolution, and spatial resolution, are
considered when assessing the quality of CT images
[6][7]. Accurate interpretation of anatomical and
pathological features is made possible by high-quality
CT pictures. Various factors influence image quality,
including scanner hardware design, tube current and
voltage environment, detector efficiency, reconstruction
algorithms, and post-processing methods. Therefore, a
comprehensive understanding of these factors,
combined with rigorous image quality assessment, is

essential to optimize imaging protocols and maintain
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consistency across different CT systems in Figure 1 and
clinical scenarios.

Fig. 1. CT Scan Images

CT image quality is noise, which arises from both
quantum fluctuations of X-ray photons and electronic
imperfections in detectors and signal acquisition
systems[8][9]. Electronic noise, on the other hand,
originates from the detection electronics and signal
amplification, contributing to random variations in pixel
intensities [10][11]. Both types of noise degrade image
contrast, obscure fine structural details, and adversely
affect both manual interpretation and automated
analysis.

The effects of noise in CT images extend beyond
mere visual degradation[12][13][14]. Critical for precise
diagnosis, treatment planning, and disease monitoring,
quantitative data might be compromised by noise. These
measurements include tissue density evaluation, lesion
segmentation, and radiomic feature extraction [15][16].
To mitigate these effects, conventional noise reduction
techniques including spatial and frequency-domain
filtering, iterative reconstruction, and phantom-based
calibration—have been extensively employed. These
methods aim to enhance image fidelity while
maintaining diagnostic accuracy and minimizing
radiation exposure

CT image quality evaluation and improvement have
recently been greatly assisted by ML and DL techniques
[17][18]. CNN and other deep architectures can
automatically learn complex noise patterns, perform
denoising, and reconstruct high-quality images from
low-dose These approaches complement
traditional calibration and noise reduction techniques,
offering automated, adaptive, and data-driven solutions
for image enhancement. Incorporating ML/DL models
into traditional approaches allows researchers to

scans.

enhance CT scans in quantitative and qualitative ways.
This leads to more accurate diagnoses, better patient

outcomes, and optimized imaging workflows in clinical
practice.

A. Motivation with Contribution

The exponential growth of medical imaging,
particularly Computed Tomography (CT), has increased
the demand for accurate and efficient diagnostic
interpretation. However, CT image quality is often
compromised by various sources of noise, such as
photon fluctuations, detector electronics, and
reconstruction algorithms, which obscure anatomical
details and degrade diagnostic reliability. Traditional
quality assessment methods and simple filtering
approaches are often inadequate for handling complex
noise patterns while preserving spatial resolution.
Research is being driven by the urgent need to develop
a comprehensive framework that combines noise
characterization, picture enhancement, and advanced
learning models. This framework greatly increases the
diagnostic utility and quality of CT images in healthcare
facilities.

The main contributions of this work on CT image
quality analysis and noise effect are as follows:

e Development of a complete workflow for CT
image quality analysis, beginning with raw data
acquisition and format conversion, followed by
preprocessing steps such as resizing, intensity
adjustment, noise suppression, and label
encoding to ensure standardized and high-quality
inputs.

e Data normalization and  augmentation
approaches, spatial filter-based quantitative
noise analysis, picture statistics, and signal-to-
noise ratio enhancement and

strengthening strategies.

dataset

e Research on the effect of noise on the precision
of feature extraction and classification in CT
images associated with stroke was organized and
carried out using several architectural
frameworks, including CNN, ResNet, VGG16,
and MLP.

e Optimal learning models effectively maintain
diagnostic precision in the presence of varying
degrees  of

noise, as  demonstrated
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experimentally by metrics like as PRE, F1, REC
and ACC.

e Provision of practical understandings and
recommendations for incorporating noise-aware
CT image quality analysis into computer-aided
diagnostic systems, ensuring  reliable

performance in real clinical environments.
B. Significance and Novelity

This study is significant as it presents a robust,
scalable, and clinically relevant framework for CT
image quality analysis, with a particular focus on stroke-
related imaging a critical challenge in diagnostic
radiology. Its novelty lies in the development of an end-
to-end pipeline that integrates noise characterization,
advanced preprocessing, data augmentation, and label
standardization, combined with a comprehensive
evaluation of multiple learning models, including CNN,
ResNet, VGG16, and MLP. This paper presents a
comparative analysis under different noise situations,
demonstrating the better performance of noise-aware
architectures, in contrast to numerous previous research
that either concentrate on single-model classification or
fail to account for the impact of noise. The inclusion of
quantitative noise assessment and enhancement
techniques further strengthens feature extraction and
classification accuracy, while practical insights for
clinical deployment ensure the framework is directly
applicable to real-world diagnostic environment. The
integration of diverse deep learning approaches with
systematic noise handling provides unique insights into
model robustness, addressing the critical need for
reliable, adaptable, and high-quality CT image analysis
in modern healthcare environments.

C. Structure of Paper

The following structure of the paper: Section II
provide the Background of image processing in medical
sector, Section III Computed Tomography image
analysis technique, Section IV Noise characterization
and its impact on CT, Section V provide the literature of
review in CT image analysis Section VI Research Gaps
Section VII discussed the proposed methodology with
each phase of this system design, Section VIII evaluate
the results of proposed models, comparison, discussion
and Application, Limitation and future work, final

Section IX presents the findings and recommendations
for further research.

II. BACKGROUND OF IMAGE PROCESSING ANALYSIS IN
MEDICAL SECTOR

The  decision-making and  problem-solving
capabilities of modern programs rely heavily on image
processing algorithms. Disease diagnosis, clinical
treatment, and other healthcare services often make use
of image processing methods in the medical field. The
advancement in medical image processing is increased
noticeably. Hence, various types of advance image
generation sources are increased. They produce huge
sizes of medical images continuously. The following
image generation sources play a vital role in medical
applications:

e Magnetic Resonance Image (MRI)
e Positron Emission Tomography (PET)
e Computed Tomography (CT)

e Positron Emission Tomography and Computed
Tomography (PET-CT)

e Single Photon Emission Computed Tomography
(SPECT)

e Ultrasound
e X-ray
1) Magnetic Resonance Image (MRI)

Medical image processing makes use of MRI) to
measure the health of inside organs and tissues.
Obtaining internal scans, MRI scans employ radio
waves and a magnetic field. MRI scans are widely used
to identify the difference between the normal
individual’s body and patient’s body MRI scans are used
to monitor the blood vessels flow, identify the abnormal
tissue, monitor the tumors in the breast, identify the tears
in the ligament, function of bones, and monitor the
internal organs in the heart, kidney, liver and spleen.

2) Positron Emission Tomography (PET)

PET scans allow doctors to see inside a patient's body
by using a high-tech camera and a radioactive substance.
A radioactive chemical is in the form of glucose and it is
often used during the PET scans to collect the cancer
cells from the patient’s body. This type of chemical is
also called a tracer. The essential role of PET scan is to
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observe the tissues and organs of the patients who are
affected by various health problems such as heart
disease, prostate cancer, liver cancer, breast cancer and
tuberculosis.

3) Computed Tomography (CT)

CT creates cross-sectional images by capturing X-
rays from different angles. In other words, CT scan uses
various types of digital geometry processes to take X-
ray images from different directions. Images generated
from the CT scans are used to image the various types of
heart diseases, broken bones, prostate cancers, liver
cancer, breast cancer, internal bleeding, and blood clots
and so on

4) Positron Emission Tomography and Computed
Tomography (PET-CT)

PET and CT scans are combined to take a complete
scan that observes the internal organs and monitor the
abnormal anatomic location. This type of scan produces
results more effectively than the two scans (PET and CT
scans) taken separately. PET-CT scans are widely used
to identify cancer in the early stage. Results from this
type of scans are used by the doctor to take necessary
treatment. Efficient use of PET-CT scan may help to
recover people from various cancers and other diseases.
PET-CT
including the following: regulating cancer levels and
their spread, tracking the effectiveness of cancer

scans have many medical applications,

treatments in real time, studying the heart's blood flow,
assessing the impact of a heart attack, and keeping an
eye out for abnormal brain conditions, such as the
detection of brain disorders, tumors, and bleedings.

5) Single Photon Emission Computed Tomography
(SPECT)

A SPECT scan is used to monitor the internal blood
flow and functions of internal organs. A combination of
CT and a radioactive substance, sometimes known as a
tracer, is used in this scan type. PET scans to collect the
cancer cells from the patient’s body. Radioactive
chemical or tracer is injected into the human body via
intravenous or IV injections. Tracer or radioactive
chemical moves to the internal body.

6) Ultrasound

Ultrasound imaging is one of the medical imaging
technologies to observe the swelling, pain and infection

in the internal body. The use of high-frequency sound
waves allows for the recording of pictures of the inside
of the human body using ultrasound imaging. Using
ultrasonic imaging technology, which generates high-
frequency sound waves, a digital image is formed from
the reflected sound. The resultant image generated from
the ultrasound technology is used to identify the heart
diseases, monitor the human body parts affected after a
major heart attack, determine the baby health conditions,
monitor the pregnancy status and identify the abnormal
situations in the blood vessels.

7) X-ray

X-ray technology is one of the familiar imaging
technologies used to take pictures of the internal body.
Ionizing radiation is injected from the Xray machines to
the human body that shows the body parts by black and
white shades. In general, bones have more calcium than
other parts of the body.

A. Overview of Computed Tomography

Electrical engineer Sir Godfrey Hounsfield
developed the first CT scanner in 1972. It was
Hounsfield and Cormack that shared the 1979 Nobel
Prize in Physiology or Medicine. A scientist named
Allan McLeod Cormack also created a gadget that was
similar about the same period. CT rapidly acquired
popularity as a medical imaging tool following its
introduction. CT scans are flat, three-dimensional
models of physical objects. To create these pictures, X-
ray photons are transformed from electrical energy,
which is basically just moving electrons. The light is
then transformed back into electrons after passing
through an object and being detected. The density of an
item is inversely proportional to its X-ray transmissivity.
It is possible to image the components of objects,
including humans, using CT scans, which have varying
densities.

The CT scanner spins around the item completely,
directing X-rays at it from all directions. The density of
an object's constituent elements changes as a function of
lighting angle, so does the intensity of photons that flow
through it. Inconsistencies in successfully transmitted X-
ray photon readings rely on a computer processor to
build a dataset. The object's densities are subsequently
utilized by this dataset to create a three-dimensional
replica of it. The dataset is shown on screen or film in a
sequence of two-dimensional parts. While there are a
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number of factors that go into determining picture
quality, the two most crucial are image resolution and
evaluated contrast.

1) CT Imaging

CT's stellar reputation for radiologic diagnostic
accuracy has propelled it to the forefront of medical
One of the major problems with
conventional X-ray imaging is that it can't differentiate
between different types of tissues, such as muscles,
ligaments, and blood vessels. Computed tomography
outperforms the conventional X-ray method by
combining multi-angular X-ray scanning with a
mathematical theory that reconstructs the object based
on its projections. The data collected by an X-ray beam
as it moves through a patient's body is largely interpreted
by a computer in a CT scan. CT scans make it easy to

evaluations.

learn about an object's internal structure, including its
size, shape, internal flaws, and density. It is possible to
recreate a picture using X-ray data and the radon and
inverse radon transform; this technique is called CT
imaging.

2) CT Image Reconstruction

CT makes use of a motorized source of X-rays that
are directed at various angles across the patient. On the
other side of the X-ray generator sit the specialized
digital X-ray detectors that CT scanners use [19].
Detectors transform the X-rays into electrical impulses
as they pass through the patient. An analog-to-digital
converter takes these electrical signals and turns them
into digital information. A digital-to-analog converter
may take data from the digital matrix and turn it into
little boxes with a range of greyscale to black and white.

3) Major Factors Affecting the Quality of CT Images

The accuracy of CT reconstructions is dependent on
a wide range of parameters. Image quality is affected by
several important elements, including:

a) Blurring

Appropriate protocol factor values, patient mobility,
and other factors might cause CT images to be blurry.
Blurring in CT reconstructed pictures might happen
when the patient moves about. A number of factors,
including an uncooperative patient, breathing, heartbeat,
etc., might cause the patient to move. The reconstruction
methods are a bit more complex since they need to take

into consideration and control the patient's z-direction
movement—the degree of blurring in the image is
directly related to the patient's momentum. Important
reasons of blurring include the following:

e The method of operating the machinery
e The correct values for the procedure factors
e Image blurring as a result of patient motion

e (Ct value variation across image pixels for a
homogenous material scan

e Poor filter algorithm parameters or some filter
algorithms themselves (for noise reduction)
haze the picture

b) Field of view (FOV)

The field of vision refers to the area that can be
chosen in order to recreate the CT scan. It becomes
challenging to detect abnormalities and the quality of the
reconstructed CT picture could be diminished if the
image is either too large or too small.

a) Artifacts

Artefacts are distortions or errors in images that are
unconnected to the object being portrayed.
Inconsistencies between the expected and displayed CT
values are known as artefacts. Metal artefacts, beam
hardening, partial volume effects, patient movements,
and other similar phenomena are common.

e Beam hardening: A patient causes an X-ray
beam to harden because its average energy
increases as it passes through the body. Cupping
is another term for this item.  The correct

algorithms, together with steps like boosting

kvp, lowering slice thickness, pre-filtering X-

rays, and, ideally, avoiding regions with high X-

ray absorption rates, can help one effectively

avoid this.

e Metal artifact: Dental fillings, prosthetic limbs,
surgical clips, and other metal objects might
obstruct portions of projection data, leading to
streaking artefacts. By removing the metal
material, this artefact can be diminished.

o Patient motion: Artefacts of streaking can be
generated in the reconstructed image as a result
of both voluntary and involuntary motion. In

8017



Letters in High Energy Physics
ISSN: 2632-2714

Volume 2024
December

order to prevent this, potential solutions include
motion reduction, immobilization, positioning
aid, and a reduction in scan time.

e Software and hardware based artifacts:
Artefacts in CT images may also be produced as
a result of inadequate software inputs and
inadequate apparatus. Failure of mechanical
components, rigidity of the gantry, mechanical
assignment, aliasing, detector sampling,
staircase, and tube arcing are among the many
potential causes of artefacts. Additionally, poor
parameterizations during CT image
reconstruction lower image quality. If one wants
better CT images, they can tweak or optimize a
few key parameters in the computed tomography
area. The pitch of the reconstructed slice
thickness, scan range, patient position, tube
current and potential, and detector configuration

are all components of the collection of

parameters.

¢) Visual Noise

Visual noise is any kind of unwanted data that
detracts from an image's aesthetic value. There are
several potential sources of noise in CT scans. These
include differences in voxel attenuation coefficients,
mathematical computation mistakes, and faults in
acquisition, transmission, and transmission. Disturbance
to the visual field has a major influence on image
quality, especially for objects with low contrast.

III. COMPUTED TOMOGRAPHY (CT) IMAGE ANALYSIS
TECHNIQUES

CT scans' great spatial resolution and non-invasive
capacity to depict inside structures make them useful in
clinical diagnostics. However, raw CT images often
contain noise, artifacts, and complex anatomical details
that complicate direct analysis. Improving picture
quality, extracting useful information, and bolstering
automated diagnostic systems are all goals of image
analysis. Two main groups of these methods exist: those
that rely on more conventional image processing
techniques and those that use more sophisticated ML
and DL methods:

A. Traditional Image Processing Techniques in CT
Image Analysis

Traditional image processing techniques focus on
improving image quality and extracting features using
deterministic algorithms. Key methods include

1) Noise Reduction:

CT images frequently exhibit noise as a result of
modest radiation doses or the scanner. Electromagnetic
interference, environmental circumstances, or flaws in
the imaging device are a few of the many potential
sources of undesired noise in images taken by sensors,
cameras, or scanners. Filtering and smoothing are
examples of preprocessing techniques that remove noise
from images, which improves their quality and allows
for more precise analysis.

2) Spatial Filter based Techniques

Denoising CT images with linear filters is a way to
enhance diagnostic accuracy and picture quality by
reducing noise from CT scans. Each pixel in Figure 2 is
averaged with its neighboring pixels using linear filters
like median and averaging, which blurs edges but
reduces noise. A median filter enhances edge retention
and decreases blurring by replacing each individual
pixel with the median value of the pixels immediately
around it. Linear filters that estimate and remove noise
using mathematical models while preserving picture
properties include the Gaussian and Wiener filters. The
noise type and the intended trade-off between lowering
noise and keeping image detail dictate the filter that is
most appropriate.

Fig.2. Spatial Filter based Technique

e Linear/Mean filters: Noise reduction, edge
sharpening, and illumination imbalance

correction are all possible with the help of the
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linear filter. These filters distort the image's
edges and obliterate its fine features. They
perform poorly when it comes to reducing
signal-dependent noise. The method is
implemented by applying a processing kernel
correlation filter on the picture. Applying the
arithmetic mean filter to the damaged picture
yields its average value.

o Arithmetic Mean Filter: The central pixel
value of the mask is replaced with the arithmetic
mean of all the pixel values within the filter
window. The local visual discrepancies are
simply smoothed down using a mean filter.
Reducing noise makes the image smoother, but
it also blurs the edges. Equation (1) uses the
geometric mean of the Sxy region's pixels to find
the restored picture's f value at point (X, y).

fGoy) = —%@,0) €5, g(r,0) (1)

The pixels surrounding s,,, are represented by
the coordinates r and c, in that order.

e Geometric Mean Filter: The difference
between an arithmetic mean filter and a
geometric mean filter is that the latter uses
geometric values. This is the primary difference
between the two. A geometric mean filter was
used to reconstruct the picture represented by the
phrase. In Equation (2), the phrase stands for a
restored image that was processed using a
geometric mean filter.

1

f(x' y) = [H(r,c)Esxy g(r, C)]m (2)

situations where the word "multiplication" is
employed. For every pixel that has been
restored, the computation is simply the total of
all the pixels in the sub-image region multiplied

1
by E

e Harmonic Mean Filter: The harmonic mean
approach is beneficial for the preponderance of
noises, with the exception of pepper noise. It
entails substituting the average grey value of
nearby pixels for the grey value of each

individual pixel.  Several kinds of noise,
including Gaussian noise, are well-handled by it.

e Median Filter: The median filter, the most
famous order-statistic filter in image processing,
substitutes the value of a pixel with the median
of the intensity levels nearby using Equation (3).

f(X, Y) = median(r,c)Esxy {g(r, c) (3)

Where Sxy is a subimage (neighborhood) that is
centered on the point (X, y), as previously stated. In
determining the median, the pixel's value at (x, y) is
being taken into consideration.

3) Wavelet-based Techniques

CT image denoising using wavelet-based filters is a
popular technique due to its ability to effectively remove
noise Wavelets decompose images into different
frequency components, allowing for targeted noise
removal and detail preservation. Common wavelet-
based filters include thresholding, shrinkage, and
wavelet domain filtering

4) Filtering in Frequency Domain

Image sharpness and smoothness can be improved by
frequency domain filtering. Low pass filtering, which
involves attenuating high frequencies, is used to achieve
smoothing. By isolating the high-frequency
components and attenuating the low-frequency ones,
high pass filtering sharpens the sound. To apply filtering
in the frequency domain, one must multiply the image
by the filter transfer function. The following is a step-
by-step description of frequency domain filtering
execution.

B. Machine Learning-Based Techniques in CT

ML enhances CT image analysis by enabling
automated recognition and classification of complex
patterns. Analytics in medical imaging involve using
software to sift through medical imaging data in search
of actionable medical information, such as past health
issues and current disorders.  Developing high-
performing medical image analytics systems relies
heavily on ML, as seen in Figure 3. This article covers
the three main categories of ML: supervised, semi-

supervised, and unsupervised:
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Fig. 3. Machine Learning Technique

Semi supervised

learning

Unsupervised
learning

1) Supervised Learning

Training DT and NN typically involves supervised
learning. The information supplied by the pre-
determined classification is crucial to both of these, as
indicated earlier [20]. Applications that are able to
analyses past data in order to predict future feature
events also utilize this learning. Both regression and
classification are broad categories that encompass
supervised learning activities. This predictive model is
constructed by the supervised learning method.

Decision trees: A DT classifier uses a recursive
partitioning process to divide the instance space. When
the branches of a decision tree come together, they form
a root tree, a type of distributed tree that has just one
branch (the root) and no branches that branch out.

Linear regression: One of the many regression
algorithms, linear regressionl seeks to do just that
discover the interdependencies and correlations between
the variables. The linear function represented by Y in
ML models the relationship between a D-dimensional
vector containing a continuous scalar dependent variable
y (also called a label or target) and one or more
explanatory variables (also called features, attributes,
dimensions, data point, etc.).

Naive Bayes: Bayesian classification is a statistical
method for classification and one of the supervised
learning methodologies. Using the establishment of
outcome probabilities as a basis, it enables the principled
capture of model uncertainty and implies a probabilistic
model. Bayesian classification is primarily designed to
address difficulties related to prediction.

Logistic Regression: One way to forecast the
probability of an occurrence is using LR, which involves
fitting data to a logistic function. LR and other types of
regression analysis employ a large number of numerical
or categorical variables as predictors.

2) Unsupervised Learning:

The goal of unsupervised learning is to reveal how
computers might learn to display input patterns in a way
that reflects their statistical structure, rather than the
other way around. Unsupervised learning differs from
supervised and reinforcement learning in that it relies on
the learner's prior biases to decide which aspects of the
input structure should be incorporated in the output. In
contrast, supervised and reinforcement learning have
designated goal outputs or environmental assessments
associated with each input.

3) Clustering Based Technique

Clustering methods organize comparable pixels or
areas according to their texture, intensity, or other
characteristics. Common techniques include:

K-Means Clustering: Clustering, another name for
cluster analysis, is an unsupervised ML technique that
groups together comparable data points in large datasets
without regard to the precise outcome.

DBSCAN (Density-Based Spatial Clustering):
Anomalies or irregular lesions in CT scans can be
detected with this method since it identifies groups of
arbitrary forms.

4) Dimensionality Reduction Techniques

Visualization, noise reduction, and feature extraction
are all made easier by dimensionality reduction, which
takes high-dimensional picture data and flattens it while
keeping important patterns:

Principal Component Analysis (PCA): Extracts
the most significant components representing the
variance in CT images, aiding in compression and noise
suppression.

Autoencoders: Effective denoising and anomaly
detection are achieved by using neural network-based
models that learn compact representations of CT images.
These models restore normal patterns and identify
deviations, making them ideal for these tasks.

a) Semi-Supervised Learning

A subset of ML techniques is semi-supervised
learning (SSL). The dataset is intermediate between
supervised and unsupervised learning because of its
incomplete labelling [21]. Obtaining completely
labelled datasets for CT image analysis can be a lengthy,
laborious, and costly process that necessitates the
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services of trained radiologists. By utilizing the vast
quantities of unlabeled data, semi-supervised
approaches enhance model performance while
decreasing reliance on annotated images. Resolving
issues with both supervised and unsupervised learning is
central to SSL's mission. The time and data needed to
train supervised learning to classify test data is
substantial, despite the efficiency of the method.
Unsupervised learning, in contrast, uses clustering or the
maximum likelihood approach to group data points
according to their similarities without labelled data.

C. Deep Learning-Based Techniques in CT

DL is a subset of a larger class of ML techniques that
use representation learning and are based on ANNs. A
computational architecture is provided by deep learning,
which learns from data by merging many processing
layers, such as input, hidden, and output layers [22]. The
three most popular deep learning algorithms are LSTM-
RNN, MLP, and CNN, or ConvNet.

CNN: The CNN incorporates  pooling,
convolutional, and fully linked layers, which enhance
the conventional ANN architecture.

MLP: A multilayer perceptron (MLP) is another
name for the feed-forward ANN. A typical MLP
network consists of three primary layers: input, hidden,
and output.

LSTM-RNN: LSTM is an artificial architecture used
in DL. When compared to traditional feed-forward
neural networks, LSTMs feature feedback linkages.

ANN: The architecture and operation of the human
brain serve as inspiration for ANNs. Complex non-
linear mappings between inputs and outputs can be
learnt by the neurones that comprise them. Since ANNs
can pick up on finer patterns in high-dimensional
imaging data, they find extensive application in CT
image processing for tasks like segmentation, feature

extraction, and classification.

IV. NOISE CHARACTERIZATION AND ITS IMPACT ON
COMPUTED TOMOGRAPHY (CT) IMAGE QUALITY

CT image quality is critically influenced by various
types of noise, which can obscure anatomical structures,
reduce diagnostic accuracy, and affect quantitative
measurements. Understanding noise sources, their
characteristics, and mitigation strategies is essential for

reliable image analysis and subsequent clinical decision-
making. This section presents the types of noise in CT
imaging, methods for measurement, and techniques for
noise reduction and calibration

A. Noise in CT Images

The delicate tissues of the human body are
distinguished using CT's high contrast sensitivity. The
capacity to perceive low-contrast structures can be
impaired when noise is present. Accurate denoising of
CT scans necessitates familiarity with both the specific
kinds of source noise and the characteristics of generic
noise

B. Sources of Noise in CT Imaging

The physics of X-ray capture, faulty scanner
electronics, and inefficient reconstruction methods are
only a few of the sources of noise in computed
tomography (CT) pictures. There are several primary
sources including:

1) Quantum (Photon) Noise

The most common kind of image degradation in CT
scans is known as quantum (photon) noise, which results
from the randomness of the X-ray photons observed
during the acquisition process. Because X-rays are
emitted and absorbed according to probabilistic
(Poisson) statistics, the signal collected by the detector
fluctuates around a mean value, producing grainy
variations in pixel intensity. Figure 4 displays the
different gantry types and the semiconductor materials
employed by the various systems.

<

Fig. 4. CT Image in Effected Noise

This type of noise becomes particularly pronounced
in low-dose CT scans, where reducing the radiation
exposure inherently decreases the photon count.
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2) Electronic Noise

An x-ray detecting device can lessen electrical noise.
Radioactive particles and beam strengthening. The
detectors used in modern CT systems are solid-state
devices [23]. The x-rays are transformed into visible
light by the radiation-sensitive solid-state components
that are used in every detector cell. Common examples
of these materials include gadolinium oxide, cadmium
tungstate, and gadolinium oxysulfide.

3) Reconstruction Algorithm Effects

Traditional filtered back projection (FBP) methods
for reconstructing CT images usually result in increased
picture noise despite decreased radiation dosage [24].
But new iterative reconstruction (IR) algorithms
outperform their predecessors significantly when
exposed to modest levels of radiation when it comes to
noise. There is no clinical agreement on what constitutes
a "acceptable" level of noise, even though CT screening
for benign lesions can tolerate some noise in order to
decrease the radiation dosage. The most optimal method
would involve creating images with a tolerable amount
of noise using infrared algorithms and low-dose
parameters.

C. Methods for Noise Measurement

Quantifying CT image noise accurately is crucial for
assessing picture quality, refining imaging protocols,
and directing post-processing methods. Noise in CT
images is typically quantified using both spatial and
frequency-domain approaches, as well as signal-to-
noise-based metrics.

1) Signal-to-noise and contrast-to-noise ratios

Commonly employed in signal processing are the
SNR and the CNR, both of which measure image
quality. The proportion of the average signal strength to
the noise standard deviation is the definition of ROI and
the criteria for meeting specifications. Although there
are numerous different ways to define SNR, the most
popular one is given by Equation (4):

_ |MeanRegion1 — Meangegion2 |
CNR = — : 4)
standard deviation of noise

Equation (5) defines the signal-to-noise ratio, or
SNR, as the ratio of the two:

Mean signal in ROI

SNR =

)

standard deviation of noise

An improved SNR improves the reliability of
computer analyses and the quality of the images
produced by them.

2) Noise Power Spectrum

The NPS is a spatial frequency-dependent
description of a system's noise response. Equation (6) is
used to evaluate the NPS over N ROls:

NPS = JENL IFI Gy, 2) ~ TP 55E (6)

The variables Ii, which represents the average signal

strength in each voxel in ROI i, F, which stands for the

Fourier transform operator, AyA, A,, which denote the

X, y, and z dimensions of the voxels, and NyNy,N,,

which denote the dimensions of each ROI in voxels, are
all involved.

3) Root Mean Square Error

A voxel's root-mean-squared signal intensity
difference (RMSE) between its reference and test
images is equal to the average of all squared signal
intensity differences between the two sets of data. This

formula is described by Equation (7):

RMSE = |~

MN ?i12§y=1(x(i,j)—y(i,j)2 (7

where x (i, j) is the reference image's grey level for a
given voxel and y (i, j) is the test image's grey level for
the same voxel. M is the sum of all horizontal voxels and
N is the sum of all vertical voxels.

Noise Reduction and Calibration in CT Imaging

Table I provides an overview of key noise reduction
and calibration techniques in CT imaging. These
methods improve image quality by minimizing noise
while maintaining diagnostic accuracy and patient
safety.
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TABLE 1. OVERVIEW OF KEY TECHNIQUE IN NOISE REDUCTION IN CT IMAGE ANALYSIS

Technique Description Primary Purpose
Acquisition Parameter | Adjusting tube current (mA), voltage (kVp), rotation | Improves image quality while minimizing
Optimization time, and pitch to balance image noise and radiation | patient exposure.
dose.
Iterative Reconstruction | Advanced reconstruction methods (e.g., adaptive | Produces smoother images with better
Algorithms statistical iterative reconstruction, model-based IR) | detail at lower doses.

that reduce noise

Detector Calibration

Routine calibration of detector gain, offset, and
uniformity to ensure consistent performance across
detector elements.

Minimizes electronic and fixed-pattern
noise.

Scatter Correction

Hardware or software techniques that reduce

scattered radiation reaching the detector.

Enhances contrast and reduces streak-like
noise.

Beam Hardening Compensation

X-ray beam energy correction algorithms that account
for the transition of the beam through dense tissues.

Reduces streak artifacts and non-uniform
shading.

Post-Processing Filters

Adaptive, anisotropic, or deep-learning—based filters
applied to smooth noise while retaining structural
detail.

Enhances image without

degrading resolution.

appearance

Protocol Standardization

Harmonizing  acquisition and reconstruction
environment across scanners and operators.

Improves reproducibility of image quality
and noise levels.

V. LITERATURE OF REVIEW

This section provides a literature overview on Al
methods for efficient and accurate analysis of CT picture
quality, with an emphasis on methods for detecting
strokes. Table II summarizes the key studies discussed
below:

Zhou et al. (2024) application of DL-based image
reconstruction and noise reduction algorithms, or DLIR,
has increased in clinical computed tomography (CT).
This method is employed to evaluate the spatial
resolution of a DCNN that is based on ResNet and has
been trained on patient images. In one patient's case,
the lower left lobe of the liver was implanted with
lesions that had variable degrees of contrast (—500,
—100, =50, =20, —10 HU). The dosage levels of 50%,
25%, and 12.5% were all simulated. Each lesion and
dose condition were associated with a minimum of 600
noise  realizations. = Three  distinct intensity
environments—DCNN-weak, DCNN-medium,
DCNN-strong were used to train deep convolutional
neural networks (DCNNG), iterative reconstruction (IR),
and the original filtered-back projection (FBP) on all of

and

the noisy realizations. Decreasing the number of lesion
pictures from the total number of images by first locating
the noise in each dose condition and lesion. The 50% in-
plane and z-axis MTFs decline from 92.1% to 76.3% and
95.5%, respectively, under varied contrast and dosage
settings, when the dose level is dropped from 50% to
12.5% normal dose utilizing FBP [25].

Lietal. (2024) One of the most cutting-edge imaging
methods is CT. Adaptive assessment of blurring effects
caused by insufficient sampling of the LR X-Ray
detector using a DL network (SRECT-Net). Once the
scanning technique is set for a CT machine, the blur
effect pretty consistent. This finding provides the
impetus for the suggested approaches, which can be pre-
trained using plenty of simulated datasets, fine-tuned
with a single sample, and finally provide a machine-
specific SR model. Compare the performance of the
suggested SRECT against that of existing DL-based CT
SR techniques using SR CT imaging on a Catphan700
phantom and a ham. The results show that the proposed
SRECT is more effective than current state-of-the-art
CT SR reconstruction methods, which might be useful
for improving CT resolution [26].

Parameswari et al. (2024) CT scans one at a time and
compare three different CNN models to one thousand
CT scans of the heart and blood vessels, both healthy and
with calcium deposits. Three types of CT-image data are
used in experimental test: original CAC-score CT,
cardiac-segmented, and cardiac-cropped. The rib cage
as a whole is included in the first set, while the heart
region is excluded from the second two sets. Using
Inception ResnetV2, VGG, and Resnet50, the
exploratory test for calculating the incidence of calcium
in a CT-picture had the highest accuracy rate of 98.52%
[27].

Bos et al. (2024) CT images. The 152 adult head CT
scans that were included were acquired between March
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and April 2021 from three separate CT scanners using
various methods. From 77 to 75 years old, the
participants' ages ranged from an average of 69.4 + 18.3
years. A deep learning-based method was employed for
post-processing following the CT image reconstruction
utilizing FBP and IR. Depending on the technique,
postprocessing greatly decreased noise in FBP-
reconstructed images (by as much as 15.4% reduction),
which improved the signal-to-noise ratio by as much as
19.7%. These results seemed to be protocol or site
dependent. There was no discernible improvement in
picture quality across the board for any reconstruction or
post-processing, according to subjective evaluations.
Reliability between raters was poor, and preferences
differed. Using deep learning-based denoising software
yielded superior objective images in regular head CT
scans compared to FBP. One of the methods was the sole
one that varied substantially from IR. Subjective
assessments did not show a substantial therapeutic
impact in terms of improved subjective image quality
due to the low noise levels of full-dose images [28].

S P et al. (2024) preservation of information and the
restoration of images tainted by noise rely heavily on CT
medical images. Although the CNN was effective in
removing the noise, the performance cost us clarity and
the ability to preserve small features, which made the CT
scans unusable. Ischaemic stroke patients' brain CT
images can be segmented and classified more accurately
with the application of MA-CNN, an improved noise
removal method. One way to measure how well an MA-
CNN works is by looking at its PSNR. The results show
that the proposed model outperforms current denoiser
approaches in terms of PSNR and ensures the
preservation of high-quality pictures [29].

Abubaker, Mohamed and Abuzaid, 2023, Processing
of images from computed tomography scans. One
model, CTcov_model, is designed to process images
from CT scans and is based on the previous model;
another, Xcov_model, uses CNN and DL to process
images from CXRs. In order to generate a heat map
showing the predicted spread of the disease, the Grad-
Cam algorithm provided support for both models. The
nine thousand images that made up the dataset were split
evenly across three categories for CT and x-ray imaging.
With the help of DA technology, trained on 80% of these
photos and tested on 20%. With an F1-Score of 98%,
the Xcov_model stood out among the models that were

developed and tested on the Google Collaboratory
platform using Python [30].

Mahmoodian et al. (2023) uutilizing computed
tomography (CT) pictures that segment four distinct
tissue structures, the lungs, the tumors, the ablated
tissues, and the surrounding healthy tissue MWA
therapy is a famous method for targeting and eliminating
tumors in the lung. Use the loU to quantify the suggested
method's efficacy. Background, lung, ablated, and tumor
tissues all have the highest average loU values of 0.99,
0.98, 0.77, and 0.54, respectively, as shown by the
approach. The results demonstrate that, even with the
limited dataset, DL approaches when combined
outperform individual base-learner models for all four
kinds of tissue. Importance in medicine Determining
when all tumor tissue has been totally eliminated is a
crucial issue with tumor ablation treatment [31].

Zeng et al. (2022) Using a noise-generating
mechanism, Un-SinoNet trains an unsupervised DL
network, offering a unique method to low-dose CT
sinogram recovery. Training network using unlabeled
low-dose CT scans. While learning the right gradient for
low-dose CT sinograms unsupervised, Un-SinoNet
should take into account the prior measurement features
and statistical fluctuations in the CT noise-generation
process using a maximum a posteriori probability
(MAP) framework. Network training can be made more
effective by using the gradient information from both the
labelled high-dose CT sinogram and the unlabeled CT
sinogram. To turn the proposed Un-SinoNet into a semi-
supervised DL network (Semi-SinoNet) that integrates
the conventional and MAP goal functions, another
option is to employ a small number of low-dose/high-
dose sinogram pairs. Executed the expected Un-SinoNet
and Semi-SinoNet using the LUNGMAN phantom and
the Mayo Clinic patient simulation datasets. This
research outperforms competing methods in terms of
picture resolution and noise reduction using both
methodologies [32].

Inkinen et al. (2022) standard deviation of pixel
values from uniform picture portions is a popular
method for determining CT image noise. Experimented
with DCNN CNN architecture for direct noise image
estimation and UNet-CNN for denoised picture
subtraction utilizing supervised and unsupervised
noise2noise training methods. Took a look at the
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background noise using local SD maps and CNN
architectures in 3D and 2D. The DL-model was trained
using data collected from a nine-scan, three-repetition
anthropomorphic phantom CT imaging dataset. The
most effective method for direct SD estimation using
3D-CNN was demonstrated on a phantom dataset, with
MSE = 6.3HU and MAPE = 15.5%. Even in clinical
contexts when ground truth data is unavailable, the
noise2noise approach could still be useful. It is possible
to characterize image quality more thoroughly by
combining noise estimation with tissue segmentation
[33].

Recent research in computed tomography has
increasingly centered on the application of ML to
optimize image quality, particularly through effective
noise suppression while safeguarding diagnostically
important structures. A range of DL reconstruction
strategies has emerged, including convolutional and
morphology-aware networks capable of producing

acquisitions. Super-resolution approaches have been
proposed to counter detector blur and sharpen subtle
textures, while unsupervised and semi-supervised
models allow denoising and sinogram restoration in
scenarios with limited or unlabeled data. Other
investigations emphasize post-processing pipelines that
enhance standard reconstructions or integrate noise
removal with tasks such as lesion segmentation and
anatomical classification, supporting more accurate and
streamlined diagnostic workflows. Collectively, these
studies indicate a clear trend toward solutions that
balance noise reduction, spatial resolution, and
computational efficiency, with increasing attention to
generalizability across scanners, interpretability of
network outputs, and real-time feasibility for clinical
deployment. The increasing amount of research
demonstrates how machine learning has the power to
revolutionize CT imaging, make low-dose procedures
safer, and improve the accuracy of quantitative
evaluations in a wide range of healthcare environment.

cleaner, high-contrast images from low-dose
TABLEIL. COMPARATIVE ANALYSIS OF RECENT STUDIES ON COMPUTED TOMOGRAPHY IMAGE QUALITY AND
NOISE REDUCTION USING MACHINE LEARNING.
Author(s) Dataset Methodology Key Findings Noise Limitations Future Work
, Year Reduction /
Image Quality
Zhou et al. | Patient liver CT; | ResNet-DCNN vs | DCNN  preserved | denoising with | Simulated Apply to real
(2024) lesions inserted at | FBP & IR; assessed | resolution better | spatial-res lesions, not | lesions; improve
contrasts MTF spatial | than FBP/IR as dose | analysis natural ultra-low-dose
—500—-10 HU; | resolution l pathology
600 noise
realizations; 3
dose levels
Li et al. | Catphan700 SRECT-Net  for | Outperforms other | Resolution 1 | Phantom only; | Test on patient
(2024) phantom & ham | super-resolution to | SR CT; high-res | (not direct | clinical value | CT; embed in
specimen counter  detector | recon from LR | noise) unclear reconstruction
blur detector
Paramesw | 1200 Inception- 98.52% accuracy for | Not aimed at | One  dataset, | Larger & noisy
ari et al. | cardiovascular CT | ResNetV2, VGG, | coronary calcium; | noise; limited datasets;
(2024) scans ResNet50 on | cropped best classification pathologies robustness studies
original,
segmented &
cropped CT
Bos et al. | 152 adult head | FBP, IR, DL post- | DL post-processing | Yes — objective | Only ~ modest | Assess with dose-
(2024) CTs from 3 | processing (PS) cut FBP  noise | noise | subjective reduction;
scanners <15.4%, SNR benefit; optimize for user
119.7%; subjective protocol- perception
gain small specific
S P et al. | Brain CT | Morphology- Higher PSNR vs | Explicit noise | Not tested on | Integrate with
(2024) (ischemic stroke) | Aware CNN (MA- | other denoisers; fine | reduction = & | big datasets or | segmentation/clas
CNN) for | detail preserved detail retention | full pipeline sification;  real-
denoising time
Abubaker | 9000 CT & CXR | CNNs F1 = 98% (CXR); | No — | No CT noise | Add quality/noise
et al. | (3 classes) (Xcov_model, CTcov effective for | classification analysis; no | metrics; extend to
(2023) CTcov_model) + | CT only baseline detection
Grad-CAM compares
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Mahmood | Lung CT for | Ensemble of DL | IoU: 0.99 | Focus on | Tumor IoU | Expand data;
ian et al. | microwave- models for | background, 0.98 | segmentation; moderate; integrate dose &

(2023) ablation therapy segmentation lung, 0.77 ablated, | not denoising small data noise handling
(lung, tumor, | 0.54 tumor
ablated)
Zeng et al. | LUNGMAN Unsupervised Un- | Better resolution & | Yes — low-dose | Mostly Apply to patient
(2022) phantom; SinoNet & Semi- | noise removal vs | sinogram phantom/sim sinograms; refine
simulated Mayo | SinoNet for | baselines denoising data MAP prior
sinograms sinogram recovery
(MAP)

VI. RESEARCH GAPS

Current DL models have made great strides in stroke
detection, however there are still several gaps that are
directly related to the study's goals and objectives. This

void encompasses

Data Limitations: The capacity of many current
models to generalize across varied populations
and therapeutic contexts is compromised due to
their dependence on tiny and frequently
homogeneous datasets. The model's
generalizability to different types of strokes and
imaging quality is enhanced with the addition of
a larger and more diverse dataset. This dataset
comprises 9,900 photos for testing and 2,501
images for training/validation, thus reducing
data constraints. In order to guarantee accurate
stroke identification across different clinical
environment and imaging situations, this work
tries to increase the model's generalizability by
increasing the dataset.

Model Complexity and Efficiency: In real-time
clinical situations, complicated models like
ResNet50 may not be viable due to their high
computing costs. Through hyperparameter
tweaking, this study seeks to optimize the CNN
architecture for real-time stroke detection by
achieving maximum efficiency and minimizing
computing complexity without sacrificing
accuracy. In comparison to more complicated
models as in, the suggested model achieves great
performance with substantially fewer operations
by optimizing its architectural design, thus
reducing computing complexity. The model's
exterior accuracy (89.73%) lags behind state-of-
the-art standards, but its practicality for real-time
application is guaranteed by its reduced design
(20 M parameters), fulfilling a major clinical
necessity. An important obstacle to the use of Al

in stroke care has been eliminated by these
optimizations, which allow for real-time
inference on conventional clinical hardware.

e Segmentation and Localization: Accurately
segmenting and localizing ischaemic lesions is
still a difficulty, even though stroke detection
accuracy is getting better. In order to make
informed clinical decisions, it is essential to
accurately segment the ischaemic core. In order
to achieve very accurate ischaemic stroke
localization, this project concentrate on building
a CNN model that is specifically designed for
stroke detection in CT images.

e Interpretability and Clinical Trust: Clinical
practice has been slow to embrace deep learning
models due to their lack of transparency. This
study intends to boost clinician trust by making
the CNN model more interpretable and by
providing clear visual explanations for stroke
predictions using explainability approaches.

e Real-World Validation: Validation in real
clinical environments is frequently absent,
despite the fact that current models have
demonstrated promise in controlled
environments. The purpose of this study is to
evaluate the CNN model using crucial metrics
such as accuracy, precision, recall, F1-score, and
AUC-ROC in order to ensure its reliability and
effectiveness for real clinical usage.

VII. METHODOLOGY

CT images to assess their clarity, contrast, and
diagnostic accuracy while identifying and quantifying
the impact of noise. Noise arising from photon statistics,
electronic components, or reconstruction algorithms can
degrade spatial resolution and obscure anatomical,
affecting clinical interpretation. Careful analysis of
image quality metrics, along with noise measurement
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and reduction strategies, ensures reliable visualization
and enhances the diagnostic value of CT imaging The
proposed approach for Computed Tomography (CT)
image analysis in brain stroke detection follows a
comprehensive pipeline, as depicted in Figure 5. A
curated dataset of CT images of the brain from strokes
was first assembled in DICOM format and then
converted to NIfTI format to make it accessible across
all software platforms. Images were preprocessed to
ensure they were ready for learning. This included
scaling them to a fixed spatial resolution, pixel-intensity
transforming them to make soft tissue contrast more
noticeable, converting colours as needed, applying
spatial filters to remove noise, and label encoding them
so they could be associated with their respective
diagnostic categories. A range of data augmentation
procedures were employed to rectify class imbalance
and increase dataset diversity. These techniques
included rotating, horizontal and vertical flipping,
scaling, and random cropping. Following this, image
normalization was applied to stabilize pixel distributions
and speed up convergence during training. Properly
sized training, validation, and testing subsets were
created from the processed dataset, ensuring that each
split had an adequate representation of each class. After
that, various learning architectures such as ResNet,
MLP, and CNN were used to automatically classify
regions affected by stroke by extracting spatial and
textural features from the preprocessed CT images. The
model's hyperparameters, such as learning rate, batch
size, and dropout rate, were optimized with the help of
the validation set. Methods for early pausing were used
to avoid overfitting. Lastly, during testing, verified the
trained models' F1-score, recall, precision, and accuracy
on fresh data. Efforts paid off, and now know which
design has the best chance of aiding clinicians in making
decisions about CT-based stroke analyses.
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Fig.5. Flowchart for computed tomography image

ResNet, VGC16 and MLP

analysis using machine learning
A. Data Collection

"Normal" and "Stroke" are the two types of brain CT
images that make up the dataset used for this research.
There are a variety of sizes and resolutions among the
2501 photos in the dataset, which includes 1551 normal
and 950 stroke photographs. Brain scans showing
ischaemic regions or haemorrhages are placed in the
"Stroke" category, whereas those showing normal brain
structure are placed in the "Normal" category. Image
show most features have low variation except one with
high values, highlighting its relevance for computed
tomography image some of the visualizations are given
below:

Bleeding

Fig. 6. Sample image of stroke brain CT dataset
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Sample images from stroke brain CT dataset
showing three categories of brain conditions across nine
axial CT scan slices in Figure 6. The dataset comprises
three distinct classes bleeding displaying hyperdense
regions indicative of acute hemorrhage, ischemia
showing hypodense areas characteristic of infarction,
and normal presenting typical brain parenchymal
density patterns. different
anatomical levels of the brain, demonstrating the diverse
presentation of pathological findings across various

Each row represents

cranial sections. The images are presented in standard
grayscale CT format with bone window environment,
providing clear visualization of intracranial structures
and pathological changes essential for automated stroke
classification systems.

Fig. 7. Heatmap of Predicted Stroke Image

Heat map visualization of activation regions in brain
CT scan showing automated feature extraction and
attention mechanisms in Figure 7. The color-coded
overlay displays varying intensity levels of model
activation, with yellow regions indicating highest
activation areas, green showing moderate activation, and
blue representing lower activation zones against the
purple background. Stroke classification using this
thermal mapping method reveals the convolutional
neural network's focus areas, drawing attention to the
most diagnostically important anatomical features and
pathological areas that aid in the automated decision-
making process for differentiating between ischaemic,
bleeding, and normal brain conditions.

Fig. 8. Actual and predicted normal images

Classification results matrix displaying model
predictions versus ground truth labels for stroke brain
CT dataset validation in Figure 8. The 6x4 grid presents
24 representative test cases with actual clinical
diagnoses (ground truth) labeled above each image and
corresponding model predictions shown below. The
dataset encompasses three primary categories: stroke
(hemorrhagic and ischemic), normal brain anatomy, and
various pathological conditions. Each CT scan slice
demonstrates the algorithm's performance in automated
classification, revealing both successful predictions and
potential misclassification cases.

Pixel intensity distribution per class

ischemic
40000 hemorrhagic

30000

Count

20000

10000 -

0 200 400 600 800 1000 1200
Intensity (simulated HU)

Fig.9. Pixel intensity distribution per class

Pixel intensity distribution analysis across three
stroke classification categories in brain CT dataset in
Figure 9. The histogram displays the frequency
distribution of Hounsfield Unit (HU) values for normal
(orange), ischemic (blue), and hemorrhagic (green)
brain tissue classes. The hemorrhagic class exhibits the
highest pixel count concentration in the lower intensity
range (0-200 HU), indicating hypodense characteristics
typical of acute bleeding. Normal and ischemic tissue
show overlapping distributions with peaks around 100-
150 HU, representing standard brain parenchymal
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density. The exponential decay pattern across all classes
demonstrates the predominance of lower-intensity
pixels in CT brain imaging, with hemorrhagic regions.

B. Image Preprocessing

The preprocessing pipeline includes DICOM to
NIfTI conversion for format standardization, image
resizing to uniform dimensions, pixel intensity
transformation using Hounsfield Units with windowing,
color conversion to RGB format, noise removal via
filtering techniques, and label encoding for categorical
classifications. Data augmentation enhances dataset
diversity through rotations and transformations, while
image normalization standardizes pixel ranges. Data
splitting creates stratified training, validation, and
testing subsets ensuring balanced distributions. Key
steps in data preprocessing include:

e DICOM to NIfTI conversion: The control CT
images were converted from their native
DICOM format to a three-dimensional non-
proprietary NIfTI-1 file format. This conversion
made it easier to preprocess images with SPM8
afterward, since the latter uses the NIfTI-1 file
format for its image data.

e Image Resizing: Using bilinear interpolation, all
of the photos were scaled down to a consistent
256 x 256-pixel dimension.

o Pixel intensity transformation: Intensities of
the pixels in the CT scans. The Hounsfield unit
(HU) was used to measure the pixel intensities.
Through the utilization of the formula HU +
1000, the HU range of -1000 to -100 was
elevated to 0-900.

e Color conversion: The term "colour
conversion" refers to the process of changing an
image's colour space from one standard to
another. It facilitates the separation of colour,
saturation, and brightness, which
facilitates picture enhancement, segmentation,
In CT

grayscale conversion or applying specific color

in turn

and analysis. image visualization,

maps improves contrast and highlights structures
or lesions more clearly.

o Remove noise: Denoising, or noise removal, is a
technique for improving images by minimizing

distracting noise while preserving finer details.
The Gaussian filter is a popular tool for noise
reduction because it flattens images by averaging
the values of nearby pixels using a weighted
Gaussian function. This helps to reduce high-
frequency noise while keeping the general
structures of the images intact.

e Label encoding: ML models can make use of
numerical representations of category labels
(such as text-based class names) through a
process known as label encoding. A brain stroke
CT dataset, for instance, could have the labels
"normal," "ischaemic," and "hemorrhagic"
recorded as 0, 1, and 2, respectively, for each of
these distinct categories. This method is simple
and efficient for algorithms that can naturally
interpret ordinal values.

C. Data Augmentation

Data augmentation involves "transforming" visual
data for training purposes in order to increase the amount
of data. A number of transformations are possible with
images, including rotation, flipping, horizontal shifting,
scaling, distortion, brightness/contrast adjustments, and
noise addition [34]. Through data augmentation, the
number of photos rose by a factor of nine. The majority
of computed tomography (CT) scans involve the patient
lying face down, however certain facilities arrange their
patients so that their left side, where their hearts are
located is positioned precisely in the center of the FOV.
In such a situation, the body can end up rotating around
10 degrees due to the bed's curvature. In each image, the
heart was rotated by -10° and +10° to mimic this effect,
bringing its tilt into alignment with what was shown in
the real CT scan. Results from efforts to make contrast-
enhanced CT images more resistant to pixel value
changes caused by the fact that contrast agent density
varies from case to case are shown in Figure 10.

Augmented Samples (Ischemic Stroke)
ted

Fig. 10. Augmented Sample Image

All of these methods included rotating, adjusting the
height and breadth, shearing, zooming, and horizontally
flipping. To make the model more resistant to unknown
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input, it is necessary to introduce variability into the
training data.

e Rotation: The following is the rotation matrix
for an angle 0:

R(6) = [cosH

sin @ _Sin9]

cos 6
e Translation (shifting): so that &, and &,
represent a change in the x and y axes,

respectively.
1 0 94,
T(6,,6,)=0 1 4,
0 0 1

e Scaling (Zooming): To apply an S-fold scaling
to a picture, the scaling matrix is

s 0
s@ =3 |l
D. Image Normalization

The values of the pixels were scaled down to the
interval [0, 1] by dividing them by 255. It alters the
intensity value range of the pixels and transforms an
input picture into a visually more recognizable format.
When it comes to grade descent, it's quicker and steadier.
The model's convergence during training is accelerated
by this normalization phase, which scales the input
characteristics to a standard range.

E. Data Splitting

The dataset was divided into 3 sections, as shown in
Figure 11, with training comprising 80%, validation
10%, and testing 10%. This division utilized a
substantial portion of the data to train the model.

Fig. 11. Data Splitting Sample Training Validation and
Testing

Although objective assessments of its efficacy are
provided by distinct validation and test instances.

F. Proposed Models

This section provides a theoretical overview of the
ML algorithms that were utilized in this investigation.

1) Convolutional Neural Network (CNN)

CNNs have quickly become the gold standard of
image classification methods due to their exceptional
performance in applications such as object detection,
activity recognition, segmentation, and illness diagnosis.
CNNs' capacity to learn and extract features
autonomously, without any prior knowledge or human
involvement, gives them the advantage of being able to
differentiate complicated picture shapes [35]. Figure 12
displays the layers utilized by CNN
architectures, such as convolutional, pooling, and fully

several

connected layers, that enable them to learn and extract
visual data independently. The following formula is
utilized to ascertain the values of successive feature
maps; here, h represents the kernel and f represents the
picture input. In Equation (8), the row and column
indexes of the result matrix are represented by m and n,

respectively.
Glm,n] = f()[m,n] =X ; ¥ hlj, klf[m — j,n — k]
(®)
fully
convolution activation connected
function pooling : :
™ output
input = E g
—) esion
i T : . : : / malignant
T HUuE s healthy
1 > ng
- I im

i

feature extraction classification

Fig. 12. Architecture of CNN model

Pooling Layer: the pooling layer is activated. It is
just another strong and widely used method for solving
the same problem. An invariant representation for small
input translations can be created with the help of the
feature maps and pooling operations of the previous
layers in a short pooling layer down sample [35]. The
following are examples of frequently used functions that
specify the pooling technique among others:
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Average pooling: This is used when want to get the
average value for every area on the visual map.

Maximum pooling: This is used when getting the
maximum value for each patch on the feature map is the
objective; it is also called Max-pooling.

Activation Functions: DL models can learn
nonlinear prediction bounds with the use of activation
functions, which introduce nonlinearity into the models.
An activation function is a tool for converting input
signals into output signals in ANNs. Following this layer
in the stack, this signal is utilized as an input. Presented
here are some of the most popular activations employed
by CNN:

Sigmoid activation function: An activation function
that is not linear is the most typical. The sigmoid
function is a popular tool for binary classification since
it takes input in the 0 to 1 range and changes it. To
summaries, consider the following Equation (9).

f@ == ©)

Tanh functions are similar to sigmoid functions;
however, they are symmetric with respect to the origin.
Equation (10) gives the outcome of this activation
function since it is a zero-centered function with a scale
from -1to 1:

eX—e—X
fo0=(5=) (10)

ReLU function: The rectified linear unit, or ReLU
for short, is a prominent non-linear function in
ConvNets. Compared to other functions, ReL.U is more

efficient since it activates a limited subset of neurones at
a time rather than the whole network. Equation (11):

f(x) = max(0, x) (11)

SoftMax Activation Function: The sigmoid
function is employed for binary (0, 1) classification,
while SoftMax is employed for handling multiclass
classification. Each data point for each class has a
probability that the number of network neurones in the
output layer of the NN the same as the number of target
classes, according to the SoftMax function. So, here's
the Equation (12).

zi

]
7 =g e

2) VGC 16

The 16-layer Visual Geometry Group 16 (VGG16) is
famous for its work in picture classification. Medical
imaging applications heavily utilize it due to its reliable
performance and ability to extract hierarchical

properties.

The architecture analyses input images using many
convolutional layers equipped with modest 3 x 3 filters.
After every convolutional process, the non-linear ReLU
activation function is applied. This enhances the model's
capacity to understand and convey intricate correlations
in the data.

Layers that are fully connected amass the
information, and then analyses it for classification
purposes after the convolutional layers have extracted
features. One area where VGG16 has proven useful is
medical imaging, where it can distinguish between
normal, benign, and cancerous images. Last but not
least, in order to make accurate and interpretable
predictions, the SoftMax layer generates a probability

distribution by giving each category a likelihood.

Medical image analysis applications, such as the
detection and categorization of lung illnesses, greatly
benefit from VGG16's systematic and structured design.
Equation (13) relies on it for crucial healthcare tasks
because of its capacity to integrate hierarchical feature
extraction with robust classification, which guarantees
accurate and dependable outcomes.

softmax(Z;) = ZCB—Z;Z} (13)
j=1

A categorical cross-entropy loss function is used to
fine-tune the model's predictions by tracking the
difference between the actual and predicted labels.
Equation (14) enhances the model's accuracy and
reliability for medical diagnosis by teaching it to
distinguish between benign, normal, and malignant
states with the addition of this loss function.

(14)

The prediction probability for class i, the real label
for class I, and the L-loss value are represented by ¥,.

L(y,y) = = Xi-1yilog(3)

3) ResNet

ResNet (Residual Network) for CT
classification leverages skip connections to enable
training of very DNN without vanishing gradient
problems. The architecture processes CT images

image
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through multiple residual blocks, where each block
learns residual mappings instead of direct mappings,
allowing the network to preserve important diagnostic
features while learning complex patterns[36]. The CT
images are normally prepared for multi-class disease
classification by  applying Hounsfield  Unit
normalization and window/level adjustments as
preprocessing steps. A fully connected classifier with
SoftMax activation is then used after the images have
been passed via convolutional layers, batch
normalization, ReLU activations, global average
pooling, and so on. Equation (15) and an Equation (16)
can be used to represent a simplified residual block.

y=x+F(Q;W) (15)

F(x; W) = Woo(BN(W;x)) (16)

The block input is represented by x, the
convolutional weights are W1 and W2, batch

normalization is denoted by BN, and o is a ReLU
activation. With predictions obtained from the SoftMax
function in Equation (17), the network produces logits z
for K classes after going through stacked residual stages
and global average pooling:

e ()
= Rl 17
Pe = S exp () an

Where p, represents the probability
4) MLP classifier

This feed-forward ANN uses a MLP architecture,
which consists of an input layer, an output layer, and a
hidden layer (or layers) [37]. As shown in Figure 13,
each layer of an MLP architecture has a directionally
connected neurone or neurones that communicate with
those in the layer below and above it. The perceptron
takes in a large number of real-valued inputs, creates a
linear combination using those inputs as weights, and
then runs that value through a nonlinear activation
function to produce a single output.
represent MLP is using Equation (18):

Ve = (P(Z?ﬂ Wt:xt»+bt) (18)

The hidden unit layer receives the activation function

One way to

@ as weight, x as input, and b; as bias. Classification
tasks can be accomplished with the help of scikit-learn
models, wherein the network learns to associate input

features with output labels.

Input layer Hidden layers Output layer
— P

Fig. 13. Architecture of MLP model

Training a network entails

feeding it
information, computing an output, and then, to reduce
the discrepancy between the anticipated and real labels,
modifying the internal weights via backpropagation. As
long as the model reaches an optimal solution within 300
iterations (max_iter=300), the results consistent between
runs thanks to a fixed random_state=42. The model is

input

able to detect complex, non-linear patterns in the data
because of the configuration.

G. Performance Matrix

Consider using the diagnostic confusion matrix
(Figure 14) in conjunction with other important
diagnostic metrics such as sensitivity (REC), specificity
(true negative rate), ACC (PRE), and F1 when
evaluating classifier models.

Actual Value
Positive | Negative
Predicted |75 iive | TP FP
value
Negative FN TN

Fig. 14. Confusion matrix

o False positive (FP) indicates the total number of

incorrect predictions where the model

mistakenly classifies normal cases as positive.

e A False Negative (FN) is the culmination of all
the incorrect predictions that the model makes
when it fails to identify genuine stroke cases and
incorrectly classifies them as negative.

o The number of times a model correctly identifies
real stroke cases as positive is called the number
of true positives (TP).

e The amount of predictions that accurately
classify normal brain scans as negative is one
metric for accuracy in model-based brain scan
categorization.
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1) Accuracy

The classification model's ACC is found by dividing
the number of correct predictions by the total number of
predictions. Although accuracy gives a good idea of how
well a model is doing overall, it might not be able to tell
how it works on datasets that aren't balanced. The
formula for this statistic is given by Equation (19),
which represents the division of the total dataset
instances by the number of cases that were correctly
classified.

TP+TN

—— x 100
TP+TN+FP+FN

Accuracy =

(19)

2) Precision

Medical diagnosis depends on high accuracy for two
reasons: first, to eliminate false alarms (as described in
Equation (20)), and second, to assess the fraction of
actual positive predictions out of all positive predictions
made by the model:

TP
TP+FR

Precision = x 100 (20)

3) Recall

A high recall is essential in medical diagnosis since
it reduces the number of missed diagnoses; for example,
when the data actually conforms to the class stated in
Equation (21) for stroke cases, a high recall ensures that
actual cases were correctly diagnosed:

TP
TP+FN

x 100

Recall =

21

4) FI Score

The harmonic mean of PRE and REC is the F1,
which is a metric that is particularly advantageous when
both are equally significant for model evaluation.
Explained in Equation (22) below, it shines when
working with datasets that are severely skewed:

2Xrecallxprecision

F1 — score = (22)

recall+precision

5) ROC Curve

The AUC and the ROC curve are two methods for
assessing the proposed models' efficacy. The ROC curve
displays the category model's accuracy across all
thresholds. The line that follows is made up of the TPR
and the FPR.

VIIL.RESULT AND DISCUSSION

The computed tomography brain stroke CT image
dataset is the subject of this section, which presents the
experimental results for the identification of brain
strokes using DL and machine learning approaches.
REC, ACC, PRE, ROC AUC, and F1, all important
measures for binary classification tasks were used to
evaluate the model's performance. Python was used for
the implementation on Google Colab's Jupiter Notebook
environment. TensorFlow, Keras, scikit-learn, pandas,
NumPy, seaborn, and matplotlib are essential Python
libraries for processing and assessing computed
tomography images. The studies were conducted using
a computing system capable of building deep learning
models for high-resolution computed tomography image
analysis, including CNN, VGG-16, MLP, and ResNet
architectures. In this configuration, and have an Intel i7
CPU, a 2 TB solid-state drive, an NVIDIA GeForce
RTX graphics card, and a 3.4 GHz clock speed. The
analysis includes performance comparison of individual
models like CNN, VGG-16, ResNet, and MLP
classifier, as well as their comprehensive evaluation
through confusion matrices and ROC curve analysis on
computed tomography imaging data. The following
outputs provide detailed insights into the stroke
detection results from computed tomography scans,
supporting the effectiveness of the proposed approach
for automated medical diagnosis in clinical
environments utilizing computed tomography image
quality standards.

- 350

- 300

- 200

True Label

- 150
- 100
- 50

) 1
Predicted Label

Fig. 15. Confusion matrix of CNN classifier

The CNN classifier's confusion matrix on the dataset
of CT images of brain strokes is shown in Figure 15. The
y-axis of this classification performance matrix displays
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the actual labels, while the x-axis displays the
anticipated labels. Class O hit a very high rate of
accuracy with 448 right predictions and 3 false positives,
whilst Class 1 was slightly less accurate with 210 right
predictions and 10 FN. Darker blue indicates greater
values on the colour scale, which represents the forecast
frequency. The overall performance demonstrates strong
classification accuracy.

Confusion Matrix ResNet model

120

100

Normal

- 60

True label

Stroke

Stroke
Predicted label

|
Normal

Fig. 16. Confusion matrix of ResNet model

The confusion matrix of the ResNet model for the
cerebral stroke CT image dataset is depicted in Figure
16. On one side of the matrix, and can see the
classification performance, and on the other, and see the
anticipated labels. There were 121 accurate predictions
and 6 false positives in the Normal class and 94 accurate
predictions and just 3 false negatives in the Stroke class.
On a scale from 0 to 120, the colour gradient goes from
white at the bottom to a deep reddish brown at the top.
The ResNet model demonstrates excellent classification
performance  with high TPR
misclassification errors between normal and stroke cases

and minimal

Confusion Matrix

- 140

120

True label

- 60

Predicted label

Fig. 17. Confusion matrix of VGC 16 Model

Confusion matrix for the VGG-16 model. In Figure
17, the classification performance matrix, the x-axis
displays the predicted labels and the y-axis displays the
actual labels. In contrast to the Stroke class's 100
accurate predictions and 6 false negatives, the Normal
class managed 141 right predictions. At lower levels, the
colour scale is light blue; at higher values (up to 140), it
becomes dark blue. The VGG-16 model demonstrates
robust classification accuracy with high precision for
both normal and stroke cases, showing minimal
confusion between the two classes.

Confusion Matrix MLP classifier

Normal

True label

Stroke
I
o

78

1 1
Normal Stroke

Predicted label

Fig. 18. Confusion matrix of MLP classifier

Using the y-axis for actual labels and the x-axis for
predicted labels, the matrix displays the classification
performance in Figure 18. The Normal class achieved
157 correct predictions with 7 false positives, while the
Stroke class had 78 correct predictions with 9 false
negatives. The color scheme uses a green gradient, with
darker green representing higher values and lighter
green indicating lower values. The MLP classifier
demonstrates good classification performance, though
with slightly higher misclassification rates compared to
deep learning models, particularly showing 9 false
negatives for stroke detection.

Model sccuracy

1.00
. /—//"
0.90
.. /
fn
=
=
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Fig. 19. Accuracy curve of VGC 16 model
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Virtual G-Network-16 Accuracy Curve Figure 19 is
a plot showing the training and validation accuracy over
a span of 10 runs. Throughout training, the blue line—
representing accuracy sprints from around 0.90 at epoch
0 to nearly 1.00 by epoch 2, and it stays high. The orange
line shows validation accuracy, starting at around 0.90,
peaking at approximately 0.97 around epoch 2, with
slight fluctuations but stabilizing near 0.96 in later
epochs. The congruence between the two curves'
training and validation accuracies proves that the models
performed admirably with little overfitting.

Model Loss

—— Train Loss
Walidation Loss
10 l,I

Loss

Epoch

Fig. 20. Loss graph of VGC 16 classifier

The loss curve for the VGG-16 model, which
illustrates the training and validation loss over a period
of 10 epochs, is detailed in Figure 20. Commencing at
around 1.1 and plunging precipitously to almost 0.0 by
epoch 2, the blue line signifies the training loss. From

December
Fig. 21. Accuracy curve of CNN classifier

The CNN classifier's training and validation
accuracy contours for the cerebral stroke CT image
dataset are illustrated in Figure 21. Accuracy progress
over 50 epochs is depicted in the plot. The blue line with
the circles on it shows the training accuracy, which is
around 0.86 at the beginning and rises to nearly 0.99 by
the end of the 15th epoch, and then stays extremely high.
The orange line with triangle markers shows validation
accuracy, beginning around 0.85 and exhibiting more
fluctuation while generally trending upward to stabilize

around 0.95-0.96 The training accuracy demonstrates

consistent improvement and convergence, while

validation accuracy shows characteristic oscillations but
maintains good generalization performance, indicating
effective model learning without significant overfitting

Training & Walidation Loss

T —&— Train Loss
Walidation Loss

o 10 20 30
Epochs

there, it remains pretty consistent at low levels for the
remaining epochs. The orange line shows validation
loss, beginning at around 0.25, quickly dropping to
approximately 0.15 by epoch 1, with slight fluctuations
between 0.15-0.20 but generally maintaining low and
stable values. Model training was successful with strong
generalization performance and minimal overfitting
when both loss curves converged to low values.

Training and Validation Accuracy
0.98 { —® Training Accuracy

Validation Accuracy
0.96

0.94 e

I
[

Accuracy

0.90

Epochs
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Fig. 22. Loss graph of CNN classifier

Curves representing the loss during CNN classifier
training and validation. The plot displays the loss
progression over 50 epochs in Figure 22. The blue line
with the circles on it shows the training loss, which is at
0.38 at the beginning and quickly drops to around 0.0 by
the 20th epoch, staying at very low values for the rest of
the generations. The orange line with triangle markers
shows validation loss, beginning around 0.20 and
exhibiting fluctuations between 0.10-0.20 with
occasional spikes, but generally stabilizing around 0.15.
The steep decline in training loss indicates effective

learning, while the relatively stable validation loss with
some oscillations suggests good generalization
capability with minimal overfitting.

TABLE . PROPOSED MODELS PERFORMANCE ON

COMPUTED TOMOGRAPHY ON BRAIN STROKE CT
IMAGE DATASET
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Measure | CNN | VGC | ResNet MLP | ROC Curve

16 Classifier '

Accuracy | 99.50 | 96.50 | 97.75 94 >

Precision | 99.60 | 96.54 | 96.99 95 £ oo

Recall | 99.40 | 97.10 | 98.56 96

Fl-score | 99.50 | 97.34 | 97.77 95

ROC 99.58. | 98.10 | 97.75 98.20 | — Ve (e~ 02m0

AUC 0.00:0’/ 0.2 0.4 0.6 2 m:.JaC: - 1.0

comparision of different model performance for brain
stroke CT image dataset

102

100 99.5 99.6 99.4 99.5 99.58
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98 1965 96.54 (7 W o6 :
96 95 95
94
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Accuracy Precision Recall F1-score ROC AUC
CNN VGC 16 ResNet MLP classifier

Fig. 23. Comparison of model performance metrics

Fig.24. Roc curve of for different classifier on brain
stroke CT image dataset

The ROC curves for various classifiers are compared
using the cerebral stroke CT image dataset, as illustrated
in Figure 24. Here Shows the four models' Receiver
Operating Characteristic curves: CNN (AUC= 0.9958),
VGC-16 (AUC= 0.9810), ResNet (AUC= 0.9775), and
MLP (AUC= 0.9820). All curves demonstrate excellent
classification performance, with steep rises toward the
upper-left corner and minimal distance from the ideal
point (0,1). Random classification (AUC = 0.5) is shown

Figure 23 and Table III show the results of
comparing the suggested models' performance on a
dataset of CT images of brain strokes. The CNN
classifier got the highest performance with a total of
99.50% accuracy, 99.60% precision, 99.40 percent
recall, 99.50% F1-score, and 99.58% ROC area under
the curve. Among its competitive metrics, the ResNet
model achieved 97.75% ACC, 96.99% PRE, 98.56%
REC, 97.77% F1, and 97.75% ROC AUC. Strong
performance was demonstrated by the VGG-16 model

by the diagonal dashed line, which shows that all models
have greater discriminative ability for differentiating
between non-stroke and stroke patients in CT brain

images.

The proposed approach leverages an ensemble of
deep learning models CNN, VGG16, ResNet, and MLP
to perform comprehensive analysis of brain CT images
for stroke detection. Each model contributes distinct

strengths:

CNN effectively captures local spatial

with 96.50% ACC, 96.54% PRE, 97.10% REC, 97.34%
F1, and 98.10% ROC AUC. The MLP classifier was
still successful, although it had the worst performance
metrics according to 98.20% ROC AUC, 95% F1-score,
96% recall, 95% precision, and 94% accuracy. All
models demonstrated excellent discriminative capability
for brain stroke detection, with the CNN model
establishing superior classification performance across

all evaluation metrics.

patterns, VGG16 extracts deep hierarchical features
through its multiple convolutional layers, ResNet
mitigates vanishing gradient issues enabling deeper
architecture learning, and MLP integrates complex
nonlinear relationships from extracted features. By
combining these models, the approach ensures robust
detection of stroke lesions, even in the presence of image
noise, low contrast, or subtle tissue variations, which are
common challenges in clinical CT imaging. Compared
to single-model approaches, this ensemble method
demonstrates superior performance in sensitivity,
specificity, and overall accuracy, providing reliable
differentiation between normal and pathological
regions. Further evidence of its efficacy is provided by

its high ROC AUC scores, which indicate outstanding
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discriminatory capacity, and its balanced performance
across precision and recall metrics, which are essential
for reducing false negatives and guaranteeing prompt
intervention. In conclusion, the ensemble approach
improves diagnostic certainty while facilitating
automated, scalable, and real-time CT image processing
in clinical environment. This opens the door to better
patient and more efficient healthcare

procedures.

outcomes

A. Discussion

The results of the comparison for CT scan detection
are shown in Table IV. The table below provides a
concise summary of how several deep learning models
fared on a CT image categorization test involving brain
strokes. CNN had the best results overall, with a 99.50%
F1-score, 99.40% recall, 99.60% precision, and 99.50%
accuracy. The findings were solid for VGC16 (96.50%
accuracy, 96.54% precision, 97.10% recall, 97.34% F1-
score), and ResNet (97.75% accuracy, 96.99%
precision, 98.56% recall, 97.77% F1-score) was also
excellent. MLP offered balanced outcomes at 96% for
all measures, and Xception delivered 95.62% accuracy
with slightly lower precision and recall (90% and 94%,
respectively). DNN showed modest performance around
72% across metrics, and Mobile Net V2 attained
intermediate  values (87.36% accuracy, 87.13%
precision, 87.68% recall, 87.40% F1-score). These
results highlight that convolutional architectures,
particularly CNN and ResNet, are most effective for
extracting spatial and textural patterns from CT images,
enabling accurate differentiation of normal, ischemic,
and hemorrhagic stroke cases in medical environment.

TABLE IV. COMPARISON BETWEEN ALL PROPOSED
MODEL AND EXISTING MODELS FOR COMPUTED
TOMOGRAPHY IMAGE IN MEDICAL ENVIRONMENT

Measure Accuracy | Precision | Recall F1-
Score

CNN 99.50 99.60 99.40 99.50
VGC 16 96.50 96.54 97.10 97.34
ResNet 97.75 96.99 98.56 97.77
MLP 96 95 96 95
DNNJ38] 72% 71% 72.6% 72%
Mobile Net 87.36 87.13 87.68 87.40
V2[39]

The proposed ensemble of four ML models
demonstrates strong performance in CT image analysis
for brain stroke detection, with CNN achieving the
highest accuracy of 99.50%, followed by ResNet at

97.75%, VGG16 at 96.50%, and MLP at 96.00%. By
leveraging diverse algorithmic approaches including
deep convolutional networks, transfer learning, and
multilayer perceptron the models effectively capture
complex spatial, textural, and intensity-based patterns
within CT scans, enabling precise differentiation
between ischemic and hemorrhagic strokes. The
outstanding performance of CNN highlights its
capability to extract fine-grained features from high-
dimensional medical images, while ResNet and VGG16
effectively leverage hierarchical feature learning to
enhance robustness and generalization. Transfer
learning further contributes to improved model
performance by adapting pre-trained networks to the
specific domain of stroke CT images, reducing the need
for extensive annotated datasets. Challenges remain,
such as variability in image acquisition protocols, noise
in clinical datasets, and the computational complexity of
deploying these models in real-time clinical
environment. Integrating this multi-model framework
into neuroimaging workflows can provide clinicians
with reliable decision support, accelerate diagnosis,
inform treatment planning, and potentially improve
patient outcomes. Future work may focus on optimizing
computational efficiency, incorporating multimodal
imaging data, and validating the models across diverse
clinical populations to ensure broad applicability and
scalability.

B. Application of CT Image

CT image analysis is useful for many clinical
purposes, including the diagnosis of tumors and lesions,
evaluation of organ structures, bone integrity,
circulatory systems, and therapeutic response, and the
assessment of organ structures and structures. Its
sophisticated algorithms improve several areas of
medicine, including diagnosis, therapy planning, and
patient monitoring.

¢ Tumor and Lesion Detection:
nodules, and other lesions can be detected and
characterized early on with the help of CT image

Tumors,

analysis. By applying image enhancement,
segmentation, and classification techniques, it
enables accurate localization of abnormal tissues
and assessment of their size, shape, and density.
Advanced ML and DL models further improve
sensitivity and specificity, supporting timely
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diagnosis, staging, and personalized treatment
planning while reducing observer variability.

e Organ Segmentation and Volumetric
Analysis: Organ segmentation in CT imaging
involves accurately delineating anatomical
structures such as the brain, lungs, liver, kidneys,
and heart to facilitate quantitative and qualitative
analysis. It supports volumetric measurements,
shape assessment, and the extraction of clinically
relevant parameters for disease diagnosis,
treatment planning, and surgical navigation.

e Bone and Fracture Assessment: CT image
analysis provides high-resolution evaluation of
bone structures, enabling accurate detection of

and degenerative

changes. It supports the assessment of bone
density and geometry, which is essential for

fractures, micro-cracks,

diagnosing conditions such as osteoporosis and
for planning orthopedic or trauma-related
surgeries. Advanced algorithms can differentiate
subtle fractures from mnormal anatomical
variations, while 3D reconstructions and
quantitative measurements enhance surgical
navigation and treatment planning.

e Radiomics and Quantitative Feature
Converts CT images into

measurable texture, shape, and intensity features

Extraction:

for prognosis and personalized medicine.

¢ Brain Imaging for Neurological Disorders:
Supports stroke,
edema, and neurodegenerative changes in cranial

detection of hemorrhage,

CT scans.

e Cardiac and Coronary Artery Analysis: CT
image analysis is widely used to assess cardiac
anatomy and the coronary arteries with high
spatial resolution. It enables precise evaluation
of coronary artery stenosis, plaque burden, and
calcium scoring, which are critical for assessing
cardiovascular risk and planning interventions.
Advanced techniques, such as CT angiography
and automated vessel segmentation, facilitate
detailed visualization of the heart chambers,
valves, and vascular structures, supporting early
diagnosis, treatment planning, and monitoring of
cardiac diseases.

C. Limitation of CT Image Analysis

Dataset Constraints - Limited dataset size and
diversity significantly impact model robustness, as
training on small or homogeneous populations may not
adequately represent global demographic variations,
genetic factors, and regional disease patterns. The
scarcity of annotated medical data due to privacy
regulations and the time-intensive nature of expert
labeling further restricts model development and
validation across different clinical environment.

Computational Requirements - The considerable
amount of processing power and memory that deep
learning models demand might limit their use in real-
time applications and clinical environment with limited
resources.

Class Imbalance Issues - Unequal distribution of
stroke types (hemorrhagic vs. ischemic vs. normal) can
lead to biased predictions and reduced performance for
underrepresented classes.

Scanner Variability - Significant variations exist
across CT scanner manufacturers, imaging protocols,
slice thickness, reconstruction algorithms, and contrast
enhancement techniques. These technical differences
create domain shift problems where models trained on
one scanner type may perform poorly on images from
different equipment, limiting
deployment and standardization efforts.

cross-institutional

Limited Temporal Analysis - Current static image
analysis approaches cannot capture stroke evolution,
treatment response monitoring, or progression
assessment over time. Additionally, models struggle
with detecting hyperacute ischemic changes that may
not be visible in early CT scans, potentially missing
critical treatment windows for interventions like

thrombolysis or thrombectomy procedures.
D. Future Work of Computed Tomography Image

Large-scale Multi-center Collaboration and Data
Harmonization - Establish international consortiums
for sharing de-identified stroke imaging data,
developing standardized annotation protocols, and
creating diverse datasets that represent global
populations. Take advantage of data harmonization
methods to deal with scanner variability and build
reliable models that can be applied to various imaging
devices and clinical procedures.
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Advanced Neural Architectures and Hybrid
Models - Integrate cutting-edge architectures including
vision transformers, capsule networks, and graph neural
networks to capture complex spatial relationships in
brain anatomy. Develop hybrid models combining
convolutional and transformer-based approaches,
incorporate attention mechanisms for interpretable
diagnosis, and explore self-supervised learning
techniques to leverage unlabeled medical images
effectively.

Federated Learning and Privacy-Preserving
Technologies - Establish federated learning frameworks
to permit cross-hospital collaborative model training in
a way that protects patients' privacy. To ensure data
integrity while enabling global model improvement and
knowledge exchange, develop differential privacy
approaches, secure multi-party computing protocols,
and blockchain-based systems.

Real-time Processing and Edge Computing
Solutions - Optimize model architectures for mobile
deployment using techniques like knowledge
distillation, neural architecture search, and quantization
methods. Develop edge computing solutions with
specialized medical imaging processors, implement
cloud-edge hybrid systems for scalable deployment, and
create point-of-care diagnostic tools for emergency and

ambulatory environment.

Multimodal Integration and Comprehensive
Diagnostic Systems - Combine CT imaging with
perfusion studies, MRI sequences, clinical laboratory
values, patient demographics, and electronic health
records to create holistic diagnostic systems. Develop
longitudinal analysis capabilities for tracking treatment
response, implement prognostic models for outcome
prediction, and integrate natural language processing for
automated report generation and clinical decision
support systems

IX. CONCLUSION

The timely and precise identification of cerebral
stroke through the use of CT images is essential in
clinical practice, as early diagnosis has an impact on the
overall efficiency of healthcare, patient outcomes, and
treatment options. For the purpose of evaluating the
quality of CT images and classifying strokes, this study
compares and contrasts four deep learning models—

ResNet, CNN, VGG16, and MLP with an emphasis on

the importance of noise-aware preprocessing methods
like data augmentation, strength normalization, and
noise reduction. These preparatory procedures were
critical for enhancing the dependability and resilience of
the model, which enabled the extraction of pertinent
hierarchical and spatial characteristics even from CT
images impacted by noise. This study highlights the
superior performance of convolutional architectures in
capturing complex patterns indicative of stroke. Among
the analyzed models, CNN achieved the greatest
accuracy of 99.50%, followed by ResNet, VGG16, and
MLP. Findings highlight need for preprocessing
pipelines that integrate deep learning algorithms to
achieve  high  diagnostic  accuracy, decrease
misclassification, and facilitate real-time clinical
decision-making. For future work, the framework can be
extended by incorporating 3D CT volumes and
multimodal imaging data, which would provide richer
spatial context and improve detection of subtle stroke
patterns. Integration of XAl techniques can enhance
interpretability for clinicians, aiding decision-making
and regulatory compliance. Furthermore, real-time
deployment using adaptive learning algorithms can
improve stroke
characteristics. Validation on larger, heterogeneous
datasets will ensure generalizability and robustness,
enabling practical clinical implementation. Overall, the

responsiveness  to  evolving

proposed approach demonstrates significant potential to
support automated, accurate, and rapid stroke diagnosis,
ultimately improving patient care outcomes and

optimizing clinical workflow in time-sensitive

healthcare environments.
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