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Abstract—Commutated tomography (CT) imaging has become more common for medical diagnosis in recent 

years. Since a correct diagnosis has a substantial impact on patient outcomes and treatment plans, the rapid 

identification of strokes using CT scans is essential for prompt clinical action.  In order to train and evaluate deep 

learning models, this work made use of a publically available dataset of CT pictures of brain strokes. The collection 

includes labelled images reflecting various stroke states.  Artefacts like as noise and intensity changes are common 

in CT scans and might make it difficult to classify strokes accurately. In order to overcome these obstacles, four 

deep learning models, CNN, VGG16, ResNet, and Multilayer Perceptron were used for noise-aware preprocessing 

in CT images and for stroke identification. To make the model more generalizable and resistant to imaging 

discrepancies, the preprocessing pipeline included noise reduction methods, intensity normalization, and data 

augmentation. The F1-score (F1), recall (REC), accuracy (ACC), and precision (PRE) were utilized for a 

comprehensive evaluation of the classification abilities. With a remarkable 99.50% accuracy, convolutional neural 

networks (CNNs) were able to extract spatial and hierarchical information from noisy images. ResNet came in 

second with 97.75%, VGG16 third with 96.50%, and MLP fourth with 96%. These results demonstrate the 

importance of preprocessing and noise handling in enhancing classification reliability. The proposed framework 

shows promise for real-time clinical deployment, supporting automated and rapid stroke detection to reduce 

diagnostic errors and improve patient care outcomes. 

Keywords—Computed Tomography, Brain Stroke CT Image Dataset, Image Analysis, Artificial Intelligence, 

Machine Learning, CNN, ResNet, MLP, VGG 16, Noise effect in image for CT. 

I. INTRODUCTION  

Computerized tomography (CT) has emerged as a 

crucial diagnostic tool due to developments in cutting-

edge medical imaging technology, which has 

revolutionized the healthcare industry [1][2][3].  By 

offering quick, painless, and accurate imaging of inside 

organs, CT scans enhance the diagnosis, monitoring, 

and treatment of a wide range of medical conditions, 

including cancer, cardiovascular disease, and 

neurological problems [4][5]. Its capability to produce 

volumetric scans in a short time makes CT particularly 

valuable in emergency environment, oncology, and 

pre-surgical planning. However, the diagnostic 

reliability of CT is directly dependent on the quality of 

the acquired images, making systematic assessment 

and enhancement of CT image quality a central focus 

in medical imaging research. 

Several factors, including noise, homogeneity, 

contrast resolution, and spatial resolution, are 

considered when assessing the quality of CT images 

[6][7]. Accurate interpretation of anatomical and 

pathological features is made possible by high-quality 

CT pictures. On the other hand, diagnostic errors, 

greater radiation exposure from repeat scans, and 

diminished confidence in clinical judgements can result 

from poor-quality images [8][9]. Various factors 

influence image quality, including scanner hardware 

design, tube current and voltage environment, detector 

efficiency, reconstruction algorithms, and post-

processing methods. Therefore, a comprehensive 

understanding of these factors, combined with rigorous 

image quality assessment, is essential to optimize 

imaging protocols and maintain consistency across 

different CT systems in Figure 1 and clinical scenarios. 
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Fig. 1. CT Scan Images 

CT image quality is noise, which arises from both 

quantum fluctuations of X-ray photons and electronic 

imperfections in detectors and signal acquisition 

systems[10][11]. The use of low-dose CT protocols, 

which aim to decrease radiation exposure to patients, is 

on the rise, yet these protocols amplify quantum noise, 

which is present throughout the X-ray generating 

process [12]. Electronic noise, on the other hand, 

originates from the detection electronics and signal 

amplification, contributing to random variations in 

pixel intensities [13][14]. Both types of noise degrade 

image contrast, obscure fine structural details, and 

adversely affect both manual interpretation and 

automated analysis. 

The effects of noise in CT images extend beyond 

mere visual degradation[15][16][17]. Critical for 

precise diagnosis, treatment planning, and disease 

monitoring, quantitative data might be compromised 

by noise. These measurements include tissue density 

evaluation, lesion segmentation, and radiomic feature 

extraction [18][19][20]. To mitigate these effects, 

conventional noise reduction techniques including 

spatial and frequency-domain filtering, iterative 

reconstruction, and phantom-based calibration—have 

been extensively employed. These methods aim to 

enhance image fidelity while maintaining diagnostic 

accuracy and minimizing radiation exposure 

CT image quality evaluation and improvement have 

recently been greatly assisted by ML and DL 

techniques [21][22][23]. CNN and other deep 

architectures can automatically learn complex noise 

patterns, perform denoising, and reconstruct high-

quality images from low-dose scans. These approaches 

complement traditional calibration and noise reduction 

techniques, offering automated, adaptive, and data-

driven solutions for image enhancement. Incorporating 

ML/DL models into traditional approaches allows 

researchers to enhance CT scans in quantitative and 

qualitative ways. This leads to more accurate 

diagnoses, better patient outcomes, and optimized 

imaging workflows in clinical practice. 

A. Motivation with Contribution 

The exponential growth of medical imaging, 

particularly Computed Tomography (CT), has 

increased the demand for accurate and efficient 

diagnostic interpretation. However, CT image quality 

is often compromised by various sources of noise, such 

as photon fluctuations, detector electronics, and 

reconstruction algorithms, which obscure anatomical 

details and degrade diagnostic reliability. Traditional 

quality assessment methods and simple filtering 

approaches are often inadequate for handling complex 

noise patterns while preserving spatial resolution. 

Research is being driven by the urgent need to develop 

a comprehensive framework that combines noise 

characterization, picture enhancement, and advanced 

learning models. This framework greatly increases the 

diagnostic utility and quality of CT images in 

healthcare facilities. 

The main contributions of this work on CT image 

quality analysis and noise effect are as follows: 

• Development of a complete workflow for CT 

image quality analysis, beginning with raw 

data acquisition and format conversion, 

followed by preprocessing steps such as 

resizing, intensity adjustment, noise 

suppression, and label encoding to ensure 

standardized and high-quality inputs. 

• Data normalization and augmentation 

approaches, spatial filter-based quantitative 

noise analysis, picture statistics, and signal-to-

noise ratio enhancement and dataset 

strengthening strategies. 

• Research on the effect of noise on the precision 

of feature extraction and classification in CT 

images associated with stroke was organized 

and carried out using several architectural 

frameworks, including CNN, ResNet, VGG16, 

and MLP. 

• Optimal learning models effectively maintain 

diagnostic precision in the presence of varying 

degrees of noise, as demonstrated 

experimentally by metrics like as PRE, F1, 

REC and ACC. 

• Provision of practical understandings and 

recommendations for incorporating noise-

aware CT image quality analysis into 

computer-aided diagnostic systems, ensuring 
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reliable performance in real clinical 

environments. 

B. Significance and Novelity 

This study is significant as it presents a robust, 

scalable, and clinically relevant framework for CT 

image quality analysis, with a particular focus on 

stroke-related imaging a critical challenge in diagnostic 

radiology. Its novelty lies in the development of an end-

to-end pipeline that integrates noise characterization, 

advanced preprocessing, data augmentation, and label 

standardization, combined with a comprehensive 

evaluation of multiple learning models, including 

CNN, ResNet, VGG16, and MLP. This paper presents 

a comparative analysis under different noise situations, 

demonstrating the better performance of noise-aware 

architectures, in contrast to numerous previous research 

that either concentrate on single-model classification or 

fail to account for the impact of noise. The inclusion of 

quantitative noise assessment and enhancement 

techniques further strengthens feature extraction and 

classification accuracy, while practical insights for 

clinical deployment ensure the framework is directly 

applicable to real-world diagnostic environment. The 

integration of diverse deep learning approaches with 

systematic noise handling provides unique insights into 

model robustness, addressing the critical need for 

reliable, adaptable, and high-quality CT image analysis 

in modern healthcare environments. 

C. Structure of Paper  

The following structure of the paper: Section II 

provide the Background of image processing in 

medical sector, Section III Computed Tomography 

image analysis technique, Section IV Noise 

characterization and its impact on CT, Section V 

provide the literature of review in CT image analysis 

Section VI  Research Gaps Section VII discussed the 

proposed methodology with each phase of this system 

design, Section VIII evaluate the results of proposed 

models, comparison, discussion and Application, 

Limitation and future work, final Section IX presents 

the findings and recommendations for further research. 

II. BACKGROUND OF IMAGE PROCESSING ANALYSIS IN 

MEDICAL SECTOR 

The decision-making and problem-solving 

capabilities of modern programs rely heavily on image 

processing algorithms. Disease diagnosis, clinical 

treatment, and other healthcare services often make use 

of image processing methods in the medical field. The 

advancement in medical image processing is increased 

noticeably. Hence, various types of advance image 

generation sources are increased. They produce huge 

sizes of medical images continuously. The following 

image generation sources play a vital role in medical 

applications: 

• Magnetic Resonance Image (MRI) 

• Positron Emission Tomography (PET) 

• Computed Tomography (CT) 

• Positron Emission Tomography and Computed 

Tomography (PET-CT) 

• Single Photon Emission Computed 

Tomography (SPECT) 

• Ultrasound 

• X-ray 

1) Magnetic Resonance Image (MRI) 

Medical image processing makes use of MRI) to 

measure the health of inside organs and tissues.  

Obtaining internal scans, MRI scans employ radio 

waves and a magnetic field. MRI scans are widely used 

to identify the difference between the normal 

individual’s body and patient’s body MRI scans are 

used to monitor the blood vessels flow, identify the 

abnormal tissue, monitor the tumors in the breast, 

identify the tears in the ligament, function of bones, and 

monitor the internal organs in the heart, kidney, liver 

and spleen. 

2) Positron Emission Tomography (PET) 

PET scans allow doctors to see inside a patient's 

body by using a high-tech camera and a radioactive 

substance. A radioactive chemical is in the form of 

glucose and it is often used during the PET scans to 

collect the cancer cells from the patient’s body. This 

type of chemical is also called a tracer.  The essential 

role of PET scan is to observe the tissues and organs of 

the patients who are affected by various health 

problems such as heart disease, prostate cancer, liver 

cancer, breast cancer and tuberculosis. 

3) Computed Tomography (CT) 

CT creates cross-sectional images by capturing X-

rays from different angles. In other words, CT scan uses 

various types of digital geometry processes to take X-

ray images from different directions. Images generated 

from the CT scans are used to image the various types 

of heart diseases, broken bones, prostate cancers, liver 
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cancer, breast cancer, internal bleeding, and blood clots 

and so on 

4) Positron Emission Tomography and Computed 

Tomography (PET-CT) 

PET and CT scans are combined to take a complete 

scan that observes the internal organs and monitor the 

abnormal anatomic location. This type of scan 

produces results more effectively than the two scans 

(PET and CT scans) taken separately. PET-CT scans 

are widely used to identify cancer in the early stage. 

Results from this type of scans are used by the doctor 

to take necessary treatment. Efficient use of PET-CT 

scan may help to recover people from various cancers 

and other diseases. PET-CT scans have many medical 

applications, including the following: regulating cancer 

levels and their spread, tracking the effectiveness of 

cancer treatments in real time, studying the heart's 

blood flow, assessing the impact of a heart attack, and 

keeping an eye out for abnormal brain conditions, such 

as the detection of brain disorders, tumors, and 

bleedings. 

5) Single Photon Emission Computed Tomography 

(SPECT) 

A SPECT scan is used to monitor the internal blood 

flow and functions of internal organs. A combination 

of CT and a radioactive substance, sometimes known 

as a tracer, is used in this scan type. PET scans to collect 

the cancer cells from the patient’s body. Radioactive 

chemical or tracer is injected into the human body via 

intravenous or IV injections. Tracer or radioactive 

chemical moves to the internal body. 

6) Ultrasound 

Ultrasound imaging is one of the medical imaging 

technologies to observe the swelling, pain and infection 

in the internal body. The use of high-frequency sound 

waves allows for the recording of pictures of the inside 

of the human body using ultrasound imaging. Using 

ultrasonic imaging technology, which generates high-

frequency sound waves, a digital image is formed from 

the reflected sound. The resultant image generated 

from the ultrasound technology is used to identify the 

heart diseases, monitor the human body parts affected 

after a major heart attack, determine the baby health 

conditions, monitor the pregnancy status and identify 

the abnormal situations in the blood vessels. 

7) X-ray 

X-ray technology is one of the familiar imaging 

technologies used to take pictures of the internal body. 

Ionizing radiation is injected from the Xray machines 

to the human body that shows the body parts by black 

and white shades. In general, bones have more calcium 

than other parts of the body. 

A. Overview of Computed Tomography 

Electrical engineer Sir Godfrey Hounsfield 

developed the first CT scanner in 1972. It was 

Hounsfield and Cormack that shared the 1979 Nobel 

Prize in Physiology or Medicine. A scientist named 

Allan McLeod Cormack also created a gadget that was 

similar about the same period. CT rapidly acquired 

popularity as a medical imaging tool following its 

introduction. CT scans are flat, three-dimensional 

models of physical objects. To create these pictures, X-

ray photons are transformed from electrical energy, 

which is basically just moving electrons. The light is 

then transformed back into electrons after passing 

through an object and being detected. The density of an 

item is inversely proportional to its X-ray 

transmissivity. It is possible to image the components 

of objects, including humans, using CT scans, which 

have varying densities.  

The CT scanner spins around the item completely, 

directing X-rays at it from all directions. The density of 

an object's constituent elements changes as a function 

of lighting angle, so does the intensity of photons that 

flow through it. Inconsistencies in successfully 

transmitted X-ray photon readings rely on a computer 

processor to build a dataset.  The object's densities are 

subsequently utilized by this dataset to create a three-

dimensional replica of it. The dataset is shown on 

screen or film in a sequence of two-dimensional parts. 

While there are a number of factors that go into 

determining picture quality, the two most crucial are 

image resolution and evaluated contrast. 

1) CT Imaging 

CT's stellar reputation for radiologic diagnostic 

accuracy has propelled it to the forefront of medical 

evaluations.  One of the major problems with 

conventional X-ray imaging is that it can't differentiate 

between different types of tissues, such as muscles, 

ligaments, and blood vessels. Computed tomography 

outperforms the conventional X-ray method by 

combining multi-angular X-ray scanning with a 

mathematical theory that reconstructs the object based 

on its projections. The data collected by an X-ray beam 

as it moves through a patient's body is largely 

interpreted by a computer in a CT scan. CT scans make 

it easy to learn about an object's internal structure, 
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including its size, shape, internal flaws, and density. It 

is possible to recreate a picture using X-ray data and the 

radon and inverse radon transform; this technique is 

called CT imaging. 

2) CT Image Reconstruction 

CT makes use of a motorized source of X-rays that 

are directed at various angles across the patient.   On 

the other side of the X-ray generator sit the specialized 

digital X-ray detectors that CT scanners use [24].  

Detectors transform the X-rays into electrical impulses 

as they pass through the patient. An analog-to-digital 

converter takes these electrical signals and turns them 

into digital information.  A digital-to-analog converter 

may take data from the digital matrix and turn it into 

little boxes with a range of greyscale to black and 

white. 

3) Major Factors Affecting the Quality of CT Images 

The accuracy of CT reconstructions is dependent on 

a wide range of parameters.  Image quality is affected 

by several important elements, including: 

a) Blurring 

Appropriate protocol factor values, patient 

mobility, and other factors might cause CT images to 

be blurry.  Blurring in CT reconstructed pictures might 

happen when the patient moves about. A number of 

factors, including an uncooperative patient, breathing, 

heartbeat, etc., might cause the patient to move. The 

reconstruction methods are a bit more complex since 

they need to take into consideration and control the 

patient's z-direction movement—the degree of blurring 

in the image is directly related to the patient's 

momentum.   Important reasons of blurring include the 

following: 

• The method of operating the machinery 

• The correct values for the procedure factors 

• Image blurring as a result of patient motion 

• Ct value variation across image pixels for a 

homogenous material scan 

• Poor filter algorithm parameters or some filter 

algorithms themselves (for noise reduction)  

haze the picture 

b) Field of view (FOV) 

The field of vision refers to the area that can be 

chosen in order to recreate the CT scan.  It becomes 

challenging to detect abnormalities and the quality of 

the reconstructed CT picture could be diminished if the 

image is either too large or too small. 

a) Artifacts 

Artefacts are distortions or errors in images that are 

unconnected to the object being portrayed.  

Inconsistencies between the expected and displayed CT 

values are known as artefacts.  Metal artefacts, beam 

hardening, partial volume effects, patient movements, 

and other similar phenomena are common. 

• Beam hardening: A patient causes an X-ray 

beam to harden because its average energy 

increases as it passes through the body.   

Cupping is another term for this item.   The 

correct algorithms, together with steps like 

boosting kvp, lowering slice thickness, pre-

filtering X-rays, and, ideally, avoiding regions 

with high X-ray absorption rates, can help one 

effectively avoid this. 

• Metal artifact: Dental fillings, prosthetic 

limbs, surgical clips, and other metal objects 

might obstruct portions of projection data, 

leading to streaking artefacts.  By removing the 

metal material, this artefact can be diminished.   

• Patient motion: Artefacts of streaking can be 

generated in the reconstructed image as a result 

of both voluntary and involuntary motion.  In 

order to prevent this, potential solutions 

include motion reduction, immobilization, 

positioning aid, and a reduction in scan time.  

• Software and hardware based artifacts: 

Artefacts in CT images may also be produced 

as a result of inadequate software inputs and 

inadequate apparatus.  Failure of mechanical 

components, rigidity of the gantry, mechanical 

assignment, aliasing, detector sampling, 

staircase, and tube arcing are among the many 

potential causes of artefacts. Additionally, poor 

parameterizations during CT image 

reconstruction lower image quality. If one 

wants better CT images, they can tweak or 

optimize a few key parameters in the computed 

tomography area. The pitch of the 

reconstructed slice thickness, scan range, 

patient position, tube current and potential, and 

detector configuration are all components of 

the collection of parameters. 

c) Visual Noise 
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Visual noise is any kind of unwanted data that 

detracts from an image's aesthetic value. There are 

several potential sources of noise in CT scans. These 

include differences in voxel attenuation coefficients, 

mathematical computation mistakes, and faults in 

acquisition, transmission, and transmission. 

Disturbance to the visual field has a major influence on 

image quality, especially for objects with low contrast. 

III. COMPUTED TOMOGRAPHY (CT) IMAGE ANALYSIS 

TECHNIQUES 

CT scans' great spatial resolution and non-invasive 

capacity to depict inside structures make them useful in 

clinical diagnostics. However, raw CT images often 

contain noise, artifacts, and complex anatomical details 

that complicate direct analysis. Improving picture 

quality, extracting useful information, and bolstering 

automated diagnostic systems are all goals of image 

analysis. Two main groups of these methods exist: 

those that rely on more conventional image processing 

techniques and those that use more sophisticated ML 

and DL methods: 

A. Traditional Image Processing Techniques in CT 

Image Analysis 

Traditional image processing techniques focus on 

improving image quality and extracting features using 

deterministic algorithms. Key methods include 

1) Noise Reduction: 

CT images frequently exhibit noise as a result of 

modest radiation doses or the scanner.  Electromagnetic 

interference, environmental circumstances, or flaws in 

the imaging device are a few of the many potential 

sources of undesired noise in images taken by sensors, 

cameras, or scanners.  Filtering and smoothing are 

examples of preprocessing techniques that remove 

noise from images, which improves their quality and 

allows for more precise analysis. 

2) Spatial Filter based Techniques 

Denoising CT images with linear filters is a way to 

enhance diagnostic accuracy and picture quality by 

reducing noise from CT scans.  Each pixel in Figure 2 

is averaged with its neighboring pixels using linear 

filters like median and averaging, which blurs edges but 

reduces noise. A median filter enhances edge retention 

and decreases blurring by replacing each individual 

pixel with the median value of the pixels immediately 

around it. Linear filters that estimate and remove noise 

using mathematical models while preserving picture 

properties include the Gaussian and Wiener filters. The 

noise type and the intended trade-off between lowering 

noise and keeping image detail dictate the filter that is 

most appropriate. 

 

Fig. 2. Spatial Filter based Technique 

• Linear/Mean filters: Noise reduction, edge 

sharpening, and illumination imbalance 

correction are all possible with the help of the 

linear filter. These filters distort the image's 

edges and obliterate its fine features. They 

perform poorly when it comes to reducing 

signal-dependent noise. The method is 

implemented by applying a processing kernel 

correlation filter on the picture.  Applying the 

arithmetic mean filter to the damaged picture 

yields its average value. 

• Arithmetic Mean Filter: The central pixel 

value of the mask is replaced with the 

arithmetic mean of all the pixel values within 

the filter window. The local visual 

discrepancies are simply smoothed down using 

a mean filter. Reducing noise makes the image 

smoother, but it also blurs the edges. Equation 

(1) uses the geometric mean of the Sxy region's 

pixels to find the restored picture's f value at 

point (x, y). 

 𝑓(𝑥, 𝑦) =
1

𝑚𝑛
∑(𝑟, 𝑐) ∈ 𝑠𝑥𝑦 𝑔(𝑟, 𝑐) (1) 

The pixels surrounding 𝑠𝑥𝑦 are represented by 

the coordinates r and c, in that order. 

• Geometric Mean Filter: The difference 

between an arithmetic mean filter and a 

geometric mean filter is that the latter uses 

geometric values. This is the primary 

difference between the two.  A geometric mean 

filter was used to reconstruct the picture 

represented by the phrase.  In Equation (2), the 

Linear mean 
filter

Median filter

Harmonic 
mean filterGeometric 

mean filter

Arithmetic mean 
filter
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phrase stands for a restored image that was 

processed using a geometric mean filter. 

 𝑓 ̂(𝑥, 𝑦) = [∏ 𝑔(𝑟, 𝑐)(𝑟,𝑐)∈𝑠𝑥𝑦 ]

1

𝑚𝑛
 (2) 

situations where the word "multiplication" is 

employed.  For every pixel that has been 

restored, the computation is simply the total of 

all the pixels in the sub-image region 

multiplied by 
1

𝑚𝑛
. 

• Harmonic Mean Filter: The harmonic mean 

approach is beneficial for the preponderance of 

noises, with the exception of pepper noise. It 

entails substituting the average grey value of 

nearby pixels for the grey value of each 

individual pixel.  Several kinds of noise, 

including Gaussian noise, are well-handled by 

it. 

• Median Filter: The median filter, the most 

famous order-statistic filter in image 

processing, substitutes the value of a pixel with 

the median of the intensity levels nearby using 

Equation (3). 

 𝑓(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑟,𝑐)∈𝑠𝑥𝑦 {𝑔(𝑟, 𝑐) (3) 

Where Sxy is a subimage (neighborhood) that is 

centered on the point (x, y), as previously stated. In 

determining the median, the pixel's value at (x, y) is 

being taken into consideration. 

3) Wavelet-based Techniques 

CT image denoising using wavelet-based filters is a 

popular technique due to its ability to effectively 

remove noise Wavelets decompose images into 

different frequency components, allowing for targeted 

noise removal and detail preservation. Common 

wavelet-based filters include thresholding, shrinkage, 

and wavelet domain filtering 

4) Filtering in Frequency Domain 

Image sharpness and smoothness can be improved 

by frequency domain filtering. Low pass filtering, 

which involves attenuating high frequencies, is used to 

achieve smoothing.  By isolating the high-frequency 

components and attenuating the low-frequency ones, 

high pass filtering sharpens the sound. To apply 

filtering in the frequency domain, one must multiply 

the image by the filter transfer function. The following 

is a step-by-step description of frequency domain 

filtering execution. 

B. Machine Learning-Based Techniques in CT 

ML enhances CT image analysis by enabling 

automated recognition and classification of complex 

patterns. Analytics in medical imaging involve using 

software to sift through medical imaging data in search 

of actionable medical information, such as past health 

issues and current disorders.  Developing high-

performing medical image analytics systems relies 

heavily on ML, as seen in Figure 3.  This article covers 

the three main categories of ML: supervised, semi-

supervised, and unsupervised: 

 

Fig. 3. Machine Learning Technique 

1) Supervised Learning  

Training DT and NN typically involves supervised 

learning. The information supplied by the pre-

determined classification is crucial to both of these, as 

indicated earlier [25]. Applications that are able to 

analyses past data in order to predict future feature 

events also utilize this learning. Both regression and 

classification are broad categories that encompass 

supervised learning activities. This predictive model is 

constructed by the supervised learning method. 

Decision trees: A DT classifier uses a recursive 

partitioning process to divide the instance space.   

When the branches of a decision tree come together, 

they form a root tree, a type of distributed tree that has 

just one branch (the root) and no branches that branch 

out. 

Linear regression: One of the many regression 

algorithms, linear regression1 seeks to do just that 

discover the interdependencies and correlations 

between the variables. The linear function represented 

by 𝑌 in ML models the relationship between a D-

dimensional vector containing a continuous scalar 

dependent variable y (also called a label or target) and 

one or more explanatory variables (also called features, 

attributes, dimensions, data point, etc.). 

Naive Bayes: Bayesian classification is a statistical 

method for classification and one of the supervised 

learning methodologies. Using the establishment of 

outcome probabilities as a basis, it enables the 

principled capture of model uncertainty and implies a 

Machine Learning Technique 

Supervised 

learning 

Semi supervised 

learning  

Unsupervised 

learning 
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probabilistic model. Bayesian classification is 

primarily designed to address difficulties related to 

prediction. 

Logistic Regression: One way to forecast the 

probability of an occurrence is using LR, which 

involves fitting data to a logistic function. LR and other 

types of regression analysis employ a large number of 

numerical or categorical variables as predictors. 

2) Unsupervised Learning:  

The goal of unsupervised learning is to reveal how 

computers might learn to display input patterns in a 

way that reflects their statistical structure, rather than 

the other way around. Unsupervised learning differs 

from supervised and reinforcement learning in that it 

relies on the learner's prior biases to decide which 

aspects of the input structure should be incorporated in 

the output. In contrast, supervised and reinforcement 

learning have designated goal outputs or environmental 

assessments associated with each input. 

3) Clustering Based Technique 

Clustering methods organize comparable pixels or 

areas according to their texture, intensity, or other 

characteristics. Common techniques include: 

K-Means Clustering: Clustering, another name 

for cluster analysis, is an unsupervised ML technique 

that groups together comparable data points in large 

datasets without regard to the precise outcome. 

DBSCAN (Density-Based Spatial Clustering): 

Anomalies or irregular lesions in CT scans can be 

detected with this method since it identifies groups of 

arbitrary forms. 

4) Dimensionality Reduction Techniques 

Visualization, noise reduction, and feature 

extraction are all made easier by dimensionality 

reduction, which takes high-dimensional picture data 

and flattens it while keeping important patterns: 

Principal Component Analysis (PCA): Extracts 

the most significant components representing the 

variance in CT images, aiding in compression and noise 

suppression. 

Autoencoders: Effective denoising and anomaly 

detection are achieved by using neural network-based 

models that learn compact representations of CT 

images. These models restore normal patterns and 

identify deviations, making them ideal for these tasks. 

 

a) Semi-Supervised Learning  

A subset of ML techniques is semi-supervised 

learning (SSL). The dataset is intermediate between 

supervised and unsupervised learning because of its 

incomplete labelling [26]. Obtaining completely 

labelled datasets for CT image analysis can be a 

lengthy, laborious, and costly process that necessitates 

the services of trained radiologists. By utilizing the vast 

quantities of unlabeled data, semi-supervised 

approaches enhance model performance while 

decreasing reliance on annotated images. Resolving 

issues with both supervised and unsupervised learning 

is central to SSL's mission. The time and data needed 

to train supervised learning to classify test data is 

substantial, despite the efficiency of the method.  

Unsupervised learning, in contrast, uses clustering or 

the maximum likelihood approach to group data points 

according to their similarities without labelled data. 

C. Deep Learning-Based Techniques in CT 

DL is a subset of a larger class of ML techniques 

that use representation learning and are based on 

ANNs. A computational architecture is provided by 

deep learning, which learns from data by merging many 

processing layers, such as input, hidden, and output 

layers [27]. The three most popular deep learning 

algorithms are LSTM-RNN, MLP, and CNN, or 

ConvNet. 

CNN: The CNN incorporates pooling, 

convolutional, and fully linked layers, which enhance 

the conventional ANN architecture. 

MLP: A multilayer perceptron (MLP) is another 

name for the feed-forward ANN. A typical MLP 

network consists of three primary layers: input, hidden, 

and output. 

LSTM-RNN: LSTM is an artificial architecture 

used in DL. When compared to traditional feed-

forward neural networks, LSTMs feature feedback 

linkages. 

ANN: The architecture and operation of the human 

brain serve as inspiration for ANNs.   Complex non-

linear mappings between inputs and outputs can be 

learnt by the neurones that comprise them.  Since 

ANNs can pick up on finer patterns in high-

dimensional imaging data, they find extensive 

application in CT image processing for tasks like 

segmentation, feature extraction, and classification. 
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IV. NOISE CHARACTERIZATION AND ITS IMPACT ON 

COMPUTED TOMOGRAPHY (CT) IMAGE QUALITY 

CT image quality is critically influenced by various 

types of noise, which can obscure anatomical 

structures, reduce diagnostic accuracy, and affect 

quantitative measurements. Understanding noise 

sources, their characteristics, and mitigation strategies 

is essential for reliable image analysis and subsequent 

clinical decision-making. This section presents the 

types of noise in CT imaging, methods for 

measurement, and techniques for noise reduction and 

calibration 

A. Noise in CT Images 

The delicate tissues of the human body are 

distinguished using CT's high contrast sensitivity. The 

capacity to perceive low-contrast structures can be 

impaired when noise is present. Accurate denoising of 

CT scans necessitates familiarity with both the specific 

kinds of source noise and the characteristics of generic 

noise 

B. Sources of Noise in CT Imaging 

The physics of X-ray capture, faulty scanner 

electronics, and inefficient reconstruction methods are 

only a few of the sources of noise in computed 

tomography (CT) pictures.  There are several primary 

sources including: 

1) Quantum (Photon) Noise 

The most common kind of image degradation in CT 

scans is known as quantum (photon) noise, which 

results from the randomness of the X-ray photons 

observed during the acquisition process. Because X-

rays are emitted and absorbed according to 

probabilistic (Poisson) statistics, the signal collected by 

the detector fluctuates around a mean value, producing 

grainy variations in pixel intensity. Figure 4 displays 

the different gantry types and the semiconductor 

materials employed by the various systems [28]. 

 

Fig. 4. CT Image in Effected Noise 

This type of noise becomes particularly pronounced 

in low-dose CT scans, where reducing the radiation 

exposure inherently decreases the photon count. 

2) Electronic Noise 

An x-ray detecting device can lessen electrical 

noise. Radioactive particles and beam strengthening.  

The detectors used in modern CT systems are solid-

state devices [29].  The x-rays are transformed into 

visible light by the radiation-sensitive solid-state 

components that are used in every detector cell. 

Common examples of these materials include 

gadolinium oxide, cadmium tungstate, and gadolinium 

oxysulfide. 

3) Reconstruction Algorithm Effects 

Traditional filtered back projection (FBP) methods 

for reconstructing CT images usually result in 

increased picture noise despite decreased radiation 

dosage [30]. But new iterative reconstruction (IR) 

algorithms outperform their predecessors significantly 

when exposed to modest levels of radiation when it 

comes to noise. There is no clinical agreement on what 

constitutes a "acceptable" level of noise, even though 

CT screening for benign lesions can tolerate some noise 

in order to decrease the radiation dosage.  The most 

optimal method would involve creating images with a 

tolerable amount of noise using infrared algorithms and 

low-dose parameters. 

C. Methods for Noise Measurement 

Quantifying CT image noise accurately is crucial 

for assessing picture quality, refining imaging 

protocols, and directing post-processing methods. 

Noise in CT images is typically quantified using both 

spatial and frequency-domain approaches, as well as 

signal-to-noise-based metrics. 

1) Signal-to-noise and contrast-to-noise ratios 

Commonly employed in signal processing are the 

SNR and the CNR, both of which measure image 

quality. The proportion of the average signal strength 

to the noise standard deviation is the definition of ROI 

and the criteria for meeting specifications. Although 

there are numerous different ways to define SNR, the 

most popular one is given by Equation (4): 

 𝐶𝑁𝑅 =  
|𝑀𝑒𝑎𝑛𝑅𝑒𝑔𝑖𝑜𝑛1 − 𝑀𝑒𝑎𝑛𝑅𝑒𝑔𝑖𝑜𝑛2 |

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑜𝑖𝑠𝑒
 (4) 

Equation (5) defines the signal-to-noise ratio, or 

SNR, as the ratio of the two: 
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 𝑆𝑁𝑅 =  
𝑀𝑒𝑎𝑛 𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑛 𝑅𝑂𝐼 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑜𝑖𝑠𝑒
 (5) 

An improved SNR improves the reliability of 

computer analyses and the quality of the images 

produced by them. 

2) Noise Power Spectrum  

The NPS is a spatial frequency-dependent 

description of a system's noise response.  Equation (6) 

is used to evaluate the NPS over N ROIs: 

 𝑁𝑃𝑆 =
1

𝑁
∑ |𝐹[𝐼𝑖(𝑥, 𝑦, 𝑧) − 𝐼𝑖̅

𝑁
𝑖=1 |2 ∆𝑥∆𝑦∆𝑧

𝑁𝑥𝑁𝑦𝑁𝑧

 (6) 

The variables Ii, which represents the average 

signal strength in each voxel in ROI i, F, which stands 

for the Fourier transform operator, ∆𝑥∆𝑦∆𝑧 , which 

denote the x, y, and z dimensions of the voxels, and 

𝑁𝑥𝑁𝑦𝑁𝑧, which denote the dimensions of each ROI in 

voxels, are all involved. 

3) Root Mean Square Error  

A voxel's root-mean-squared signal intensity 

difference (RMSE) between its reference and test 

images is equal to the average of all squared signal 

intensity differences between the two sets of data. This 

formula is described by Equation (7): 

 𝑅𝑀𝑆𝐸 =  √
1

𝑀𝑁
∑ ∑ (𝑥(𝑖, 𝑗) − 𝑦(𝑖, 𝑗)2𝑁

𝑗=1
𝑀
𝑖=1

 (7) 

where x (i, j) is the reference image's grey level for 

a given voxel and y (i, j) is the test image's grey level 

for the same voxel. M is the sum of all horizontal voxels 

and N is the sum of all vertical voxels. 

Noise Reduction and Calibration in CT Imaging 

Table I provides an overview of key noise 

reduction and calibration techniques in CT imaging. 

These methods improve image quality by minimizing 

noise while maintaining diagnostic accuracy and 

patient safety. 

TABLE II.  OVERVIEW OF KEY TECHNIQUE IN NOISE REDUCTION IN CT IMAGE ANALYSIS 

Technique Description Primary Purpose 

Acquisition Parameter 

Optimization 

Adjusting tube current (mA), voltage (kVp), 

rotation time, and pitch to balance image noise 

and radiation dose. 

Improves image quality while 

minimizing patient exposure. 

Iterative Reconstruction 

Algorithms 

Advanced reconstruction methods (e.g., 

adaptive statistical iterative reconstruction, 

model-based IR) that reduce noise 

Produces smoother images with better 

detail at lower doses. 

Detector Calibration Routine calibration of detector gain, offset, and 

uniformity to ensure consistent performance 

across detector elements. 

Minimizes electronic and fixed-pattern 

noise. 

Scatter Correction Hardware or software techniques that reduce 

scattered radiation reaching the detector. 

Enhances contrast and reduces streak-

like noise. 

Beam Hardening 

Compensation 

X-ray beam energy correction algorithms that 

account for the transition of the beam through 

dense tissues. 

Reduces streak artifacts and non-

uniform shading. 

Post-Processing Filters Adaptive, anisotropic, or deep-learning–based 

filters applied to smooth noise while retaining 

structural detail. 

Enhances image appearance without 

degrading resolution. 

Protocol Standardization Harmonizing acquisition and reconstruction 

environment across scanners and operators. 

Improves reproducibility of image 

quality and noise levels. 
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V. LITERATURE OF REVIEW 

This section provides a literature overview on AI 

methods for efficient and accurate analysis of CT 

picture quality, with an emphasis on methods for 

detecting strokes. Table II summarizes the key studies 

discussed below: 

Jiang et al. (2025) A state-of-the-art detection 

framework that can identify CT flaws by their 

structural features. The model employs an EPCB to 

acquire edge information, particularly at defect 

borders, in order to enhance localization and 

classification. To further improve the detection of 

intricate and nuanced defect patterns, a new backbone 

called the edge-prior net (EP-Net) was also introduced. 

At many different spatial scales, this network contains 

features. During inference, the multi-branch structure is 

reduced to its single-branch counterpart, allowing for 

quicker detection without influencing accuracy. 

Experimental results demonstrate that Defect R-CNN 

achieves an average accuracy (AP) greater than 0.9 for 

all types of defects in a CT dataset composed of 

radioactive graphite components from an HTGR. In 

comparison to popular approaches such as Faster R-

CNN, Mask R-CNN, Efficient Net, RT-DETR, and 

YOLOv11, the model achieves better results with 

bounding box (mAP-bbox) and segmentation mask 

(mAP-segm) scores of 0.983 and 0.956, respectively. 

Because it strikes a good mix between efficiency and 

accuracy, the inference pace of 76.2 FPS is ideal [31]. 

Shim, Lee and Kim (2025) Minimizing radiation 

exposure during CT imaging is of the utmost 

importance, especially for routine and repeat exams. 

Two DLIR algorithms, GE TrueFidelity (TF) and 

Philips Precise Image (PI), were evaluated in an 80 kVp 

low-dose CT scenario using the AAPM CIRS-610 

phantom, which simulates clinical imaging settings, to 

ensure that diagnostic quality is maintained during 

DLIR low-dose collection. Under low-dose 

circumstances, the phantom's linearity, high-resolution, 

and artefact modules were scanned with GE Revolution 

and Philips CT 5300 CT scanners. This evaluation was 

based on eight quantitative variables: SNR, CNR, 

nRMSE, PSNR, SSIM, FSIM, UQI, GMSD, and 

gradient magnitude. Reconstruction of the photos was 

done using the following five DLIR presets: TF 

(Middle, High), PI (Smoother, Standard, Sharper). In 

terms of SNR, TF-High outperformed PI-Smoother 

(115.0-118.0 across modules), obtained a higher 

PSNR, and had the lowest GMSD. These results 

suggest that the structure in low-dose images was more 

effectively preserved. The dominant solution was PI-

Sharper in terms of gradient magnitude. The best mix 

of structure integrity and noise suppression was 

provided by TF-High for low-dose CT, whereas PI-

Sharper excelled at enhancing fine details [32] 

Zhou et al. (2024) application of DL-based image 

reconstruction and noise reduction algorithms, or 

DLIR, has increased in clinical computed tomography 

(CT). This method is employed to evaluate the spatial 

resolution of a DCNN that is based on ResNet and has 

been trained on patient images.   In one patient's case, 

the lower left lobe of the liver was implanted with 

lesions that had variable degrees of contrast (−500, 

−100, −50, −20, −10 HU). The dosage levels of 50%, 

25%, and 12.5% were all simulated. Each lesion and 

dose condition were associated with a minimum of 600 

noise realizations. Three distinct intensity 

environments—DCNN-weak, DCNN-medium, and 

DCNN-strong were used to train deep convolutional 

neural networks (DCNNs), iterative reconstruction 

(IR), and the original filtered-back projection (FBP) on 

all of the noisy realizations. Decreasing the number of 

lesion pictures from the total number of images by first 

locating the noise in each dose condition and lesion. 

The 50% in-plane and z-axis MTFs decline from 92.1% 

to 76.3% and 95.5%, respectively, under varied 

contrast and dosage settings, when the dose level is 

dropped from 50% to 12.5% normal dose utilizing FBP 

[33]. 

Li et al. (2024) One of the most cutting-edge 

imaging methods is CT. Adaptive assessment of 

blurring effects caused by insufficient sampling of the 

LR X-Ray detector using a DL network (SRECT-Net).  

Once the scanning technique is set for a CT machine, 

the blur effect pretty consistent.  This finding provides 

the impetus for the suggested approaches, which can be 

pre-trained using plenty of simulated datasets, fine-

tuned with a single sample, and finally provide a 

machine-specific SR model. Compare the performance 

of the suggested SRECT against that of existing DL-

based CT SR techniques using SR CT imaging on a 

Catphan700 phantom and a ham.   The results show that 

the proposed SRECT is more effective than current 

state-of-the-art CT SR reconstruction methods, which 

might be useful for improving CT resolution [34]. 

Parameswari et al. (2024) CT scans one at a time 

and compare three different CNN models to one 

thousand CT scans of the heart and blood vessels, both 

healthy and with calcium deposits. Three types of CT-

image data are used in experimental test: original CAC-
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score CT, cardiac-segmented, and cardiac-cropped.  

The rib cage as a whole is included in the first set, while 

the heart region is excluded from the second two sets.  

Using Inception ResnetV2, VGG, and Resnet50, the 

exploratory test for calculating the incidence of calcium 

in a CT-picture had the highest accuracy rate of 98.52% 

[35]. 

Bos et al. (2024) CT images.  The 152 adult head 

CT scans that were included were acquired between 

March and April 2021 from three separate CT scanners 

using various methods. From 77 to 75 years old, the 

participants' ages ranged from an average of 69.4 ± 18.3 

years. A deep learning-based method was employed for 

post-processing following the CT image reconstruction 

utilizing FBP and IR. Depending on the technique, 

postprocessing greatly decreased noise in FBP-

reconstructed images (by as much as 15.4% reduction), 

which improved the signal-to-noise ratio by as much as 

19.7%. These results seemed to be protocol or site 

dependent.  There was no discernible improvement in 

picture quality across the board for any reconstruction 

or post-processing, according to subjective evaluations. 

Reliability between raters was poor, and preferences 

differed. Using deep learning-based denoising software 

yielded superior objective images in regular head CT 

scans compared to FBP. One of the methods was the 

sole one that varied substantially from IR. Subjective 

assessments did not show a substantial therapeutic 

impact in terms of improved subjective image quality 

due to the low noise levels of full-dose images [36]. 

S P et al. (2024) preservation of information and the 

restoration of images tainted by noise rely heavily on 

CT medical images. Although the CNN was effective 

in removing the noise, the performance cost us clarity 

and the ability to preserve small features, which made 

the CT scans unusable.  Ischaemic stroke patients' brain 

CT images can be segmented and classified more 

accurately with the application of MA-CNN, an 

improved noise removal method. One way to measure 

how well an MA-CNN works is by looking at its PSNR. 

The results show that the proposed model outperforms 

current denoiser approaches in terms of PSNR and 

ensures the preservation of high-quality pictures [37]. 

Abubaker, Mohamed and Abuzaid, 2023, 

Processing of images from computed tomography 

scans. One model, CTcov_model, is designed to 

process images from CT scans and is based on the 

previous model; another, Xcov_model, uses CNN and 

DL to process images from CXRs.  In order to generate 

a heat map showing the predicted spread of the disease, 

the Grad-Cam algorithm provided support for both 

models.  The nine thousand images that made up the 

dataset were split evenly across three categories for CT 

and x-ray imaging.  With the help of DA technology, 

trained on 80% of these photos and tested on 20%.  

With an F1-Score of 98%, the Xcov_model stood out 

among the models that were developed and tested on 

the Google Collaboratory platform using Python [38]. 

Mahmoodian et al. (2023) uutilizing computed 

tomography (CT) pictures that segment four distinct 

tissue structures, the lungs, the tumors, the ablated 

tissues, and the surrounding healthy tissue MWA 

therapy is a famous method for targeting and 

eliminating tumors in the lung. Use the IoU to quantify 

the suggested method's efficacy. Background, lung, 

ablated, and tumor tissues all have the highest average 

IoU values of 0.99, 0.98, 0.77, and 0.54, respectively, 

as shown by the approach. The results demonstrate that, 

even with the limited dataset, DL approaches when 

combined outperform individual base-learner models 

for all four kinds of tissue. Importance in medicine   

Determining when all tumor tissue has been totally 

eliminated is a crucial issue with tumor ablation 

treatment [39]. 

Zeng et al. (2022) Using a noise-generating 

mechanism, Un-SinoNet trains an unsupervised DL 

network, offering a unique method to low-dose CT 

sinogram recovery. Training network using unlabeled 

low-dose CT scans. While learning the right gradient 

for low-dose CT sinograms unsupervised, Un-SinoNet 

should take into account the prior measurement 

features and statistical fluctuations in the CT noise-

generation process using a maximum a posteriori 

probability (MAP) framework. Network training can 

be made more effective by using the gradient 

information from both the labelled high-dose CT 

sinogram and the unlabeled CT sinogram. To turn the 

proposed Un-SinoNet into a semi-supervised DL 

network (Semi-SinoNet) that integrates the 

conventional and MAP goal functions, another option 

is to employ a small number of low-dose/high-dose 

sinogram pairs. Executed the expected Un-SinoNet and 

Semi-SinoNet using the LUNGMAN phantom and the 

Mayo Clinic patient simulation datasets. This research 

outperforms competing methods in terms of picture 

resolution and noise reduction using both 

methodologies [40]. 

Inkinen et al. (2022) standard deviation of pixel 

values from uniform picture portions is a popular 

method for determining CT image noise. Experimented 



Letters in High Energy Physics 
ISSN: 2632-2714 

Volume 2024 
February 

 

 

8024 

with DCNN CNN architecture for direct noise image 

estimation and UNet-CNN for denoised picture 

subtraction utilizing supervised and unsupervised 

noise2noise training methods. Took a look at the 

background noise using local SD maps and CNN 

architectures in 3D and 2D. The DL-model was trained 

using data collected from a nine-scan, three-repetition 

anthropomorphic phantom CT imaging dataset.   The 

most effective method for direct SD estimation using 

3D-CNN was demonstrated on a phantom dataset, with 

MSE = 6.3HU and MAPE = 15.5%. Even in clinical 

contexts when ground truth data is unavailable, the 

noise2noise approach could still be useful. It is possible 

to characterize image quality more thoroughly by 

combining noise estimation with tissue segmentation 

[41]. 

Recent research in computed tomography has 

increasingly centered on the application of ML to 

optimize image quality, particularly through effective 

noise suppression while safeguarding diagnostically 

important structures. A range of DL reconstruction 

strategies has emerged, including convolutional and 

morphology-aware networks capable of producing 

cleaner, high-contrast images from low-dose 

acquisitions. Super-resolution approaches have been 

proposed to counter detector blur and sharpen subtle 

textures, while unsupervised and semi-supervised 

models allow denoising and sinogram restoration in 

scenarios with limited or unlabeled data. Other 

investigations emphasize post-processing pipelines that 

enhance standard reconstructions or integrate noise 

removal with tasks such as lesion segmentation and 

anatomical classification, supporting more accurate 

and streamlined diagnostic workflows. Collectively, 

these studies indicate a clear trend toward solutions that 

balance noise reduction, spatial resolution, and 

computational efficiency, with increasing attention to 

generalizability across scanners, interpretability of 

network outputs, and real-time feasibility for clinical 

deployment. The increasing amount of research 

demonstrates how machine learning has the power to 

revolutionize CT imaging, make low-dose procedures 

safer, and improve the accuracy of quantitative 

evaluations in a wide range of healthcare environment. 

TABLE III.  COMPARATIVE ANALYSIS OF RECENT STUDIES ON COMPUTED TOMOGRAPHY IMAGE QUALITY AND 

NOISE REDUCTION  USING MACHINE LEARNING. 

Author(s

), Year 

Dataset Methodology Key Findings Noise 

Reduction / 

Image 

Quality 

Limitations Future Work 

Jiang et 

al. (2025) 

CT of nuclear 

graphite 

components 

(HTGR) 

Defect R-CNN 

with Edge-Prior 

Conv. Block 

(EPCB) & EP-

Net backbone; 

multi-branch → 

single branch at 

inference 

AP > 0.9 for all 

defects; mAP-

bbox 0.983, mAP-

segm 0.956; 76.2 

FPS; outperforms 

Faster/Mask R-

CNN, YOLOv11 

Focus on 

structure & 

localization 

(not explicit 

denoising) 

Only graphite 

dataset; 

industrial 

context 

Extend to other 

CT materials; 

combine with 

real-time 

inspection 

Shim, 

Lee & 

Kim 

(2025) 

AAPM CIRS-

610 phantom; 

Philips CT5300 

& GE 

Revolution, 80 

kVp 

Deep-Learning 

Image 

Reconstruction 

(DLIR): Philips 

Precise Image 

(PI) & GE 

TrueFidelity (TF) 

– 5 presets 

TF-High SNR 

115–118 (+54–

57% vs PI-

Smoother); best 

PSNR & lowest 

GMSD; PI-

Sharper gives 

highest gradients 

 optimal 

balance noise 

suppression  

Phantom 

only; vendor-

specific 

Validate in 

clinical scans; 

cross-vendor 

DLIR 

Zhou et 

al. (2024) 

Patient liver CT; 

lesions inserted 

at contrasts 

−500→−10 HU; 

600 noise 

ResNet-DCNN 

vs FBP & IR; 

assessed MTF 

spatial resolution 

DCNN preserved 

resolution better 

than FBP/IR as 

dose ↓ 

 denoising 

with spatial-

res analysis 

Simulated 

lesions, not 

natural 

pathology 

Apply to real 

lesions; improve 

ultra-low-dose 
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realizations; 3 

dose levels 

Li et al. 

(2024) 

Catphan700 

phantom & ham 

specimen 

SRECT-Net for 

super-resolution 

to counter 

detector blur 

Outperforms other 

SR CT; high-res 

recon from LR 

detector 

Resolution ↑ 

(not direct 

noise) 

Phantom 

only; clinical 

value unclear 

Test on patient 

CT; embed in 

reconstruction 

Parames

wari et 

al. (2024) 

1200 

cardiovascular 

CT scans 

Inception-

ResNetV2, 

VGG, ResNet50 

on original, 

segmented & 

cropped CT 

98.52% accuracy 

for coronary 

calcium; cropped 

best 

Not aimed at 

noise; 

classification 

One dataset, 

limited 

pathologies 

Larger & noisy 

datasets; 

robustness 

studies 

Bos et al. 

(2024) 

152 adult head 

CTs from 3 

scanners 

FBP, IR, DL 

post-processing 

(PS) 

DL post-

processing cut 

FBP noise 

≤15.4%, SNR 

↑19.7%; 

subjective gain 

small 

Yes – 

objective 

noise ↓ 

Only modest 

subjective 

benefit; 

protocol-

specific 

Assess with 

dose-reduction; 

optimize for user 

perception 

S P et al. 

(2024) 

Brain CT 

(ischemic 

stroke) 

Morphology-

Aware CNN 

(MA-CNN) for 

denoising 

Higher PSNR vs 

other denoisers; 

fine detail 

preserved 

Explicit noise 

reduction & 

detail 

retention 

Not tested on 

big datasets or 

full pipeline 

Integrate with 

segmentation/cl

assification; 

real-time 

Abubake

r et al. 

(2023) 

9000 CT & 

CXR (3 classes) 

CNNs 

(Xcov_model, 

CTcov_model) + 

Grad-CAM 

F1 ≈ 98% (CXR); 

CTcov effective 

for CT  

No – 

classification 

only 

No CT noise 

analysis; no 

baseline 

compares 

Add 

quality/noise 

metrics; extend 

to detection 

Mahmoo

dian et al. 

(2023) 

Lung CT for 

microwave-

ablation therapy 

Ensemble of DL 

models for 

segmentation 

(lung, tumor, 

ablated) 

IoU: 0.99 

background, 0.98 

lung, 0.77 ablated, 

0.54 tumor 

Focus on 

segmentation; 

not denoising 

Tumor IoU 

moderate; 

small data 

Expand data; 

integrate dose & 

noise handling 

Zeng et 

al. (2022) 

LUNGMAN 

phantom; 

simulated Mayo 

sinograms 

Unsupervised 

Un-SinoNet & 

Semi-SinoNet 

for sinogram 

recovery (MAP) 

Better resolution 

& noise removal 

vs baselines 

Yes – low-

dose 

sinogram 

denoising 

Mostly 

phantom/sim 

data 

Apply to patient 

sinograms; 

refine MAP 

prior 

VI.  RESEARCH GAPS 

Current DL models have made great strides in 

stroke detection, however there are still several gaps 

that are directly related to the study's goals and 

objectives. This void encompasses 

• Data Limitations: The capacity of many 

current models to generalize across varied 

populations and therapeutic contexts is 

compromised due to their dependence on tiny 

and frequently homogeneous datasets. The 

model's generalizability to different types of 

strokes and imaging quality is enhanced with 

the addition of a larger and more diverse 

dataset. This dataset comprises 9,900 photos 

for testing and 2,501 images for 

training/validation, thus reducing data 

constraints.  In order to guarantee accurate 
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stroke identification across different clinical 

environment and imaging situations, this work 

tries to increase the model's generalizability by 

increasing the dataset. 

• Model Complexity and Efficiency: In real-

time clinical situations, complicated models 

like ResNet50 may not be viable due to their 

high computing costs. Through 

hyperparameter tweaking, this study seeks to 

optimize the CNN architecture for real-time 

stroke detection by achieving maximum 

efficiency and minimizing computing 

complexity without sacrificing accuracy. In 

comparison to more complicated models as in, 

the suggested model achieves great 

performance with substantially fewer 

operations by optimizing its architectural 

design, thus reducing computing complexity. 

The model's exterior accuracy (89.73%) lags 

behind state-of-the-art standards, but its 

practicality for real-time application is 

guaranteed by its reduced design (20 M 

parameters), fulfilling a major clinical 

necessity.  An important obstacle to the use of 

AI in stroke care has been eliminated by these 

optimizations, which allow for real-time 

inference on conventional clinical hardware. 

• Segmentation and Localization: Accurately 

segmenting and localizing ischaemic lesions is 

still a difficulty, even though stroke detection 

accuracy is getting better. In order to make 

informed clinical decisions, it is essential to 

accurately segment the ischaemic core. In 

order to achieve very accurate ischaemic stroke 

localization, this project concentrate on 

building a CNN model that is specifically 

designed for stroke detection in CT images. 

• Interpretability and Clinical Trust: Clinical 

practice has been slow to embrace deep 

learning models due to their lack of 

transparency. This study intends to boost 

clinician trust by making the CNN model more 

interpretable and by providing clear visual 

explanations for stroke predictions using 

explainability approaches. 

• Real-World Validation: Validation in real 

clinical environments is frequently absent, 

despite the fact that current models have 

demonstrated promise in controlled 

environments. The purpose of this study is to 

evaluate the CNN model using crucial metrics 

such as accuracy, precision, recall, F1-score, 

and AUC-ROC in order to ensure its reliability 

and effectiveness for real clinical usage. 

VII. METHODOLOGY 

CT images to assess their clarity, contrast, and 

diagnostic accuracy while identifying and quantifying 

the impact of noise. Noise arising from photon 

statistics, electronic components, or reconstruction 

algorithms can degrade spatial resolution and obscure 

anatomical, affecting clinical interpretation. Careful 

analysis of image quality metrics, along with noise 

measurement and reduction strategies, ensures reliable 

visualization and enhances the diagnostic value of CT 

imaging The proposed approach for Computed 

Tomography (CT) image analysis in brain stroke 

detection follows a comprehensive pipeline, as 

depicted in Figure 5. A curated dataset of CT images of 

the brain from strokes was first assembled in DICOM 

format and then converted to NIfTI format to make it 

accessible across all software platforms. Images were 

preprocessed to ensure they were ready for learning. 

This included scaling them to a fixed spatial resolution, 

pixel-intensity transforming them to make soft tissue 

contrast more noticeable, converting colours as needed, 

applying spatial filters to remove noise, and label 

encoding them so they could be associated with their 

respective diagnostic categories. A range of data 

augmentation procedures were employed to rectify 

class imbalance and increase dataset diversity. These 

techniques included rotating, horizontal and vertical 

flipping, scaling, and random cropping. Following this, 

image normalization was applied to stabilize pixel 

distributions and speed up convergence during training. 

Properly sized training, validation, and testing subsets 

were created from the processed dataset, ensuring that 

each split had an adequate representation of each class.  

After that, various learning architectures such as 

ResNet, MLP, and CNN were used to automatically 

classify regions affected by stroke by extracting spatial 

and textural features from the preprocessed CT images. 

The model's hyperparameters, such as learning rate, 

batch size, and dropout rate, were optimized with the 

help of the validation set.  Methods for early pausing 

were used to avoid overfitting. Lastly, during testing, 

verified the trained models' F1-score, recall, precision, 

and accuracy on fresh data. Efforts paid off, and now 

know which design has the best chance of aiding 
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clinicians in making decisions about CT-based stroke 

analyses. 

 

Fig. 5. Flowchart for computed tomography image 

analysis using machine learning 

A. Data Collection 

"Normal" and "Stroke" are the two types of brain 

CT images that make up the dataset used for this 

research.  There are a variety of sizes and resolutions 

among the 2501 photos in the dataset, which includes 

1551 normal and 950 stroke photographs. Brain scans 

showing ischaemic regions or haemorrhages are placed 

in the "Stroke" category, whereas those showing 

normal brain structure are placed in the "Normal" 

category. Image show most features have low variation 

except one with high values, highlighting its relevance 

for computed tomography image some of the 

visualizations are given below: 

 

Fig. 6. Sample image of stroke brain CT dataset 

Sample images from stroke brain CT dataset 

showing three categories of brain conditions across 

nine axial CT scan slices in Figure 6. The dataset 

comprises three distinct classes bleeding displaying 

hyperdense regions indicative of acute hemorrhage, 

ischemia showing hypodense areas characteristic of 

infarction, and normal presenting typical brain 

parenchymal density patterns. Each row represents 

different anatomical levels of the brain, demonstrating 

the diverse presentation of pathological findings across 

various cranial sections. The images are presented in 

standard grayscale CT format with bone window 

environment, providing clear visualization of 

intracranial structures and pathological changes 

essential for automated stroke classification systems. 

 

Fig. 7. Heatmap of Predicted  Stroke Image 

Heat map visualization of activation regions in 

brain CT scan showing automated feature extraction 

and attention mechanisms in Figure 7. The color-coded 

overlay displays varying intensity levels of model 

activation, with yellow regions indicating highest 

activation areas, green showing moderate activation, 

and blue representing lower activation zones against 

the purple background. Stroke classification using this 

thermal mapping method reveals the convolutional 

neural network's focus areas, drawing attention to the 

most diagnostically important anatomical features and 

pathological areas that aid in the automated decision-

making process for differentiating between ischaemic, 

bleeding, and normal brain conditions. 

 

Fig. 8. Actual and predicted normal images 
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Classification results matrix displaying model 

predictions versus ground truth labels for stroke brain 

CT dataset validation in Figure 8. The 6×4 grid presents 

24 representative test cases with actual clinical 

diagnoses (ground truth) labeled above each image and 

corresponding model predictions shown below. The 

dataset encompasses three primary categories: stroke 

(hemorrhagic and ischemic), normal brain anatomy, 

and various pathological conditions. Each CT scan 

slice demonstrates the algorithm's performance in 

automated classification, revealing both successful 

predictions and potential misclassification cases. 

 

Fig. 9. Pixel intensity distribution per class 

Pixel intensity distribution analysis across three 

stroke classification categories in brain CT dataset in 

Figure 9. The histogram displays the frequency 

distribution of Hounsfield Unit (HU) values for normal 

(orange), ischemic (blue), and hemorrhagic (green) 

brain tissue classes. The hemorrhagic class exhibits the 

highest pixel count concentration in the lower intensity 

range (0-200 HU), indicating hypodense characteristics 

typical of acute bleeding. Normal and ischemic tissue 

show overlapping distributions with peaks around 100-

150 HU, representing standard brain parenchymal 

density. The exponential decay pattern across all 

classes demonstrates the predominance of lower-

intensity pixels in CT brain imaging, with hemorrhagic 

regions. 

B. Image Preprocessing 

The preprocessing pipeline includes DICOM to 

NIfTI conversion for format standardization, image 

resizing to uniform dimensions, pixel intensity 

transformation using Hounsfield Units with 

windowing, color conversion to RGB format, noise 

removal via filtering techniques, and label encoding for 

categorical classifications. Data augmentation 

enhances dataset diversity through rotations and 

transformations, while image normalization 

standardizes pixel ranges. Data splitting creates 

stratified training, validation, and testing subsets 

ensuring balanced distributions. Key steps in data 

preprocessing include: 

• DICOM to NIfTI conversion: The control CT 

images were converted from their native 

DICOM format to a three-dimensional non-

proprietary NIfTI-1 file format.  This 

conversion made it easier to preprocess images 

with SPM8 afterward, since the latter uses the 

NIfTI-1 file format for its image data. 

• Image Resizing: Using bilinear interpolation, 

all of the photos were scaled down to a 

consistent 256 × 256-pixel dimension. 

• Pixel intensity transformation: Intensities of 

the pixels in the CT scans. The Hounsfield unit 

(HU) was used to measure the pixel intensities. 

Through the utilization of the formula HU + 

1000, the HU range of -1000 to -100 was 

elevated to 0-900. 

• Color conversion: The term "colour 

conversion" refers to the process of changing 

an image's colour space from one standard to 

another. It facilitates the separation of colour, 

saturation, and brightness, which in turn 

facilitates picture enhancement, segmentation, 

and analysis. In CT image visualization, 

grayscale conversion or applying specific color 

maps improves contrast and highlights 

structures or lesions more clearly. 

• Remove noise: Denoising, or noise removal, is 

a technique for improving images by 

minimizing distracting noise while preserving 

finer details.  The Gaussian filter is a popular 

tool for noise reduction because it flattens 

images by averaging the values of nearby 

pixels using a weighted Gaussian function. 

This helps to reduce high-frequency noise 

while keeping the general structures of the 

images intact. 

• Label encoding: ML models can make use of 

numerical representations of category labels 

(such as text-based class names) through a 

process known as label encoding. A brain 

stroke CT dataset, for instance, could have the 

labels "normal," "ischaemic," and 

"hemorrhagic" recorded as 0, 1, and 2, 

respectively, for each of these distinct 

categories. This method is simple and efficient 

for algorithms that can naturally interpret 

ordinal values. 
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C. Data Augmentation 

Data augmentation involves "transforming" visual 

data for training purposes in order to increase the 

amount of data.  A number of transformations are 

possible with images, including rotation, flipping, 

horizontal shifting, scaling, distortion, 

brightness/contrast adjustments, and noise addition 

[42]. Through data augmentation, the number of photos 

rose by a factor of nine. The majority of computed 

tomography (CT) scans involve the patient lying face 

down, however certain facilities arrange their patients 

so that their left side, where their hearts are located is 

positioned precisely in the center of the FOV.  In such 

a situation, the body can end up rotating around 10 

degrees due to the bed's curvature.  In each image, the 

heart was rotated by -10° and +10° to mimic this effect, 

bringing its tilt into alignment with what was shown in 

the real CT scan.  Results from efforts to make contrast-

enhanced CT images more resistant to pixel value 

changes caused by the fact that contrast agent density 

varies from case to case are shown in Figure 10. 

 

Fig. 10. Augmented Sample Image 

All of these methods included rotating, adjusting 

the height and breadth, shearing, zooming, and 

horizontally flipping.  To make the model more 

resistant to unknown input, it is necessary to introduce 

variability into the training data. 

• Rotation: The following is the rotation matrix 

for an angle θ: 

𝑅(𝜃) =  [
cos 𝜃 −𝑠𝑖𝑛𝜃
sin 𝜃 cos 𝜃

] 

• Translation (shifting): so that 𝛿𝑥  and 𝛿𝑦 

represent a change in the x and y axes, 

respectively. 

𝑇(𝛿𝑥, 𝛿𝑦) =
1 0 𝛿𝑥

0 1 𝛿𝑦

0 0 1

 

• Scaling (Zooming): To apply an S-fold 

scaling to a picture, the scaling matrix is 

𝑆(𝑠) = [
𝑠 0
0 𝑠

] 

D. Image Normalization 

The values of the pixels were scaled down to the 

interval [0, 1] by dividing them by 255. It alters the 

intensity value range of the pixels and transforms an 

input picture into a visually more recognizable format. 

When it comes to grade descent, it's quicker and 

steadier. The model's convergence during training is 

accelerated by this normalization phase, which scales 

the input characteristics to a standard range. 

E. Data Splitting 

The dataset was divided into 3 sections, as shown 

in Figure 11, with training comprising 80%, validation 

10%, and testing 10%. This division utilized a 

substantial portion of the data to train the model.  

 

Fig. 11. Data Splitting Sample Training Validation and 

Testing 

Although objective assessments of its efficacy are 

provided by distinct validation and test instances. 

F. Proposed Models 

This section provides a theoretical overview of the 

ML algorithms that were utilized in this investigation. 

1) Convolutional Neural Network (CNN) 

CNNs have quickly become the gold standard of 

image classification methods due to their exceptional 

performance in applications such as object detection, 

activity recognition, segmentation, and illness 

diagnosis.  CNNs' capacity to learn and extract features 

autonomously, without any prior knowledge or human 

involvement, gives them the advantage of being able to 

differentiate complicated picture shapes [43]. Figure 12 
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displays the several layers utilized by CNN 

architectures, such as convolutional, pooling, and fully 

connected layers, that enable them to learn and extract 

visual data independently. The following formula is 

utilized to ascertain the values of successive feature 

maps; here, h represents the kernel and f represents the 

picture input. In Equation (8), the row and column 

indexes of the result matrix are represented by m and n, 

respectively. 

𝐺[𝑚, 𝑛] = 𝑓(𝑥)[𝑚, 𝑛] = ∑ ∑ ℎ[𝑗, 𝑘]𝑓[𝑚 − 𝑗, 𝑛 −𝑘𝑗

𝑘] (8) 

 

Fig. 12. Architecture of CNN model 

Pooling Layer: the pooling layer is activated. It is 

just another strong and widely used method for solving 

the same problem. An invariant representation for 

small input translations can be created with the help of 

the feature maps and pooling operations of the previous 

layers in a short pooling layer down sample [43]. The 

following are examples of frequently used functions 

that specify the pooling technique among others: 

Average pooling: This is used when want to get the 

average value for every area on the visual map. 

Maximum pooling: This is used when getting the 

maximum value for each patch on the feature map is 

the objective; it is also called Max-pooling.  

Activation Functions: DL models can learn 

nonlinear prediction bounds with the use of activation 

functions, which introduce nonlinearity into the 

models. An activation function is a tool for converting 

input signals into output signals in ANNs. Following 

this layer in the stack, this signal is utilized as an input. 

Presented here are some of the most popular activations 

employed by CNN: 

Sigmoid activation function: An activation 

function that is not linear is the most typical. The 

sigmoid function is a popular tool for binary 

classification since it takes input in the 0 to 1 range and 

changes it. To summaries, consider the following 

Equation (9). 

 𝑓(𝑥) =
1

𝑒−𝑥 (9) 

Tanh functions are similar to sigmoid functions; 

however, they are symmetric with respect to the origin. 

Equation (10) gives the outcome of this activation 

function since it is a zero-centered function with a scale 

from -1 to 1: 

 𝑓(𝑥) = (
𝑒𝑥−𝑒−𝑥

𝑒𝑥−𝑒−𝑥) (10) 

ReLU function: The rectified linear unit, or ReLU 

for short, is a prominent non-linear function in 

ConvNets. Compared to other functions, ReLU is more 

efficient since it activates a limited subset of neurones 

at a time rather than the whole network. Equation (11): 

 𝑓(𝑥) = max(0, 𝑥) (11) 

SoftMax Activation Function: The sigmoid 

function is employed for binary (0, 1) classification, 

while SoftMax is employed for handling multiclass 

classification.  Each data point for each class has a 

probability that the number of network neurones in the 

output layer of the NN the same as the number of target 

classes, according to the SoftMax function.  So, here's 

the Equation (12). 

 𝜎(𝑧)𝑗 =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑗𝑘
𝑘=1

𝑓𝑜𝑟 𝑗 = 1, … … 𝑘 (12) 

2) VGC 16 

The 16-layer Visual Geometry Group 16 (VGG16) 

is famous for its work in picture classification.  Medical 

imaging applications heavily utilize it due to its reliable 

performance and ability to extract hierarchical 

properties. 

The architecture analyses input images using many 

convolutional layers equipped with modest 3 × 3 filters.  

To effectively describe medical picture data, these 

filters capture features in a sequential manner, starting 

with simple patterns like edges and progressing to more 

complex structures [44].  After every convolutional 

process, the non-linear ReLU activation function is 

applied.  This enhances the model's capacity to 

understand and convey intricate correlations in the 

data. 

Layers that are fully connected  amass the 

information, and then analyses it for classification 

purposes after the convolutional layers have extracted 

features.  One area where VGG16 has proven useful is 

medical imaging, where it can distinguish between 

normal, benign, and cancerous images. Last but not 

least, in order to make accurate and interpretable 
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predictions, the SoftMax layer generates a probability 

distribution by giving each category a likelihood. 

Medical image analysis applications, such as the 

detection and categorization of lung illnesses, greatly 

benefit from VGG16's systematic and structured 

design.  Equation (13) relies on it for crucial healthcare 

tasks because of its capacity to integrate hierarchical 

feature extraction with robust classification, which 

guarantees accurate and dependable outcomes. 

 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑖) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑐
𝑗=1

 (13) 

A categorical cross-entropy loss function is used to 

fine-tune the model's predictions by tracking the 

difference between the actual and predicted labels. 

Equation (14) enhances the model's accuracy and 

reliability for medical diagnosis by teaching it to 

distinguish between benign, normal, and malignant 

states with the addition of this loss function. 

 𝐿(𝑦, 𝑦̂) = − ∑ 𝑦𝑖 log(𝑦𝑖̂)
𝑐
𝑖=1  (14) 

The prediction probability for class i, the real label 

for class I, and the L-loss value are represented by 𝑦𝑖̂. 

3) ResNet 

ResNet (Residual Network) for CT image 

classification leverages skip connections to enable 

training of very DNN without vanishing gradient 

problems. The architecture processes CT images 

through multiple residual blocks, where each block 

learns residual mappings instead of direct mappings, 

allowing the network to preserve important diagnostic 

features while learning complex patterns[45]. The CT 

images are normally prepared for multi-class disease 

classification by applying Hounsfield Unit 

normalization and window/level adjustments as 

preprocessing steps. A fully connected classifier with 

SoftMax activation is then used after the images have 

been passed via convolutional layers, batch 

normalization, ReLU activations, global average 

pooling, and so on. Equation (15) and an Equation (16) 

can be used to represent a simplified residual block. 

 𝑦 = 𝑥 + 𝐹(𝑥; 𝑊) (15) 

 𝐹(𝑥; 𝑊) = 𝑊2𝜎(𝐵𝑁(𝑊1𝑥)) (16) 

The block input is represented by x, the 

convolutional weights are W1 and W2, batch 

normalization is denoted by BN, and σ is a ReLU 

activation. With predictions obtained from the SoftMax 

function in Equation (17), the network produces logits 

z for K classes after going through stacked residual 

stages and global average pooling: 

 𝑝𝑐̂ =
exp (𝑧𝑐)

∑ exp (𝑧𝑗)𝑘
𝑗=1

 (17) 

Where 𝑝𝑐̂ represents the probability 

4) MLP classifier 

This feed-forward ANN uses a MLP architecture, 

which consists of an input layer, an output layer, and a 

hidden layer (or layers) [46].   As shown in Figure 13, 

each layer of an MLP architecture has a directionally 

connected neurone or neurones that communicate with 

those in the layer below and above it. The perceptron 

takes in a large number of real-valued inputs, creates a 

linear combination using those inputs as weights, and 

then runs that value through a nonlinear activation 

function to produce a single output.   One way to 

represent MLP is using Equation (18): 

 𝑦𝑡 = 𝜑(∑ 𝑤𝑡, 𝑥𝑡, +𝑏𝑡
𝑛
𝑗=1 ) (18) 

The hidden unit layer receives the activation 

function 𝜑  as weight, x as input, and 𝑏𝑡  as bias.   

Classification tasks can be accomplished with the help 

of scikit-learn models, wherein the network learns to 

associate input features with output labels.  

 

Fig. 13. Architecture of MLP model 

Training a network entails feeding it input 

information, computing an output, and then, to reduce 

the discrepancy between the anticipated and real labels, 

modifying the internal weights via backpropagation.  

As long as the model reaches an optimal solution within 

300 iterations (max_iter=300), the results consistent 

between runs thanks to a fixed random_state=42. The 

model is able to detect complex, non-linear patterns in 

the data because of the configuration. 

G. Performance Matrix 

Consider using the diagnostic confusion matrix 

(Figure 14) in conjunction with other important 

diagnostic metrics such as sensitivity (REC), 

specificity (true negative rate), ACC (PRE), and F1 

when evaluating classifier models. 
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 Actual Value 

Predicted 

value 

 Positive Negative 

Positive TP FP 

Negative FN TN 

Fig. 14. Confusion matrix 

• False positive (FP) indicates the total number 

of incorrect predictions where the model 

mistakenly classifies normal cases as positive. 

• A False Negative (FN) is the culmination of all 

the incorrect predictions that the model makes 

when it fails to identify genuine stroke cases 

and incorrectly classifies them as negative. 

• The number of times a model correctly 

identifies real stroke cases as positive is called 

the number of true positives (TP). 

• The amount of predictions that accurately 

classify normal brain scans as negative is one 

metric for accuracy in model-based brain scan 

categorization. 

1) Accuracy 

The classification model's ACC is found by 

dividing the number of correct predictions by the total 

number of predictions. Although accuracy gives a good 

idea of how well a model is doing overall, it might not 

be able to tell how it works on datasets that aren't 

balanced. The formula for this statistic is given by 

Equation (19), which represents the division of the total 

dataset instances by the number of cases that were 

correctly classified. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100 (19) 

2) Precision 

Medical diagnosis depends on high accuracy for 

two reasons: first, to eliminate false alarms (as 

described in Equation (20)), and second, to assess the 

fraction of actual positive predictions out of all positive 

predictions made by the model: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑅
× 100 (20) 

3) Recall 

A high recall is essential in medical diagnosis since 

it reduces the number of missed diagnoses; for 

example, when the data actually conforms to the class 

stated in Equation (21) for stroke cases, a high recall 

ensures that actual cases were correctly diagnosed: 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100 (21) 

4) F1 Score 

The harmonic mean of PRE and REC is the F1, 

which is a metric that is particularly advantageous 

when both are equally significant for model evaluation.  

Explained in Equation (22) below, it shines when 

working with datasets that are severely skewed: 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑟𝑒𝑐𝑎𝑙𝑙×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (22) 

5) ROC Curve 

The AUC and the ROC curve are two methods for 

assessing the proposed models' efficacy. The ROC 

curve displays the category model's accuracy across all 

thresholds. The line that follows is made up of the 𝑇𝑃𝑅 

and the F𝑃R. 

VIII. RESULT AND DISCUSSION 

The computed tomography brain stroke CT image 

dataset is the subject of this section, which presents the 

experimental results for the identification of brain 

strokes using DL and machine learning approaches. 

REC, ACC, PRE, ROC AUC, and F1, all important 

measures for binary classification tasks were used to 

evaluate the model's performance.  Python was used for 

the implementation on Google Colab's Jupiter 

Notebook environment. TensorFlow, Keras, scikit-

learn, pandas, NumPy, seaborn, and matplotlib are 

essential Python libraries for processing and assessing 

computed tomography images. The studies were 

conducted using a computing system capable of 

building deep learning models for high-resolution 

computed tomography image analysis, including CNN, 

VGG-16, MLP, and ResNet architectures.  In this 

configuration, and have an Intel i7 CPU, a 2 TB solid-

state drive, an NVIDIA GeForce RTX graphics card, 

and a 3.4 GHz clock speed. The analysis includes 

performance comparison of individual models like 

CNN, VGG-16, ResNet, and MLP classifier, as well as 

their comprehensive evaluation through confusion 

matrices and ROC curve analysis on computed 

tomography imaging data. The following outputs 

provide detailed insights into the stroke detection 

results from computed tomography scans, supporting 

the effectiveness of the proposed approach for 

automated medical diagnosis in clinical environments 

utilizing computed tomography image quality 

standards. 
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Fig. 15. Confusion matrix of CNN classifier 

The CNN classifier's confusion matrix on the 

dataset of CT images of brain strokes is shown in 

Figure 15. The y-axis of this classification performance 

matrix displays the actual labels, while the x-axis 

displays the anticipated labels. Class 0 hit a very high 

rate of accuracy with 448 right predictions and 3 false 

positives, whilst Class 1 was slightly less accurate with 

210 right predictions and 10 FN.  Darker blue indicates 

greater values on the colour scale, which represents the 

forecast frequency. The overall performance 

demonstrates strong classification accuracy. 

 

Fig. 16. Confusion matrix of ResNet model 

The confusion matrix of the ResNet model for the 

cerebral stroke CT image dataset is depicted in Figure 

16.  On one side of the matrix, and can see the 

classification performance, and on the other, and see 

the anticipated labels. There were 121 accurate 

predictions and 6 false positives in the Normal class 

and 94 accurate predictions and just 3 false negatives in 

the Stroke class. On a scale from 0 to 120, the colour 

gradient goes from white at the bottom to a deep 

reddish brown at the top. The ResNet model 

demonstrates excellent classification performance with 

high TPR and minimal misclassification errors between 

normal and stroke cases 

 

Fig. 17. Confusion matrix of VGC 16 Model 

Confusion matrix for the VGG-16 model. In Figure 

17, the classification performance matrix, the x-axis 

displays the predicted labels and the y-axis displays the 

actual labels. In contrast to the Stroke class's 100 

accurate predictions and 6 false negatives, the Normal 

class managed 141 right predictions. At lower levels, 

the colour scale is light blue; at higher values (up to 

140), it becomes dark blue. The VGG-16 model 

demonstrates robust classification accuracy with high 

precision for both normal and stroke cases, showing 

minimal confusion between the two classes. 

 

Fig. 18. Confusion matrix of MLP classifier 

Using the y-axis for actual labels and the x-axis for 

predicted labels, the matrix displays the classification 

performance in Figure 18. The Normal class achieved 

157 correct predictions with 7 false positives, while the 

Stroke class had 78 correct predictions with 9 false 

negatives. The color scheme uses a green gradient, with 

darker green representing higher values and lighter 
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green indicating lower values. The MLP classifier 

demonstrates good classification performance, though 

with slightly higher misclassification rates compared to 

deep learning models, particularly showing 9 false 

negatives for stroke detection. 

 

Fig. 19. Accuracy curve of VGC 16  model 

Virtual G-Network-16 Accuracy Curve Figure 19 is 

a plot showing the training and validation accuracy 

over a span of 10 runs. Throughout training, the blue 

line—representing accuracy sprints from around 0.90 

at epoch 0 to nearly 1.00 by epoch 2, and it stays high. 

The orange line shows validation accuracy, starting at 

around 0.90, peaking at approximately 0.97 around 

epoch 2, with slight fluctuations but stabilizing near 

0.96 in later epochs. The congruence between the two 

curves' training and validation accuracies proves that 

the models performed admirably with little overfitting. 

 

Fig. 20. Loss graph of VGC 16 classifier 

The loss curve for the VGG-16 model, which 

illustrates the training and validation loss over a period 

of 10 epochs, is detailed in Figure 20. Commencing at 

around 1.1 and plunging precipitously to almost 0.0 by 

epoch 2, the blue line signifies the training loss. From 

there, it remains pretty consistent at low levels for the 

remaining epochs. The orange line shows validation 

loss, beginning at around 0.25, quickly dropping to 

approximately 0.15 by epoch 1, with slight fluctuations 

between 0.15-0.20 but generally maintaining low and 

stable values. Model training was successful with 

strong generalization performance and minimal 

overfitting when both loss curves converged to low 

values. 

 

Fig. 21. Accuracy curve of CNN classifier 

The CNN classifier's training and validation 

accuracy contours for the cerebral stroke CT image 

dataset are illustrated in Figure 21.  Accuracy progress 

over 50 epochs is depicted in the plot.  The blue line 

with the circles on it shows the training accuracy, which 

is around 0.86 at the beginning and rises to nearly 0.99 

by the end of the 15th epoch, and then stays extremely 

high. The orange line with triangle markers shows 

validation accuracy, beginning around 0.85 and 

exhibiting more fluctuation while generally trending 

upward to stabilize around 0.95-0.96 The training 

accuracy demonstrates consistent improvement and 

convergence, while validation accuracy shows 

characteristic oscillations but maintains good 

generalization performance, indicating effective model 

learning without significant overfitting 

 

Fig. 22. Loss graph of CNN classifier 

Curves representing the loss during CNN classifier 

training and validation. The plot displays the loss 

progression over 50 epochs in Figure 22. The blue line 

with the circles on it shows the training loss, which is 
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at 0.38 at the beginning and quickly drops to around 0.0 

by the 20th epoch, staying at very low values for the 

rest of the generations. The orange line with triangle 

markers shows validation loss, beginning around 0.20 

and exhibiting fluctuations between 0.10-0.20 with 

occasional spikes, but generally stabilizing around 

0.15. The steep decline in training loss indicates 

effective learning, while the relatively stable validation 

loss with some oscillations suggests good 

generalization capability with minimal overfitting. 

TABLE IV.  PROPOSED MODELS PERFORMANCE ON 

COMPUTED TOMOGRAPHY ON BRAIN STROKE CT 

IMAGE DATASET 

Measure CNN VGC 

16 

ResNet MLP 

Classifier 

Accuracy 99.50 96.50 97.75 94 

Precision 99.60 96.54 96.99 95 

Recall 99.40 97.10 98.56 96 

F1-score 99.50 97.34 97.77 95 

ROC 

AUC 

99.58. 98.10 97.75 98.20 

 

 

Fig. 23. Comparison of model performance metrics 

Figure 23 and Table III show the results of 

comparing the suggested models' performance on a 

dataset of CT images of brain strokes.  The CNN 

classifier got the highest performance with a total of 

99.50% accuracy, 99.60% precision, 99.40 percent 

recall, 99.50% F1-score, and 99.58%  ROC area under 

the curve. Among its competitive metrics, the ResNet 

model achieved 97.75% ACC, 96.99% PRE, 98.56% 

REC, 97.77% F1, and 97.75% ROC AUC.  Strong 

performance was demonstrated by the VGG-16 model 

with 96.50% ACC, 96.54% PRE, 97.10% REC, 

97.34% F1, and 98.10% ROC AUC.  The MLP 

classifier was still successful, although it had the worst 

performance metrics according to 98.20% ROC AUC, 

95% F1-score, 96% recall, 95% precision, and 94% 

accuracy. All models demonstrated excellent 

discriminative capability for brain stroke detection, 

with the CNN model establishing superior 

classification performance across all evaluation 

metrics. 

 

Fig. 24. Roc curve of for different classifier on brain 

stroke CT image dataset 

The ROC curves for various classifiers are 

compared using the cerebral stroke CT image dataset, 

as illustrated in Figure 24. Here Shows the four models' 

Receiver Operating Characteristic curves: CNN 

(AUC= 0.9958), VGC-16 (AUC= 0.9810), ResNet 

(AUC= 0.9775), and MLP (AUC= 0.9820). All curves 

demonstrate excellent classification performance, with 

steep rises toward the upper-left corner and minimal 

distance from the ideal point (0,1). Random 

classification (AUC = 0.5) is shown by the diagonal 

dashed line, which shows that all models have greater 

discriminative ability for differentiating between non-

stroke and stroke patients in CT brain images. 

The proposed approach leverages an ensemble of 

deep learning models CNN, VGG16, ResNet, and MLP 

to perform comprehensive analysis of brain CT images 

for stroke detection. Each model contributes distinct 

strengths: CNN effectively captures local spatial 

patterns, VGG16 extracts deep hierarchical features 

through its multiple convolutional layers, ResNet 

mitigates vanishing gradient issues enabling deeper 

architecture learning, and MLP integrates complex 

nonlinear relationships from extracted features. By 

combining these models, the approach ensures robust 

detection of stroke lesions, even in the presence of 

image noise, low contrast, or subtle tissue variations, 

which are common challenges in clinical CT imaging. 

Compared to single-model approaches, this ensemble 
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method demonstrates superior performance in 

sensitivity, specificity, and overall accuracy, providing 

reliable differentiation between normal and 

pathological regions. Further evidence of its efficacy is 

provided by its high ROC AUC scores, which indicate 

outstanding discriminatory capacity, and its balanced 

performance across precision and recall metrics, which 

are essential for reducing false negatives and 

guaranteeing prompt intervention.  In conclusion, the 

ensemble approach improves diagnostic certainty 

while facilitating automated, scalable, and real-time CT 

image processing in clinical environment. This opens 

the door to better patient outcomes and more efficient 

healthcare procedures. 

A. Discussion 

The results of the comparison for CT scan detection 

are shown in Table IV. The table below provides a 

concise summary of how several deep learning models 

fared on a CT image categorization test involving brain 

strokes. CNN had the best results overall, with a 

99.50% F1-score, 99.40% recall, 99.60% precision, 

and 99.50% accuracy. The findings were solid for 

VGC16 (96.50% accuracy, 96.54% precision, 97.10% 

recall, 97.34% F1-score), and ResNet (97.75% 

accuracy, 96.99% precision, 98.56% recall, 97.77% 

F1-score) was also excellent. MLP offered balanced 

outcomes at 96% for all measures, and Xception 

delivered 95.62% accuracy with slightly lower 

precision and recall (90% and 94%, respectively). DNN 

showed modest performance around 72% across 

metrics, and Mobile Net V2 attained intermediate 

values (87.36% accuracy, 87.13% precision, 87.68% 

recall, 87.40% F1-score). These results highlight that 

convolutional architectures, particularly CNN and 

ResNet, are most effective for extracting spatial and 

textural patterns from CT images, enabling accurate 

differentiation of normal, ischemic, and hemorrhagic 

stroke cases in medical environment. 

TABLE V.  COMPARISON BETWEEN ALL PROPOSED 

MODEL AND EXISTING MODELS FOR COMPUTED 

TOMOGRAPHY IMAGE IN MEDICAL ENVIRONMENT 

Measure Accura

cy 

Precisi

on 

Recal

l 

F1-

Score 

CNN 99.50 99.60 99.40 99.50 

VGC 16 96.50 96.54 97.10 97.34 

ResNet 97.75 96.99 98.56 97.77 

MLP 96 95 96 95 

Xception[

47] 

95.62 90 94 94 

DNN[48] 72% 71% 72.6

% 

72% 

Mobile 

Net 

V2[49] 

87.36 87.13 87.68 87.40 

 

The proposed ensemble of four ML models 

demonstrates strong performance in CT image analysis 

for brain stroke detection, with CNN achieving the 

highest accuracy of 99.50%, followed by ResNet at 

97.75%, VGG16 at 96.50%, and MLP at 96.00%. By 

leveraging diverse algorithmic approaches including 

deep convolutional networks, transfer learning, and 

multilayer perceptron the models effectively capture 

complex spatial, textural, and intensity-based patterns 

within CT scans, enabling precise differentiation 

between ischemic and hemorrhagic strokes. The 

outstanding performance of CNN highlights its 

capability to extract fine-grained features from high-

dimensional medical images, while ResNet and 

VGG16 effectively leverage hierarchical feature 

learning to enhance robustness and generalization. 

Transfer learning further contributes to improved 

model performance by adapting pre-trained networks 

to the specific domain of stroke CT images, reducing 

the need for extensive annotated datasets. Challenges 

remain, such as variability in image acquisition 

protocols, noise in clinical datasets, and the 

computational complexity of deploying these models in 

real-time clinical environment. Integrating this multi-

model framework into neuroimaging workflows can 

provide clinicians with reliable decision support, 

accelerate diagnosis, inform treatment planning, and 

potentially improve patient outcomes. Future work 

may focus on optimizing computational efficiency, 

incorporating multimodal imaging data, and validating 

the models across diverse clinical populations to ensure 

broad applicability and scalability. 

B. Application of CT Image  

CT image analysis is useful for many clinical 

purposes, including the diagnosis of tumors and 

lesions, evaluation of organ structures, bone integrity, 

circulatory systems, and therapeutic response, and the 

assessment of organ structures and structures. Its 

sophisticated algorithms improve several areas of 

medicine, including diagnosis, therapy planning, and 

patient monitoring. 
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• Tumor and Lesion Detection: Tumors, 

nodules, and other lesions can be detected and 

characterized early on with the help of CT 

image analysis. By applying image 

enhancement, segmentation, and classification 

techniques, it enables accurate localization of 

abnormal tissues and assessment of their size, 

shape, and density. Advanced ML and DL 

models further improve sensitivity and 

specificity, supporting timely diagnosis, 

staging, and personalized treatment planning 

while reducing observer variability. 

• Organ Segmentation and Volumetric 

Analysis: Organ segmentation in CT imaging 

involves accurately delineating anatomical 

structures such as the brain, lungs, liver, 

kidneys, and heart to facilitate quantitative and 

qualitative analysis. It supports volumetric 

measurements, shape assessment, and the 

extraction of clinically relevant parameters for 

disease diagnosis, treatment planning, and 

surgical navigation. 

• Bone and Fracture Assessment: CT image 

analysis provides high-resolution evaluation of 

bone structures, enabling accurate detection of 

fractures, micro-cracks, and degenerative 

changes. It supports the assessment of bone 

density and geometry, which is essential for 

diagnosing conditions such as osteoporosis and 

for planning orthopedic or trauma-related 

surgeries. Advanced algorithms can 

differentiate subtle fractures from normal 

anatomical variations, while 3D 

reconstructions and quantitative measurements 

enhance surgical navigation and treatment 

planning. 

• Radiomics and Quantitative Feature 

Extraction: Converts CT images into 

measurable texture, shape, and intensity 

features for prognosis and personalized 

medicine. 

• Brain Imaging for Neurological Disorders: 

Supports detection of hemorrhage, stroke, 

edema, and neurodegenerative changes in 

cranial CT scans. 

• Cardiac and Coronary Artery Analysis: CT 

image analysis is widely used to assess cardiac 

anatomy and the coronary arteries with high 

spatial resolution. It enables precise evaluation 

of coronary artery stenosis, plaque burden, and 

calcium scoring, which are critical for 

assessing cardiovascular risk and planning 

interventions. Advanced techniques, such as 

CT angiography and automated vessel 

segmentation, facilitate detailed visualization 

of the heart chambers, valves, and vascular 

structures, supporting early diagnosis, 

treatment planning, and monitoring of cardiac 

diseases. 

C. Limitation of CT Image Analysis   

Dataset Constraints - Limited dataset size and 

diversity significantly impact model robustness, as 

training on small or homogeneous populations may not 

adequately represent global demographic variations, 

genetic factors, and regional disease patterns. The 

scarcity of annotated medical data due to privacy 

regulations and the time-intensive nature of expert 

labeling further restricts model development and 

validation across different clinical environment. 

Computational Requirements - The considerable 

amount of processing power and memory that deep 

learning models demand might limit their use in real-

time applications and clinical environment with limited 

resources. 

Class Imbalance Issues - Unequal distribution of 

stroke types (hemorrhagic vs. ischemic vs. normal) can 

lead to biased predictions and reduced performance for 

underrepresented classes. 

Scanner Variability - Significant variations exist 

across CT scanner manufacturers, imaging protocols, 

slice thickness, reconstruction algorithms, and contrast 

enhancement techniques. These technical differences 

create domain shift problems where models trained on 

one scanner type may perform poorly on images from 

different equipment, limiting cross-institutional 

deployment and standardization efforts. 

Limited Temporal Analysis - Current static image 

analysis approaches cannot capture stroke evolution, 

treatment response monitoring, or progression 

assessment over time. Additionally, models struggle 

with detecting hyperacute ischemic changes that may 

not be visible in early CT scans, potentially missing 

critical treatment windows for interventions like 

thrombolysis or thrombectomy procedures. 

D. Future Work of Computed Tomography Image  

Large-scale Multi-center Collaboration and 

Data Harmonization - Establish international 
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consortiums for sharing de-identified stroke imaging 

data, developing standardized annotation protocols, 

and creating diverse datasets that represent global 

populations. Take advantage of data harmonization 

methods to deal with scanner variability and build 

reliable models that can be applied to various imaging 

devices and clinical procedures. 

Advanced Neural Architectures and Hybrid 

Models - Integrate cutting-edge architectures including 

vision transformers, capsule networks, and graph 

neural networks to capture complex spatial 

relationships in brain anatomy. Develop hybrid models 

combining convolutional and transformer-based 

approaches, incorporate attention mechanisms for 

interpretable diagnosis, and explore self-supervised 

learning techniques to leverage unlabeled medical 

images effectively. 

Federated Learning and Privacy-Preserving 

Technologies - Establish federated learning 

frameworks to permit cross-hospital collaborative 

model training in a way that protects patients' privacy.  

To ensure data integrity while enabling global model 

improvement and knowledge exchange, develop 

differential privacy approaches, secure multi-party 

computing protocols, and blockchain-based systems. 

Real-time Processing and Edge Computing 

Solutions - Optimize model architectures for mobile 

deployment using techniques like knowledge 

distillation, neural architecture search, and quantization 

methods. Develop edge computing solutions with 

specialized medical imaging processors, implement 

cloud-edge hybrid systems for scalable deployment, 

and create point-of-care diagnostic tools for emergency 

and ambulatory environment. 

Multimodal Integration and Comprehensive 

Diagnostic Systems - Combine CT imaging with 

perfusion studies, MRI sequences, clinical laboratory 

values, patient demographics, and electronic health 

records to create holistic diagnostic systems. Develop 

longitudinal analysis capabilities for tracking treatment 

response, implement prognostic models for outcome 

prediction, and integrate natural language processing 

for automated report generation and clinical decision 

support systems 

IX. CONCLUSION  

The timely and precise identification of cerebral 

stroke through the use of CT images is essential in 

clinical practice, as early diagnosis has an impact on the 

overall efficiency of healthcare, patient outcomes, and 

treatment options.  For the purpose of evaluating the 

quality of CT images and classifying strokes, this study 

compares and contrasts four deep learning models—

ResNet, CNN, VGG16, and MLP with an emphasis on 

the importance of noise-aware preprocessing methods 

like data augmentation, strength normalization, and 

noise reduction. These preparatory procedures were 

critical for enhancing the dependability and resilience 

of the model, which enabled the extraction of pertinent 

hierarchical and spatial characteristics even from CT 

images impacted by noise. This study highlights the 

superior performance of convolutional architectures in 

capturing complex patterns indicative of stroke. 

Among the analyzed models, CNN achieved the 

greatest accuracy of 99.50%, followed by ResNet, 

VGG16, and MLP. Findings highlight need for 

preprocessing pipelines that integrate deep learning 

algorithms to achieve high diagnostic accuracy, 

decrease misclassification, and facilitate real-time 

clinical decision-making. For future work, the 

framework can be extended by incorporating 3D CT 

volumes and multimodal imaging data, which would 

provide richer spatial context and improve detection of 

subtle stroke patterns. Integration of XAI techniques 

can enhance interpretability for clinicians, aiding 

decision-making and regulatory compliance. 

Furthermore, real-time deployment using adaptive 

learning algorithms can improve responsiveness to 

evolving stroke characteristics. Validation on larger, 

heterogeneous datasets will ensure generalizability and 

robustness, enabling practical clinical implementation. 

Overall, the proposed approach demonstrates 

significant potential to support automated, accurate, 

and rapid stroke diagnosis, ultimately improving 

patient care outcomes and optimizing clinical 

workflow in time-sensitive healthcare environments. 
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