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Abstract—Commutated tomography (CT) imaging has become more common for medical diagnosis in recent 

years. Since a correct diagnosis has a substantial impact on patient outcomes and treatment plans, the rapid 

identification of strokes using CT scans is essential for prompt clinical action.  In order to train and evaluate deep 

learning models, this work made use of a publically available dataset of CT pictures of brain strokes. The collection 

includes labelled images reflecting various stroke states.  Artefacts like as noise and intensity changes are common 

in CT scans and might make it difficult to classify strokes accurately. In order to overcome these obstacles, four deep 

learning models, CNN, VGG16, ResNet, and Multilayer Perceptron were used for noise-aware preprocessing in CT 

images and for stroke identification. To make the model more generalizable and resistant to imaging discrepancies, 

the preprocessing pipeline included noise reduction methods, intensity normalization, and data augmentation. The 

F1-score (F1), recall (REC), accuracy (ACC), and precision (PRE) were utilized for a comprehensive evaluation of 

the classification abilities. With a remarkable 99.50% accuracy, convolutional neural networks (CNNs) were able to 

extract spatial and hierarchical information from noisy images. ResNet came in second with 97.75%, VGG16 third 

with 96.50%, and MLP fourth with 96%. These results demonstrate the importance of preprocessing and noise 

handling in enhancing classification reliability. The proposed framework shows promise for real-time clinical 

deployment, supporting automated and rapid stroke detection to reduce diagnostic errors and improve patient care 

outcomes. 

Keywords—Computed Tomography, Brain Stroke CT Image Dataset, Image Analysis, Artificial Intelligence, 

Machine Learning, CNN, ResNet, MLP, VGG 16, Noise effect in image for CT. 

 

I. INTRODUCTION  

Computerized tomography (CT) has emerged as a 

crucial diagnostic tool due to developments in cutting-

edge medical imaging technology, which has 

revolutionized the healthcare industry [1][2][3].  By 

offering quick, painless, and accurate imaging of inside 

organs, CT scans enhance the diagnosis, monitoring, and 

treatment of a wide range of medical conditions, 

including cancer, cardiovascular disease, and 

neurological problems [4][5]. Its capability to produce 

volumetric scans in a short time makes CT particularly 

valuable in emergency environment, oncology, and pre-

surgical planning. However, the diagnostic reliability of 

CT is directly dependent on the quality of the acquired 

images, making systematic assessment and 

enhancement of CT image quality a central focus in 

medical imaging research. 

Several factors, including noise, homogeneity, 

contrast resolution, and spatial resolution, are 

considered when assessing the quality of CT images 

[6][7]. Accurate interpretation of anatomical and 

pathological features is made possible by high-quality 

CT pictures. Various factors influence image quality, 

including scanner hardware design, tube current and 

voltage environment, detector efficiency, reconstruction 

algorithms, and post-processing methods. Therefore, a 

comprehensive understanding of these factors, 

combined with rigorous image quality assessment, is 

essential to optimize imaging protocols and maintain 
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consistency across different CT systems in Figure 1 and 

clinical scenarios. 

 

Fig. 1. CT Scan Images 

CT image quality is noise, which arises from both 

quantum fluctuations of X-ray photons and electronic 

imperfections in detectors and signal acquisition 

systems[8][9]. Electronic noise, on the other hand, 

originates from the detection electronics and signal 

amplification, contributing to random variations in pixel 

intensities [10][11]. Both types of noise degrade image 

contrast, obscure fine structural details, and adversely 

affect both manual interpretation and automated 

analysis. 

The effects of noise in CT images extend beyond 

mere visual degradation[12][13][14]. Critical for precise 

diagnosis, treatment planning, and disease monitoring, 

quantitative data might be compromised by noise. These 

measurements include tissue density evaluation, lesion 

segmentation, and radiomic feature extraction [15][16]. 

To mitigate these effects, conventional noise reduction 

techniques including spatial and frequency-domain 

filtering, iterative reconstruction, and phantom-based 

calibration—have been extensively employed. These 

methods aim to enhance image fidelity while 

maintaining diagnostic accuracy and minimizing 

radiation exposure 

CT image quality evaluation and improvement have 

recently been greatly assisted by ML and DL techniques 

[17][18]. CNN and other deep architectures can 

automatically learn complex noise patterns, perform 

denoising, and reconstruct high-quality images from 

low-dose scans. These approaches complement 

traditional calibration and noise reduction techniques, 

offering automated, adaptive, and data-driven solutions 

for image enhancement. Incorporating ML/DL models 

into traditional approaches allows researchers to 

enhance CT scans in quantitative and qualitative ways. 

This leads to more accurate diagnoses, better patient 

outcomes, and optimized imaging workflows in clinical 

practice. 

A. Motivation with Contribution 

The exponential growth of medical imaging, 

particularly Computed Tomography (CT), has increased 

the demand for accurate and efficient diagnostic 

interpretation. However, CT image quality is often 

compromised by various sources of noise, such as 

photon fluctuations, detector electronics, and 

reconstruction algorithms, which obscure anatomical 

details and degrade diagnostic reliability. Traditional 

quality assessment methods and simple filtering 

approaches are often inadequate for handling complex 

noise patterns while preserving spatial resolution. 

Research is being driven by the urgent need to develop 

a comprehensive framework that combines noise 

characterization, picture enhancement, and advanced 

learning models. This framework greatly increases the 

diagnostic utility and quality of CT images in healthcare 

facilities. 

The main contributions of this work on CT image 

quality analysis and noise effect are as follows: 

• Development of a complete workflow for CT 

image quality analysis, beginning with raw data 

acquisition and format conversion, followed by 

preprocessing steps such as resizing, intensity 

adjustment, noise suppression, and label 

encoding to ensure standardized and high-quality 

inputs. 

• Data normalization and augmentation 

approaches, spatial filter-based quantitative 

noise analysis, picture statistics, and signal-to-

noise ratio enhancement and dataset 

strengthening strategies. 

• Research on the effect of noise on the precision 

of feature extraction and classification in CT 

images associated with stroke was organized and 

carried out using several architectural 

frameworks, including CNN, ResNet, VGG16, 

and MLP. 

• Optimal learning models effectively maintain 

diagnostic precision in the presence of varying 

degrees of noise, as demonstrated 
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experimentally by metrics like as PRE, F1, REC 

and ACC. 

• Provision of practical understandings and 

recommendations for incorporating noise-aware 

CT image quality analysis into computer-aided 

diagnostic systems, ensuring reliable 

performance in real clinical environments. 

B. Significance and Novelity 

This study is significant as it presents a robust, 

scalable, and clinically relevant framework for CT 

image quality analysis, with a particular focus on stroke-

related imaging a critical challenge in diagnostic 

radiology. Its novelty lies in the development of an end-

to-end pipeline that integrates noise characterization, 

advanced preprocessing, data augmentation, and label 

standardization, combined with a comprehensive 

evaluation of multiple learning models, including CNN, 

ResNet, VGG16, and MLP. This paper presents a 

comparative analysis under different noise situations, 

demonstrating the better performance of noise-aware 

architectures, in contrast to numerous previous research 

that either concentrate on single-model classification or 

fail to account for the impact of noise. The inclusion of 

quantitative noise assessment and enhancement 

techniques further strengthens feature extraction and 

classification accuracy, while practical insights for 

clinical deployment ensure the framework is directly 

applicable to real-world diagnostic environment. The 

integration of diverse deep learning approaches with 

systematic noise handling provides unique insights into 

model robustness, addressing the critical need for 

reliable, adaptable, and high-quality CT image analysis 

in modern healthcare environments. 

C. Structure of Paper  

The following structure of the paper: Section II 

provide the Background of image processing in medical 

sector, Section III Computed Tomography image 

analysis technique, Section IV Noise characterization 

and its impact on CT, Section V provide the literature of 

review in CT image analysis Section VI  Research Gaps 

Section VII discussed the proposed methodology with 

each phase of this system design, Section VIII evaluate 

the results of proposed models, comparison, discussion 

and Application, Limitation and future work, final 

Section IX presents the findings and recommendations 

for further research. 

II. BACKGROUND OF IMAGE PROCESSING ANALYSIS IN 

MEDICAL SECTOR 

The decision-making and problem-solving 

capabilities of modern programs rely heavily on image 

processing algorithms. Disease diagnosis, clinical 

treatment, and other healthcare services often make use 

of image processing methods in the medical field. The 

advancement in medical image processing is increased 

noticeably. Hence, various types of advance image 

generation sources are increased. They produce huge 

sizes of medical images continuously. The following 

image generation sources play a vital role in medical 

applications: 

• Magnetic Resonance Image (MRI) 

• Positron Emission Tomography (PET) 

• Computed Tomography (CT) 

• Positron Emission Tomography and Computed 

Tomography (PET-CT) 

• Single Photon Emission Computed Tomography 

(SPECT) 

• Ultrasound 

• X-ray 

1) Magnetic Resonance Image (MRI) 

Medical image processing makes use of MRI) to 

measure the health of inside organs and tissues.  

Obtaining internal scans, MRI scans employ radio 

waves and a magnetic field. MRI scans are widely used 

to identify the difference between the normal 

individual’s body and patient’s body MRI scans are used 

to monitor the blood vessels flow, identify the abnormal 

tissue, monitor the tumors in the breast, identify the tears 

in the ligament, function of bones, and monitor the 

internal organs in the heart, kidney, liver and spleen. 

2) Positron Emission Tomography (PET) 

PET scans allow doctors to see inside a patient's body 

by using a high-tech camera and a radioactive substance. 

A radioactive chemical is in the form of glucose and it is 

often used during the PET scans to collect the cancer 

cells from the patient’s body. This type of chemical is 

also called a tracer.  The essential role of PET scan is to 
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observe the tissues and organs of the patients who are 

affected by various health problems such as heart 

disease, prostate cancer, liver cancer, breast cancer and 

tuberculosis. 

3) Computed Tomography (CT) 

CT creates cross-sectional images by capturing X-

rays from different angles. In other words, CT scan uses 

various types of digital geometry processes to take X-

ray images from different directions. Images generated 

from the CT scans are used to image the various types of 

heart diseases, broken bones, prostate cancers, liver 

cancer, breast cancer, internal bleeding, and blood clots 

and so on 

4) Positron Emission Tomography and Computed 

Tomography (PET-CT) 

PET and CT scans are combined to take a complete 

scan that observes the internal organs and monitor the 

abnormal anatomic location. This type of scan produces 

results more effectively than the two scans (PET and CT 

scans) taken separately. PET-CT scans are widely used 

to identify cancer in the early stage. Results from this 

type of scans are used by the doctor to take necessary 

treatment. Efficient use of PET-CT scan may help to 

recover people from various cancers and other diseases. 

PET-CT scans have many medical applications, 

including the following: regulating cancer levels and 

their spread, tracking the effectiveness of cancer 

treatments in real time, studying the heart's blood flow, 

assessing the impact of a heart attack, and keeping an 

eye out for abnormal brain conditions, such as the 

detection of brain disorders, tumors, and bleedings. 

5) Single Photon Emission Computed Tomography 

(SPECT) 

A SPECT scan is used to monitor the internal blood 

flow and functions of internal organs. A combination of 

CT and a radioactive substance, sometimes known as a 

tracer, is used in this scan type. PET scans to collect the 

cancer cells from the patient’s body. Radioactive 

chemical or tracer is injected into the human body via 

intravenous or IV injections. Tracer or radioactive 

chemical moves to the internal body. 

6) Ultrasound 

Ultrasound imaging is one of the medical imaging 

technologies to observe the swelling, pain and infection 

in the internal body. The use of high-frequency sound 

waves allows for the recording of pictures of the inside 

of the human body using ultrasound imaging. Using 

ultrasonic imaging technology, which generates high-

frequency sound waves, a digital image is formed from 

the reflected sound. The resultant image generated from 

the ultrasound technology is used to identify the heart 

diseases, monitor the human body parts affected after a 

major heart attack, determine the baby health conditions, 

monitor the pregnancy status and identify the abnormal 

situations in the blood vessels. 

7) X-ray 

X-ray technology is one of the familiar imaging 

technologies used to take pictures of the internal body. 

Ionizing radiation is injected from the Xray machines to 

the human body that shows the body parts by black and 

white shades. In general, bones have more calcium than 

other parts of the body. 

A. Overview of Computed Tomography 

Electrical engineer Sir Godfrey Hounsfield 

developed the first CT scanner in 1972. It was 

Hounsfield and Cormack that shared the 1979 Nobel 

Prize in Physiology or Medicine. A scientist named 

Allan McLeod Cormack also created a gadget that was 

similar about the same period. CT rapidly acquired 

popularity as a medical imaging tool following its 

introduction. CT scans are flat, three-dimensional 

models of physical objects. To create these pictures, X-

ray photons are transformed from electrical energy, 

which is basically just moving electrons. The light is 

then transformed back into electrons after passing 

through an object and being detected. The density of an 

item is inversely proportional to its X-ray transmissivity. 

It is possible to image the components of objects, 

including humans, using CT scans, which have varying 

densities.  

The CT scanner spins around the item completely, 

directing X-rays at it from all directions. The density of 

an object's constituent elements changes as a function of 

lighting angle, so does the intensity of photons that flow 

through it. Inconsistencies in successfully transmitted X-

ray photon readings rely on a computer processor to 

build a dataset.  The object's densities are subsequently 

utilized by this dataset to create a three-dimensional 

replica of it. The dataset is shown on screen or film in a 

sequence of two-dimensional parts. While there are a 
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number of factors that go into determining picture 

quality, the two most crucial are image resolution and 

evaluated contrast. 

1) CT Imaging 

CT's stellar reputation for radiologic diagnostic 

accuracy has propelled it to the forefront of medical 

evaluations.  One of the major problems with 

conventional X-ray imaging is that it can't differentiate 

between different types of tissues, such as muscles, 

ligaments, and blood vessels. Computed tomography 

outperforms the conventional X-ray method by 

combining multi-angular X-ray scanning with a 

mathematical theory that reconstructs the object based 

on its projections. The data collected by an X-ray beam 

as it moves through a patient's body is largely interpreted 

by a computer in a CT scan. CT scans make it easy to 

learn about an object's internal structure, including its 

size, shape, internal flaws, and density. It is possible to 

recreate a picture using X-ray data and the radon and 

inverse radon transform; this technique is called CT 

imaging. 

2) CT Image Reconstruction 

CT makes use of a motorized source of X-rays that 

are directed at various angles across the patient.   On the 

other side of the X-ray generator sit the specialized 

digital X-ray detectors that CT scanners use [19].  

Detectors transform the X-rays into electrical impulses 

as they pass through the patient. An analog-to-digital 

converter takes these electrical signals and turns them 

into digital information.  A digital-to-analog converter 

may take data from the digital matrix and turn it into 

little boxes with a range of greyscale to black and white. 

3) Major Factors Affecting the Quality of CT Images 

The accuracy of CT reconstructions is dependent on 

a wide range of parameters.  Image quality is affected by 

several important elements, including: 

a) Blurring 

Appropriate protocol factor values, patient mobility, 

and other factors might cause CT images to be blurry.  

Blurring in CT reconstructed pictures might happen 

when the patient moves about. A number of factors, 

including an uncooperative patient, breathing, heartbeat, 

etc., might cause the patient to move. The reconstruction 

methods are a bit more complex since they need to take 

into consideration and control the patient's z-direction 

movement—the degree of blurring in the image is 

directly related to the patient's momentum.   Important 

reasons of blurring include the following: 

• The method of operating the machinery 

• The correct values for the procedure factors 

• Image blurring as a result of patient motion 

• Ct value variation across image pixels for a 

homogenous material scan 

• Poor filter algorithm parameters or some filter 

algorithms themselves (for noise reduction)  

haze the picture 

b) Field of view (FOV) 

The field of vision refers to the area that can be 

chosen in order to recreate the CT scan.  It becomes 

challenging to detect abnormalities and the quality of the 

reconstructed CT picture could be diminished if the 

image is either too large or too small. 

a) Artifacts 

Artefacts are distortions or errors in images that are 

unconnected to the object being portrayed.  

Inconsistencies between the expected and displayed CT 

values are known as artefacts.  Metal artefacts, beam 

hardening, partial volume effects, patient movements, 

and other similar phenomena are common. 

• Beam hardening: A patient causes an X-ray 

beam to harden because its average energy 

increases as it passes through the body.   Cupping 

is another term for this item.   The correct 

algorithms, together with steps like boosting 

kvp, lowering slice thickness, pre-filtering X-

rays, and, ideally, avoiding regions with high X-

ray absorption rates, can help one effectively 

avoid this. 

• Metal artifact: Dental fillings, prosthetic limbs, 

surgical clips, and other metal objects might 

obstruct portions of projection data, leading to 

streaking artefacts.  By removing the metal 

material, this artefact can be diminished.   

• Patient motion: Artefacts of streaking can be 

generated in the reconstructed image as a result 

of both voluntary and involuntary motion.  In 
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order to prevent this, potential solutions include 

motion reduction, immobilization, positioning 

aid, and a reduction in scan time.  

• Software and hardware based artifacts: 

Artefacts in CT images may also be produced as 

a result of inadequate software inputs and 

inadequate apparatus.  Failure of mechanical 

components, rigidity of the gantry, mechanical 

assignment, aliasing, detector sampling, 

staircase, and tube arcing are among the many 

potential causes of artefacts. Additionally, poor 

parameterizations during CT image 

reconstruction lower image quality. If one wants 

better CT images, they can tweak or optimize a 

few key parameters in the computed tomography 

area. The pitch of the reconstructed slice 

thickness, scan range, patient position, tube 

current and potential, and detector configuration 

are all components of the collection of 

parameters. 

c) Visual Noise 

Visual noise is any kind of unwanted data that 

detracts from an image's aesthetic value. There are 

several potential sources of noise in CT scans. These 

include differences in voxel attenuation coefficients, 

mathematical computation mistakes, and faults in 

acquisition, transmission, and transmission. Disturbance 

to the visual field has a major influence on image 

quality, especially for objects with low contrast. 

III. COMPUTED TOMOGRAPHY (CT) IMAGE ANALYSIS 

TECHNIQUES 

CT scans' great spatial resolution and non-invasive 

capacity to depict inside structures make them useful in 

clinical diagnostics. However, raw CT images often 

contain noise, artifacts, and complex anatomical details 

that complicate direct analysis. Improving picture 

quality, extracting useful information, and bolstering 

automated diagnostic systems are all goals of image 

analysis. Two main groups of these methods exist: those 

that rely on more conventional image processing 

techniques and those that use more sophisticated ML 

and DL methods: 

A. Traditional Image Processing Techniques in CT 

Image Analysis 

Traditional image processing techniques focus on 

improving image quality and extracting features using 

deterministic algorithms. Key methods include 

1) Noise Reduction: 

CT images frequently exhibit noise as a result of 

modest radiation doses or the scanner.  Electromagnetic 

interference, environmental circumstances, or flaws in 

the imaging device are a few of the many potential 

sources of undesired noise in images taken by sensors, 

cameras, or scanners.  Filtering and smoothing are 

examples of preprocessing techniques that remove noise 

from images, which improves their quality and allows 

for more precise analysis. 

2) Spatial Filter based Techniques 

Denoising CT images with linear filters is a way to 

enhance diagnostic accuracy and picture quality by 

reducing noise from CT scans.  Each pixel in Figure 2 is 

averaged with its neighboring pixels using linear filters 

like median and averaging, which blurs edges but 

reduces noise. A median filter enhances edge retention 

and decreases blurring by replacing each individual 

pixel with the median value of the pixels immediately 

around it. Linear filters that estimate and remove noise 

using mathematical models while preserving picture 

properties include the Gaussian and Wiener filters. The 

noise type and the intended trade-off between lowering 

noise and keeping image detail dictate the filter that is 

most appropriate. 

 

Fig. 2. Spatial Filter based Technique 

• Linear/Mean filters: Noise reduction, edge 

sharpening, and illumination imbalance 

correction are all possible with the help of the 

Linear mean 
filter

Median filter

Harmonic 
mean filterGeometric 

mean filter

Arithmetic mean 
filter
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linear filter. These filters distort the image's 

edges and obliterate its fine features. They 

perform poorly when it comes to reducing 

signal-dependent noise. The method is 

implemented by applying a processing kernel 

correlation filter on the picture.  Applying the 

arithmetic mean filter to the damaged picture 

yields its average value. 

• Arithmetic Mean Filter: The central pixel 

value of the mask is replaced with the arithmetic 

mean of all the pixel values within the filter 

window. The local visual discrepancies are 

simply smoothed down using a mean filter. 

Reducing noise makes the image smoother, but 

it also blurs the edges. Equation (1) uses the 

geometric mean of the Sxy region's pixels to find 

the restored picture's f value at point (x, y). 

 𝑓(𝑥, 𝑦) =
1

𝑚𝑛
∑(𝑟, 𝑐) ∈ 𝑠𝑥𝑦 𝑔(𝑟, 𝑐) () 

The pixels surrounding 𝑠𝑥𝑦  are represented by 

the coordinates r and c, in that order. 

• Geometric Mean Filter: The difference 

between an arithmetic mean filter and a 

geometric mean filter is that the latter uses 

geometric values. This is the primary difference 

between the two.  A geometric mean filter was 

used to reconstruct the picture represented by the 

phrase.  In Equation (2), the phrase stands for a 

restored image that was processed using a 

geometric mean filter. 

 𝑓 ̂(𝑥, 𝑦) = [∏ 𝑔(𝑟, 𝑐)(𝑟,𝑐)∈𝑠𝑥𝑦 ]

1

𝑚𝑛
 () 

situations where the word "multiplication" is 

employed.  For every pixel that has been 

restored, the computation is simply the total of 

all the pixels in the sub-image region multiplied 

by 
1

𝑚𝑛
. 

• Harmonic Mean Filter: The harmonic mean 

approach is beneficial for the preponderance of 

noises, with the exception of pepper noise. It 

entails substituting the average grey value of 

nearby pixels for the grey value of each 

individual pixel.  Several kinds of noise, 

including Gaussian noise, are well-handled by it. 

• Median Filter: The median filter, the most 

famous order-statistic filter in image processing, 

substitutes the value of a pixel with the median 

of the intensity levels nearby using Equation (3). 

 𝑓(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑟,𝑐)∈𝑠𝑥𝑦 {𝑔(𝑟, 𝑐) () 

Where Sxy is a subimage (neighborhood) that is 

centered on the point (x, y), as previously stated. In 

determining the median, the pixel's value at (x, y) is 

being taken into consideration. 

3) Wavelet-based Techniques 

CT image denoising using wavelet-based filters is a 

popular technique due to its ability to effectively remove 

noise Wavelets decompose images into different 

frequency components, allowing for targeted noise 

removal and detail preservation. Common wavelet-

based filters include thresholding, shrinkage, and 

wavelet domain filtering 

4) Filtering in Frequency Domain 

Image sharpness and smoothness can be improved by 

frequency domain filtering. Low pass filtering, which 

involves attenuating high frequencies, is used to achieve 

smoothing.  By isolating the high-frequency 

components and attenuating the low-frequency ones, 

high pass filtering sharpens the sound. To apply filtering 

in the frequency domain, one must multiply the image 

by the filter transfer function. The following is a step-

by-step description of frequency domain filtering 

execution. 

B. Machine Learning-Based Techniques in CT 

ML enhances CT image analysis by enabling 

automated recognition and classification of complex 

patterns. Analytics in medical imaging involve using 

software to sift through medical imaging data in search 

of actionable medical information, such as past health 

issues and current disorders.  Developing high-

performing medical image analytics systems relies 

heavily on ML, as seen in Figure 3.  This article covers 

the three main categories of ML: supervised, semi-

supervised, and unsupervised: 
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Fig. 3. Machine Learning Technique 

1) Supervised Learning  

Training DT and NN typically involves supervised 

learning. The information supplied by the pre-

determined classification is crucial to both of these, as 

indicated earlier [20]. Applications that are able to 

analyses past data in order to predict future feature 

events also utilize this learning. Both regression and 

classification are broad categories that encompass 

supervised learning activities. This predictive model is 

constructed by the supervised learning method. 

Decision trees: A DT classifier uses a recursive 

partitioning process to divide the instance space.   When 

the branches of a decision tree come together, they form 

a root tree, a type of distributed tree that has just one 

branch (the root) and no branches that branch out. 

Linear regression: One of the many regression 

algorithms, linear regression1 seeks to do just that 

discover the interdependencies and correlations between 

the variables. The linear function represented by 𝑌 in 

ML models the relationship between a D-dimensional 

vector containing a continuous scalar dependent variable 

y (also called a label or target) and one or more 

explanatory variables (also called features, attributes, 

dimensions, data point, etc.). 

Naive Bayes: Bayesian classification is a statistical 

method for classification and one of the supervised 

learning methodologies. Using the establishment of 

outcome probabilities as a basis, it enables the principled 

capture of model uncertainty and implies a probabilistic 

model. Bayesian classification is primarily designed to 

address difficulties related to prediction. 

Logistic Regression: One way to forecast the 

probability of an occurrence is using LR, which involves 

fitting data to a logistic function. LR and other types of 

regression analysis employ a large number of numerical 

or categorical variables as predictors. 

2) Unsupervised Learning:  

The goal of unsupervised learning is to reveal how 

computers might learn to display input patterns in a way 

that reflects their statistical structure, rather than the 

other way around. Unsupervised learning differs from 

supervised and reinforcement learning in that it relies on 

the learner's prior biases to decide which aspects of the 

input structure should be incorporated in the output. In 

contrast, supervised and reinforcement learning have 

designated goal outputs or environmental assessments 

associated with each input. 

3) Clustering Based Technique 

Clustering methods organize comparable pixels or 

areas according to their texture, intensity, or other 

characteristics. Common techniques include: 

K-Means Clustering: Clustering, another name for 

cluster analysis, is an unsupervised ML technique that 

groups together comparable data points in large datasets 

without regard to the precise outcome. 

DBSCAN (Density-Based Spatial Clustering): 

Anomalies or irregular lesions in CT scans can be 

detected with this method since it identifies groups of 

arbitrary forms. 

4) Dimensionality Reduction Techniques 

Visualization, noise reduction, and feature extraction 

are all made easier by dimensionality reduction, which 

takes high-dimensional picture data and flattens it while 

keeping important patterns: 

Principal Component Analysis (PCA): Extracts 

the most significant components representing the 

variance in CT images, aiding in compression and noise 

suppression. 

Autoencoders: Effective denoising and anomaly 

detection are achieved by using neural network-based 

models that learn compact representations of CT images. 

These models restore normal patterns and identify 

deviations, making them ideal for these tasks. 

a) Semi-Supervised Learning  

A subset of ML techniques is semi-supervised 

learning (SSL). The dataset is intermediate between 

supervised and unsupervised learning because of its 

incomplete labelling [21]. Obtaining completely 

labelled datasets for CT image analysis can be a lengthy, 

laborious, and costly process that necessitates the 

Machine Learning Technique 

Supervised 

learning 

Semi supervised 

learning  

Unsupervised 

learning 
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services of trained radiologists. By utilizing the vast 

quantities of unlabeled data, semi-supervised 

approaches enhance model performance while 

decreasing reliance on annotated images. Resolving 

issues with both supervised and unsupervised learning is 

central to SSL's mission. The time and data needed to 

train supervised learning to classify test data is 

substantial, despite the efficiency of the method.  

Unsupervised learning, in contrast, uses clustering or the 

maximum likelihood approach to group data points 

according to their similarities without labelled data. 

C. Deep Learning-Based Techniques in CT 

DL is a subset of a larger class of ML techniques that 

use representation learning and are based on ANNs. A 

computational architecture is provided by deep learning, 

which learns from data by merging many processing 

layers, such as input, hidden, and output layers [22]. The 

three most popular deep learning algorithms are LSTM-

RNN, MLP, and CNN, or ConvNet. 

CNN: The CNN incorporates pooling, 

convolutional, and fully linked layers, which enhance 

the conventional ANN architecture. 

MLP: A multilayer perceptron (MLP) is another 

name for the feed-forward ANN. A typical MLP 

network consists of three primary layers: input, hidden, 

and output. 

LSTM-RNN: LSTM is an artificial architecture used 

in DL. When compared to traditional feed-forward 

neural networks, LSTMs feature feedback linkages. 

ANN: The architecture and operation of the human 

brain serve as inspiration for ANNs.   Complex non-

linear mappings between inputs and outputs can be 

learnt by the neurones that comprise them.  Since ANNs 

can pick up on finer patterns in high-dimensional 

imaging data, they find extensive application in CT 

image processing for tasks like segmentation, feature 

extraction, and classification. 

IV. NOISE CHARACTERIZATION AND ITS IMPACT ON 

COMPUTED TOMOGRAPHY (CT) IMAGE QUALITY 

CT image quality is critically influenced by various 

types of noise, which can obscure anatomical structures, 

reduce diagnostic accuracy, and affect quantitative 

measurements. Understanding noise sources, their 

characteristics, and mitigation strategies is essential for 

reliable image analysis and subsequent clinical decision-

making. This section presents the types of noise in CT 

imaging, methods for measurement, and techniques for 

noise reduction and calibration 

A. Noise in CT Images 

The delicate tissues of the human body are 

distinguished using CT's high contrast sensitivity. The 

capacity to perceive low-contrast structures can be 

impaired when noise is present. Accurate denoising of 

CT scans necessitates familiarity with both the specific 

kinds of source noise and the characteristics of generic 

noise 

B. Sources of Noise in CT Imaging 

The physics of X-ray capture, faulty scanner 

electronics, and inefficient reconstruction methods are 

only a few of the sources of noise in computed 

tomography (CT) pictures.  There are several primary 

sources including: 

1) Quantum (Photon) Noise 

The most common kind of image degradation in CT 

scans is known as quantum (photon) noise, which results 

from the randomness of the X-ray photons observed 

during the acquisition process. Because X-rays are 

emitted and absorbed according to probabilistic 

(Poisson) statistics, the signal collected by the detector 

fluctuates around a mean value, producing grainy 

variations in pixel intensity. Figure 4 displays the 

different gantry types and the semiconductor materials 

employed by the various systems. 

 

Fig. 4. CT Image in Effected Noise 

This type of noise becomes particularly pronounced 

in low-dose CT scans, where reducing the radiation 

exposure inherently decreases the photon count. 
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2) Electronic Noise 

An x-ray detecting device can lessen electrical noise. 

Radioactive particles and beam strengthening.  The 

detectors used in modern CT systems are solid-state 

devices [23].  The x-rays are transformed into visible 

light by the radiation-sensitive solid-state components 

that are used in every detector cell. Common examples 

of these materials include gadolinium oxide, cadmium 

tungstate, and gadolinium oxysulfide. 

3) Reconstruction Algorithm Effects 

Traditional filtered back projection (FBP) methods 

for reconstructing CT images usually result in increased 

picture noise despite decreased radiation dosage [24]. 

But new iterative reconstruction (IR) algorithms 

outperform their predecessors significantly when 

exposed to modest levels of radiation when it comes to 

noise. There is no clinical agreement on what constitutes 

a "acceptable" level of noise, even though CT screening 

for benign lesions can tolerate some noise in order to 

decrease the radiation dosage.  The most optimal method 

would involve creating images with a tolerable amount 

of noise using infrared algorithms and low-dose 

parameters. 

C. Methods for Noise Measurement 

Quantifying CT image noise accurately is crucial for 

assessing picture quality, refining imaging protocols, 

and directing post-processing methods. Noise in CT 

images is typically quantified using both spatial and 

frequency-domain approaches, as well as signal-to-

noise-based metrics. 

1) Signal-to-noise and contrast-to-noise ratios 

Commonly employed in signal processing are the 

SNR and the CNR, both of which measure image 

quality. The proportion of the average signal strength to 

the noise standard deviation is the definition of ROI and 

the criteria for meeting specifications. Although there 

are numerous different ways to define SNR, the most 

popular one is given by Equation (4): 

 𝐶𝑁𝑅 =  
|𝑀𝑒𝑎𝑛𝑅𝑒𝑔𝑖𝑜𝑛1 − 𝑀𝑒𝑎𝑛𝑅𝑒𝑔𝑖𝑜𝑛2 |

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑜𝑖𝑠𝑒
 (4) 

Equation (5) defines the signal-to-noise ratio, or 

SNR, as the ratio of the two: 

 𝑆𝑁𝑅 =  
𝑀𝑒𝑎𝑛 𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑛 𝑅𝑂𝐼 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑜𝑖𝑠𝑒
 (5) 

An improved SNR improves the reliability of 

computer analyses and the quality of the images 

produced by them. 

2) Noise Power Spectrum  

The NPS is a spatial frequency-dependent 

description of a system's noise response.  Equation (6) is 

used to evaluate the NPS over N ROIs: 

 𝑁𝑃𝑆 =
1

𝑁
∑ |𝐹[𝐼𝑖(𝑥, 𝑦, 𝑧) − 𝐼𝑖̅

𝑁
𝑖=1 |2 ∆𝑥∆𝑦∆𝑧

𝑁𝑥𝑁𝑦𝑁𝑧
 (6) 

The variables Ii, which represents the average signal 

strength in each voxel in ROI i, F, which stands for the 

Fourier transform operator, ∆𝑥∆𝑦∆𝑧, which denote the 

x, y, and z dimensions of the voxels, and 𝑁𝑥𝑁𝑦𝑁𝑧 , 

which denote the dimensions of each ROI in voxels, are 

all involved. 

3) Root Mean Square Error  

A voxel's root-mean-squared signal intensity 

difference (RMSE) between its reference and test 

images is equal to the average of all squared signal 

intensity differences between the two sets of data. This 

formula is described by Equation (7): 

 𝑅𝑀𝑆𝐸 =  √
1

𝑀𝑁
∑ ∑ (𝑥(𝑖, 𝑗) − 𝑦(𝑖, 𝑗)2𝑁

𝑗=1
𝑀
𝑖=1  (7) 

where x (i, j) is the reference image's grey level for a 

given voxel and y (i, j) is the test image's grey level for 

the same voxel. M is the sum of all horizontal voxels and 

N is the sum of all vertical voxels. 

Noise Reduction and Calibration in CT Imaging 

Table I provides an overview of key noise reduction 

and calibration techniques in CT imaging. These 

methods improve image quality by minimizing noise 

while maintaining diagnostic accuracy and patient 

safety. 
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TABLE I. OVERVIEW OF KEY TECHNIQUE IN NOISE REDUCTION IN CT IMAGE ANALYSIS 

Technique Description Primary Purpose 

Acquisition Parameter 

Optimization 

Adjusting tube current (mA), voltage (kVp), rotation 

time, and pitch to balance image noise and radiation 

dose. 

Improves image quality while minimizing 

patient exposure. 

Iterative Reconstruction 

Algorithms 

Advanced reconstruction methods (e.g., adaptive 

statistical iterative reconstruction, model-based IR) 

that reduce noise 

Produces smoother images with better 

detail at lower doses. 

Detector Calibration Routine calibration of detector gain, offset, and 

uniformity to ensure consistent performance across 

detector elements. 

Minimizes electronic and fixed-pattern 

noise. 

Scatter Correction Hardware or software techniques that reduce 

scattered radiation reaching the detector. 

Enhances contrast and reduces streak-like 

noise. 

Beam Hardening Compensation X-ray beam energy correction algorithms that account 

for the transition of the beam through dense tissues. 

Reduces streak artifacts and non-uniform 

shading. 

Post-Processing Filters Adaptive, anisotropic, or deep-learning–based filters 

applied to smooth noise while retaining structural 

detail. 

Enhances image appearance without 

degrading resolution. 

Protocol Standardization Harmonizing acquisition and reconstruction 

environment across scanners and operators. 

Improves reproducibility of image quality 

and noise levels. 

 

V. LITERATURE OF REVIEW 

This section provides a literature overview on AI 

methods for efficient and accurate analysis of CT picture 

quality, with an emphasis on methods for detecting 

strokes. Table II summarizes the key studies discussed 

below: 

Zhou et al. (2024) application of DL-based image 

reconstruction and noise reduction algorithms, or DLIR, 

has increased in clinical computed tomography (CT). 

This method is employed to evaluate the spatial 

resolution of a DCNN that is based on ResNet and has 

been trained on patient images.   In one patient's case, 

the lower left lobe of the liver was implanted with 

lesions that had variable degrees of contrast (−500, 

−100, −50, −20, −10 HU). The dosage levels of 50%, 

25%, and 12.5% were all simulated. Each lesion and 

dose condition were associated with a minimum of 600 

noise realizations. Three distinct intensity 

environments—DCNN-weak, DCNN-medium, and 

DCNN-strong were used to train deep convolutional 

neural networks (DCNNs), iterative reconstruction (IR), 

and the original filtered-back projection (FBP) on all of 

the noisy realizations. Decreasing the number of lesion 

pictures from the total number of images by first locating 

the noise in each dose condition and lesion. The 50% in-

plane and z-axis MTFs decline from 92.1% to 76.3% and 

95.5%, respectively, under varied contrast and dosage 

settings, when the dose level is dropped from 50% to 

12.5% normal dose utilizing FBP [25]. 

Li et al. (2024) One of the most cutting-edge imaging 

methods is CT. Adaptive assessment of blurring effects 

caused by insufficient sampling of the LR X-Ray 

detector using a DL network (SRECT-Net).  Once the 

scanning technique is set for a CT machine, the blur 

effect pretty consistent.  This finding provides the 

impetus for the suggested approaches, which can be pre-

trained using plenty of simulated datasets, fine-tuned 

with a single sample, and finally provide a machine-

specific SR model. Compare the performance of the 

suggested SRECT against that of existing DL-based CT 

SR techniques using SR CT imaging on a Catphan700 

phantom and a ham.   The results show that the proposed 

SRECT is more effective than current state-of-the-art 

CT SR reconstruction methods, which might be useful 

for improving CT resolution [26]. 

Parameswari et al. (2024) CT scans one at a time and 

compare three different CNN models to one thousand 

CT scans of the heart and blood vessels, both healthy and 

with calcium deposits. Three types of CT-image data are 

used in experimental test: original CAC-score CT, 

cardiac-segmented, and cardiac-cropped.  The rib cage 

as a whole is included in the first set, while the heart 

region is excluded from the second two sets.  Using 

Inception ResnetV2, VGG, and Resnet50, the 

exploratory test for calculating the incidence of calcium 

in a CT-picture had the highest accuracy rate of 98.52% 

[27]. 

Bos et al. (2024) CT images.  The 152 adult head CT 

scans that were included were acquired between March 
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and April 2021 from three separate CT scanners using 

various methods. From 77 to 75 years old, the 

participants' ages ranged from an average of 69.4 ± 18.3 

years. A deep learning-based method was employed for 

post-processing following the CT image reconstruction 

utilizing FBP and IR. Depending on the technique, 

postprocessing greatly decreased noise in FBP-

reconstructed images (by as much as 15.4% reduction), 

which improved the signal-to-noise ratio by as much as 

19.7%. These results seemed to be protocol or site 

dependent.  There was no discernible improvement in 

picture quality across the board for any reconstruction or 

post-processing, according to subjective evaluations. 

Reliability between raters was poor, and preferences 

differed. Using deep learning-based denoising software 

yielded superior objective images in regular head CT 

scans compared to FBP. One of the methods was the sole 

one that varied substantially from IR. Subjective 

assessments did not show a substantial therapeutic 

impact in terms of improved subjective image quality 

due to the low noise levels of full-dose images [28]. 

S P et al. (2024) preservation of information and the 

restoration of images tainted by noise rely heavily on CT 

medical images. Although the CNN was effective in 

removing the noise, the performance cost us clarity and 

the ability to preserve small features, which made the CT 

scans unusable.  Ischaemic stroke patients' brain CT 

images can be segmented and classified more accurately 

with the application of MA-CNN, an improved noise 

removal method. One way to measure how well an MA-

CNN works is by looking at its PSNR. The results show 

that the proposed model outperforms current denoiser 

approaches in terms of PSNR and ensures the 

preservation of high-quality pictures [29]. 

Abubaker, Mohamed and Abuzaid, 2023, Processing 

of images from computed tomography scans. One 

model, CTcov_model, is designed to process images 

from CT scans and is based on the previous model; 

another, Xcov_model, uses CNN and DL to process 

images from CXRs.  In order to generate a heat map 

showing the predicted spread of the disease, the Grad-

Cam algorithm provided support for both models.  The 

nine thousand images that made up the dataset were split 

evenly across three categories for CT and x-ray imaging.  

With the help of DA technology, trained on 80% of these 

photos and tested on 20%.  With an F1-Score of 98%, 

the Xcov_model stood out among the models that were 

developed and tested on the Google Collaboratory 

platform using Python [30]. 

Mahmoodian et al. (2023) uutilizing computed 

tomography (CT) pictures that segment four distinct 

tissue structures, the lungs, the tumors, the ablated 

tissues, and the surrounding healthy tissue MWA 

therapy is a famous method for targeting and eliminating 

tumors in the lung. Use the IoU to quantify the suggested 

method's efficacy. Background, lung, ablated, and tumor 

tissues all have the highest average IoU values of 0.99, 

0.98, 0.77, and 0.54, respectively, as shown by the 

approach. The results demonstrate that, even with the 

limited dataset, DL approaches when combined 

outperform individual base-learner models for all four 

kinds of tissue. Importance in medicine   Determining 

when all tumor tissue has been totally eliminated is a 

crucial issue with tumor ablation treatment [31]. 

Zeng et al. (2022) Using a noise-generating 

mechanism, Un-SinoNet trains an unsupervised DL 

network, offering a unique method to low-dose CT 

sinogram recovery. Training network using unlabeled 

low-dose CT scans. While learning the right gradient for 

low-dose CT sinograms unsupervised, Un-SinoNet 

should take into account the prior measurement features 

and statistical fluctuations in the CT noise-generation 

process using a maximum a posteriori probability 

(MAP) framework. Network training can be made more 

effective by using the gradient information from both the 

labelled high-dose CT sinogram and the unlabeled CT 

sinogram. To turn the proposed Un-SinoNet into a semi-

supervised DL network (Semi-SinoNet) that integrates 

the conventional and MAP goal functions, another 

option is to employ a small number of low-dose/high-

dose sinogram pairs. Executed the expected Un-SinoNet 

and Semi-SinoNet using the LUNGMAN phantom and 

the Mayo Clinic patient simulation datasets. This 

research outperforms competing methods in terms of 

picture resolution and noise reduction using both 

methodologies [32]. 

Inkinen et al. (2022) standard deviation of pixel 

values from uniform picture portions is a popular 

method for determining CT image noise. Experimented 

with DCNN CNN architecture for direct noise image 

estimation and UNet-CNN for denoised picture 

subtraction utilizing supervised and unsupervised 

noise2noise training methods. Took a look at the 
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background noise using local SD maps and CNN 

architectures in 3D and 2D. The DL-model was trained 

using data collected from a nine-scan, three-repetition 

anthropomorphic phantom CT imaging dataset.   The 

most effective method for direct SD estimation using 

3D-CNN was demonstrated on a phantom dataset, with 

MSE = 6.3HU and MAPE = 15.5%. Even in clinical 

contexts when ground truth data is unavailable, the 

noise2noise approach could still be useful. It is possible 

to characterize image quality more thoroughly by 

combining noise estimation with tissue segmentation 

[33]. 

Recent research in computed tomography has 

increasingly centered on the application of ML to 

optimize image quality, particularly through effective 

noise suppression while safeguarding diagnostically 

important structures. A range of DL reconstruction 

strategies has emerged, including convolutional and 

morphology-aware networks capable of producing 

cleaner, high-contrast images from low-dose 

acquisitions. Super-resolution approaches have been 

proposed to counter detector blur and sharpen subtle 

textures, while unsupervised and semi-supervised 

models allow denoising and sinogram restoration in 

scenarios with limited or unlabeled data. Other 

investigations emphasize post-processing pipelines that 

enhance standard reconstructions or integrate noise 

removal with tasks such as lesion segmentation and 

anatomical classification, supporting more accurate and 

streamlined diagnostic workflows. Collectively, these 

studies indicate a clear trend toward solutions that 

balance noise reduction, spatial resolution, and 

computational efficiency, with increasing attention to 

generalizability across scanners, interpretability of 

network outputs, and real-time feasibility for clinical 

deployment. The increasing amount of research 

demonstrates how machine learning has the power to 

revolutionize CT imaging, make low-dose procedures 

safer, and improve the accuracy of quantitative 

evaluations in a wide range of healthcare environment. 

TABLE II.  COMPARATIVE ANALYSIS OF RECENT STUDIES ON COMPUTED TOMOGRAPHY IMAGE QUALITY AND 

NOISE REDUCTION  USING MACHINE LEARNING. 

Author(s)

, Year 

Dataset Methodology Key Findings Noise 

Reduction / 

Image Quality 

Limitations Future Work 

Zhou et al. 

(2024) 

Patient liver CT; 

lesions inserted at 

contrasts 

−500→−10 HU; 

600 noise 

realizations; 3 

dose levels 

ResNet-DCNN vs 

FBP & IR; assessed 

MTF spatial 

resolution 

DCNN preserved 

resolution better 

than FBP/IR as dose 

↓ 

 denoising with 

spatial-res 

analysis 

Simulated 

lesions, not 

natural 

pathology 

Apply to real 

lesions; improve 

ultra-low-dose 

Li et al. 

(2024) 

Catphan700 

phantom & ham 

specimen 

SRECT-Net for 

super-resolution to 

counter detector 

blur 

Outperforms other 

SR CT; high-res 

recon from LR 

detector 

Resolution ↑ 

(not direct 

noise) 

Phantom only; 

clinical value 

unclear 

Test on patient 

CT; embed in 

reconstruction 

Paramesw

ari et al. 

(2024) 

1200 

cardiovascular CT 

scans 

Inception-

ResNetV2, VGG, 

ResNet50 on 

original, 

segmented & 

cropped CT 

98.52% accuracy for 

coronary calcium; 

cropped best 

Not aimed at 

noise; 

classification 

One dataset, 

limited 

pathologies 

Larger & noisy 

datasets; 

robustness studies 

Bos et al. 

(2024) 

152 adult head 

CTs from 3 

scanners 

FBP, IR, DL post-

processing (PS) 

DL post-processing 

cut FBP noise 

≤15.4%, SNR 

↑19.7%; subjective 

gain small 

Yes – objective 

noise ↓ 

Only modest 

subjective 

benefit; 

protocol-

specific 

Assess with dose-

reduction; 

optimize for user 

perception 

S P et al. 

(2024) 

Brain CT 

(ischemic stroke) 

Morphology-

Aware CNN (MA-

CNN) for 

denoising 

Higher PSNR vs 

other denoisers; fine 

detail preserved 

Explicit noise 

reduction & 

detail retention 

Not tested on 

big datasets or 

full pipeline 

Integrate with 

segmentation/clas

sification; real-

time 

Abubaker 

et al. 

(2023) 

9000 CT & CXR 

(3 classes) 

CNNs 

(Xcov_model, 

CTcov_model) + 

Grad-CAM 

F1 ≈ 98% (CXR); 

CTcov effective for 

CT  

No – 

classification 

only 

No CT noise 

analysis; no 

baseline 

compares 

Add quality/noise 

metrics; extend to 

detection 
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Mahmood

ian et al. 

(2023) 

Lung CT for 

microwave-

ablation therapy 

Ensemble of DL 

models for 

segmentation 

(lung, tumor, 

ablated) 

IoU: 0.99 

background, 0.98 

lung, 0.77 ablated, 

0.54 tumor 

Focus on 

segmentation; 

not denoising 

Tumor IoU 

moderate; 

small data 

Expand data; 

integrate dose & 

noise handling 

Zeng et al. 

(2022) 

LUNGMAN 

phantom; 

simulated Mayo 

sinograms 

Unsupervised Un-

SinoNet & Semi-

SinoNet for 

sinogram recovery 

(MAP) 

Better resolution & 

noise removal vs 

baselines 

Yes – low-dose 

sinogram 

denoising 

Mostly 

phantom/sim 

data 

Apply to patient 

sinograms; refine 

MAP prior 

VI.  RESEARCH GAPS 

Current DL models have made great strides in stroke 

detection, however there are still several gaps that are 

directly related to the study's goals and objectives. This 

void encompasses 

• Data Limitations: The capacity of many current 

models to generalize across varied populations 

and therapeutic contexts is compromised due to 

their dependence on tiny and frequently 

homogeneous datasets. The model's 

generalizability to different types of strokes and 

imaging quality is enhanced with the addition of 

a larger and more diverse dataset. This dataset 

comprises 9,900 photos for testing and 2,501 

images for training/validation, thus reducing 

data constraints.  In order to guarantee accurate 

stroke identification across different clinical 

environment and imaging situations, this work 

tries to increase the model's generalizability by 

increasing the dataset. 

• Model Complexity and Efficiency: In real-time 

clinical situations, complicated models like 

ResNet50 may not be viable due to their high 

computing costs. Through hyperparameter 

tweaking, this study seeks to optimize the CNN 

architecture for real-time stroke detection by 

achieving maximum efficiency and minimizing 

computing complexity without sacrificing 

accuracy. In comparison to more complicated 

models as in, the suggested model achieves great 

performance with substantially fewer operations 

by optimizing its architectural design, thus 

reducing computing complexity. The model's 

exterior accuracy (89.73%) lags behind state-of-

the-art standards, but its practicality for real-time 

application is guaranteed by its reduced design 

(20 M parameters), fulfilling a major clinical 

necessity.  An important obstacle to the use of AI 

in stroke care has been eliminated by these 

optimizations, which allow for real-time 

inference on conventional clinical hardware. 

• Segmentation and Localization: Accurately 

segmenting and localizing ischaemic lesions is 

still a difficulty, even though stroke detection 

accuracy is getting better. In order to make 

informed clinical decisions, it is essential to 

accurately segment the ischaemic core. In order 

to achieve very accurate ischaemic stroke 

localization, this project concentrate on building 

a CNN model that is specifically designed for 

stroke detection in CT images. 

• Interpretability and Clinical Trust: Clinical 

practice has been slow to embrace deep learning 

models due to their lack of transparency. This 

study intends to boost clinician trust by making 

the CNN model more interpretable and by 

providing clear visual explanations for stroke 

predictions using explainability approaches. 

• Real-World Validation: Validation in real 

clinical environments is frequently absent, 

despite the fact that current models have 

demonstrated promise in controlled 

environments. The purpose of this study is to 

evaluate the CNN model using crucial metrics 

such as accuracy, precision, recall, F1-score, and 

AUC-ROC in order to ensure its reliability and 

effectiveness for real clinical usage. 

VII. METHODOLOGY 

CT images to assess their clarity, contrast, and 

diagnostic accuracy while identifying and quantifying 

the impact of noise. Noise arising from photon statistics, 

electronic components, or reconstruction algorithms can 

degrade spatial resolution and obscure anatomical, 

affecting clinical interpretation. Careful analysis of 

image quality metrics, along with noise measurement 



Letters in High Energy Physics                                                                                                                                 Volume 2024 

ISSN: 2632-2714                                                                                                                                                             December 

 

8027 

 

and reduction strategies, ensures reliable visualization 

and enhances the diagnostic value of CT imaging The 

proposed approach for Computed Tomography (CT) 

image analysis in brain stroke detection follows a 

comprehensive pipeline, as depicted in Figure 5. A 

curated dataset of CT images of the brain from strokes 

was first assembled in DICOM format and then 

converted to NIfTI format to make it accessible across 

all software platforms. Images were preprocessed to 

ensure they were ready for learning. This included 

scaling them to a fixed spatial resolution, pixel-intensity 

transforming them to make soft tissue contrast more 

noticeable, converting colours as needed, applying 

spatial filters to remove noise, and label encoding them 

so they could be associated with their respective 

diagnostic categories. A range of data augmentation 

procedures were employed to rectify class imbalance 

and increase dataset diversity. These techniques 

included rotating, horizontal and vertical flipping, 

scaling, and random cropping. Following this, image 

normalization was applied to stabilize pixel distributions 

and speed up convergence during training. Properly 

sized training, validation, and testing subsets were 

created from the processed dataset, ensuring that each 

split had an adequate representation of each class.  After 

that, various learning architectures such as ResNet, 

MLP, and CNN were used to automatically classify 

regions affected by stroke by extracting spatial and 

textural features from the preprocessed CT images. The 

model's hyperparameters, such as learning rate, batch 

size, and dropout rate, were optimized with the help of 

the validation set.  Methods for early pausing were used 

to avoid overfitting. Lastly, during testing, verified the 

trained models' F1-score, recall, precision, and accuracy 

on fresh data. Efforts paid off, and now know which 

design has the best chance of aiding clinicians in making 

decisions about CT-based stroke analyses. 

 

Fig. 5. Flowchart for computed tomography image 

analysis using machine learning 

A. Data Collection 

"Normal" and "Stroke" are the two types of brain CT 

images that make up the dataset used for this research.  

There are a variety of sizes and resolutions among the 

2501 photos in the dataset, which includes 1551 normal 

and 950 stroke photographs. Brain scans showing 

ischaemic regions or haemorrhages are placed in the 

"Stroke" category, whereas those showing normal brain 

structure are placed in the "Normal" category. Image 

show most features have low variation except one with 

high values, highlighting its relevance for computed 

tomography image some of the visualizations are given 

below: 

 

Fig. 6. Sample image of stroke brain CT dataset 

 

 
Brain stroke CT image 

dataset 

Image Preprocessing 

 DICOM to NIfTI conversion 

Image Resizing 

Pixel intensity transformation 

Color conversion 

Remove noise 

Label encoding 

Data Augmentation 

Image Normalization 

Data Splitting 

Training Validation  Testing 

Implement model of CNN, 

ResNet, VGC16 and MLP 

Performance matric of 
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Sample images from stroke brain CT dataset 

showing three categories of brain conditions across nine 

axial CT scan slices in Figure 6. The dataset comprises 

three distinct classes bleeding displaying hyperdense 

regions indicative of acute hemorrhage, ischemia 

showing hypodense areas characteristic of infarction, 

and normal presenting typical brain parenchymal 

density patterns. Each row represents different 

anatomical levels of the brain, demonstrating the diverse 

presentation of pathological findings across various 

cranial sections. The images are presented in standard 

grayscale CT format with bone window environment, 

providing clear visualization of intracranial structures 

and pathological changes essential for automated stroke 

classification systems. 

 

Fig. 7. Heatmap of Predicted  Stroke Image 

Heat map visualization of activation regions in brain 

CT scan showing automated feature extraction and 

attention mechanisms in Figure 7. The color-coded 

overlay displays varying intensity levels of model 

activation, with yellow regions indicating highest 

activation areas, green showing moderate activation, and 

blue representing lower activation zones against the 

purple background. Stroke classification using this 

thermal mapping method reveals the convolutional 

neural network's focus areas, drawing attention to the 

most diagnostically important anatomical features and 

pathological areas that aid in the automated decision-

making process for differentiating between ischaemic, 

bleeding, and normal brain conditions. 

 

Fig. 8. Actual and predicted normal images 

Classification results matrix displaying model 

predictions versus ground truth labels for stroke brain 

CT dataset validation in Figure 8. The 6×4 grid presents 

24 representative test cases with actual clinical 

diagnoses (ground truth) labeled above each image and 

corresponding model predictions shown below. The 

dataset encompasses three primary categories: stroke 

(hemorrhagic and ischemic), normal brain anatomy, and 

various pathological conditions. Each CT scan slice 

demonstrates the algorithm's performance in automated 

classification, revealing both successful predictions and 

potential misclassification cases. 

 

Fig. 9. Pixel intensity distribution per class 

Pixel intensity distribution analysis across three 

stroke classification categories in brain CT dataset in 

Figure 9. The histogram displays the frequency 

distribution of Hounsfield Unit (HU) values for normal 

(orange), ischemic (blue), and hemorrhagic (green) 

brain tissue classes. The hemorrhagic class exhibits the 

highest pixel count concentration in the lower intensity 

range (0-200 HU), indicating hypodense characteristics 

typical of acute bleeding. Normal and ischemic tissue 

show overlapping distributions with peaks around 100-

150 HU, representing standard brain parenchymal 
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density. The exponential decay pattern across all classes 

demonstrates the predominance of lower-intensity 

pixels in CT brain imaging, with hemorrhagic regions. 

B. Image Preprocessing 

The preprocessing pipeline includes DICOM to 

NIfTI conversion for format standardization, image 

resizing to uniform dimensions, pixel intensity 

transformation using Hounsfield Units with windowing, 

color conversion to RGB format, noise removal via 

filtering techniques, and label encoding for categorical 

classifications. Data augmentation enhances dataset 

diversity through rotations and transformations, while 

image normalization standardizes pixel ranges. Data 

splitting creates stratified training, validation, and 

testing subsets ensuring balanced distributions. Key 

steps in data preprocessing include: 

• DICOM to NIfTI conversion: The control CT 

images were converted from their native 

DICOM format to a three-dimensional non-

proprietary NIfTI-1 file format.  This conversion 

made it easier to preprocess images with SPM8 

afterward, since the latter uses the NIfTI-1 file 

format for its image data. 

• Image Resizing: Using bilinear interpolation, all 

of the photos were scaled down to a consistent 

256 × 256-pixel dimension. 

• Pixel intensity transformation: Intensities of 

the pixels in the CT scans. The Hounsfield unit 

(HU) was used to measure the pixel intensities. 

Through the utilization of the formula HU + 

1000, the HU range of -1000 to -100 was 

elevated to 0-900. 

• Color conversion: The term "colour 

conversion" refers to the process of changing an 

image's colour space from one standard to 

another. It facilitates the separation of colour, 

saturation, and brightness, which in turn 

facilitates picture enhancement, segmentation, 

and analysis. In CT image visualization, 

grayscale conversion or applying specific color 

maps improves contrast and highlights structures 

or lesions more clearly. 

• Remove noise: Denoising, or noise removal, is a 

technique for improving images by minimizing 

distracting noise while preserving finer details.  

The Gaussian filter is a popular tool for noise 

reduction because it flattens images by averaging 

the values of nearby pixels using a weighted 

Gaussian function. This helps to reduce high-

frequency noise while keeping the general 

structures of the images intact. 

• Label encoding: ML models can make use of 

numerical representations of category labels 

(such as text-based class names) through a 

process known as label encoding. A brain stroke 

CT dataset, for instance, could have the labels 

"normal," "ischaemic," and "hemorrhagic" 

recorded as 0, 1, and 2, respectively, for each of 

these distinct categories. This method is simple 

and efficient for algorithms that can naturally 

interpret ordinal values. 

C. Data Augmentation 

Data augmentation involves "transforming" visual 

data for training purposes in order to increase the amount 

of data.  A number of transformations are possible with 

images, including rotation, flipping, horizontal shifting, 

scaling, distortion, brightness/contrast adjustments, and 

noise addition [34]. Through data augmentation, the 

number of photos rose by a factor of nine. The majority 

of computed tomography (CT) scans involve the patient 

lying face down, however certain facilities arrange their 

patients so that their left side, where their hearts are 

located is positioned precisely in the center of the FOV.  

In such a situation, the body can end up rotating around 

10 degrees due to the bed's curvature.  In each image, the 

heart was rotated by -10° and +10° to mimic this effect, 

bringing its tilt into alignment with what was shown in 

the real CT scan.  Results from efforts to make contrast-

enhanced CT images more resistant to pixel value 

changes caused by the fact that contrast agent density 

varies from case to case are shown in Figure 10. 

 

Fig. 10. Augmented Sample Image 

All of these methods included rotating, adjusting the 

height and breadth, shearing, zooming, and horizontally 

flipping.  To make the model more resistant to unknown 
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input, it is necessary to introduce variability into the 

training data. 

• Rotation: The following is the rotation matrix 

for an angle θ: 

𝑅(𝜃) =  [
cos 𝜃 −𝑠𝑖𝑛𝜃
sin 𝜃 cos 𝜃

] 

• Translation (shifting): so that 𝛿𝑥  and 𝛿𝑦 

represent a change in the x and y axes, 

respectively. 

𝑇(𝛿𝑥 , 𝛿𝑦) =
1 0 𝛿𝑥

0 1 𝛿𝑦

0 0 1

 

• Scaling (Zooming): To apply an S-fold scaling 

to a picture, the scaling matrix is 

𝑆(𝑠) = [
𝑠 0
0 𝑠

] 

D. Image Normalization 

The values of the pixels were scaled down to the 

interval [0, 1] by dividing them by 255. It alters the 

intensity value range of the pixels and transforms an 

input picture into a visually more recognizable format. 

When it comes to grade descent, it's quicker and steadier. 

The model's convergence during training is accelerated 

by this normalization phase, which scales the input 

characteristics to a standard range. 

E. Data Splitting 

The dataset was divided into 3 sections, as shown in 

Figure 11, with training comprising 80%, validation 

10%, and testing 10%. This division utilized a 

substantial portion of the data to train the model.  

 

Fig. 11. Data Splitting Sample Training Validation and 

Testing 

Although objective assessments of its efficacy are 

provided by distinct validation and test instances. 

F. Proposed Models 

This section provides a theoretical overview of the 

ML algorithms that were utilized in this investigation. 

1) Convolutional Neural Network (CNN) 

CNNs have quickly become the gold standard of 

image classification methods due to their exceptional 

performance in applications such as object detection, 

activity recognition, segmentation, and illness diagnosis.  

CNNs' capacity to learn and extract features 

autonomously, without any prior knowledge or human 

involvement, gives them the advantage of being able to 

differentiate complicated picture shapes [35]. Figure 12 

displays the several layers utilized by CNN 

architectures, such as convolutional, pooling, and fully 

connected layers, that enable them to learn and extract 

visual data independently. The following formula is 

utilized to ascertain the values of successive feature 

maps; here, h represents the kernel and f represents the 

picture input. In Equation (8), the row and column 

indexes of the result matrix are represented by m and n, 

respectively. 

𝐺[𝑚, 𝑛] = 𝑓(𝑥)[𝑚, 𝑛] = ∑ ∑ ℎ[𝑗, 𝑘]𝑓[𝑚 − 𝑗, 𝑛 − 𝑘]𝑘𝑗

 (8) 

 

Fig. 12. Architecture of CNN model 

Pooling Layer: the pooling layer is activated. It is 

just another strong and widely used method for solving 

the same problem. An invariant representation for small 

input translations can be created with the help of the 

feature maps and pooling operations of the previous 

layers in a short pooling layer down sample [35]. The 

following are examples of frequently used functions that 

specify the pooling technique among others: 
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Average pooling: This is used when want to get the 

average value for every area on the visual map. 

Maximum pooling: This is used when getting the 

maximum value for each patch on the feature map is the 

objective; it is also called Max-pooling.  

Activation Functions: DL models can learn 

nonlinear prediction bounds with the use of activation 

functions, which introduce nonlinearity into the models. 

An activation function is a tool for converting input 

signals into output signals in ANNs. Following this layer 

in the stack, this signal is utilized as an input. Presented 

here are some of the most popular activations employed 

by CNN: 

Sigmoid activation function: An activation function 

that is not linear is the most typical. The sigmoid 

function is a popular tool for binary classification since 

it takes input in the 0 to 1 range and changes it. To 

summaries, consider the following Equation (9). 

 𝑓(𝑥) =
1

𝑒−𝑥 () 

Tanh functions are similar to sigmoid functions; 

however, they are symmetric with respect to the origin. 

Equation (10) gives the outcome of this activation 

function since it is a zero-centered function with a scale 

from -1 to 1: 

 𝑓(𝑥) = (
𝑒𝑥−𝑒−𝑥

𝑒𝑥−𝑒−𝑥) (10) 

ReLU function: The rectified linear unit, or ReLU 

for short, is a prominent non-linear function in 

ConvNets. Compared to other functions, ReLU is more 

efficient since it activates a limited subset of neurones at 

a time rather than the whole network. Equation (11): 

 𝑓(𝑥) = max(0, 𝑥) (11) 

SoftMax Activation Function: The sigmoid 

function is employed for binary (0, 1) classification, 

while SoftMax is employed for handling multiclass 

classification.  Each data point for each class has a 

probability that the number of network neurones in the 

output layer of the NN the same as the number of target 

classes, according to the SoftMax function.  So, here's 

the Equation (12). 

 𝜎(𝑧)𝑗 =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑗𝑘
𝑘=1

𝑓𝑜𝑟 𝑗 = 1, … … 𝑘 (12) 

2) VGC 16 

The 16-layer Visual Geometry Group 16 (VGG16) is 

famous for its work in picture classification.  Medical 

imaging applications heavily utilize it due to its reliable 

performance and ability to extract hierarchical 

properties. 

The architecture analyses input images using many 

convolutional layers equipped with modest 3 × 3 filters.  

After every convolutional process, the non-linear ReLU 

activation function is applied.  This enhances the model's 

capacity to understand and convey intricate correlations 

in the data. 

Layers that are fully connected  amass the 

information, and then analyses it for classification 

purposes after the convolutional layers have extracted 

features.  One area where VGG16 has proven useful is 

medical imaging, where it can distinguish between 

normal, benign, and cancerous images. Last but not 

least, in order to make accurate and interpretable 

predictions, the SoftMax layer generates a probability 

distribution by giving each category a likelihood. 

Medical image analysis applications, such as the 

detection and categorization of lung illnesses, greatly 

benefit from VGG16's systematic and structured design.  

Equation (13) relies on it for crucial healthcare tasks 

because of its capacity to integrate hierarchical feature 

extraction with robust classification, which guarantees 

accurate and dependable outcomes. 

 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑖) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑐
𝑗=1

 (13) 

A categorical cross-entropy loss function is used to 

fine-tune the model's predictions by tracking the 

difference between the actual and predicted labels. 

Equation (14) enhances the model's accuracy and 

reliability for medical diagnosis by teaching it to 

distinguish between benign, normal, and malignant 

states with the addition of this loss function. 

 𝐿(𝑦, 𝑦̂) = − ∑ 𝑦𝑖 log(𝑦𝑖̂)
𝑐
𝑖=1  () 

The prediction probability for class i, the real label 

for class I, and the L-loss value are represented by 𝑦𝑖̂. 

3) ResNet 

ResNet (Residual Network) for CT image 

classification leverages skip connections to enable 

training of very DNN without vanishing gradient 

problems. The architecture processes CT images 
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through multiple residual blocks, where each block 

learns residual mappings instead of direct mappings, 

allowing the network to preserve important diagnostic 

features while learning complex patterns[36]. The CT 

images are normally prepared for multi-class disease 

classification by applying Hounsfield Unit 

normalization and window/level adjustments as 

preprocessing steps. A fully connected classifier with 

SoftMax activation is then used after the images have 

been passed via convolutional layers, batch 

normalization, ReLU activations, global average 

pooling, and so on. Equation (15) and an Equation (16) 

can be used to represent a simplified residual block. 

 𝑦 = 𝑥 + 𝐹(𝑥; 𝑊) () 

 𝐹(𝑥; 𝑊) = 𝑊2𝜎(𝐵𝑁(𝑊1𝑥)) () 

The block input is represented by x, the 

convolutional weights are W1 and W2, batch 

normalization is denoted by BN, and σ is a ReLU 

activation. With predictions obtained from the SoftMax 

function in Equation (17), the network produces logits z 

for K classes after going through stacked residual stages 

and global average pooling: 

 𝑝𝑐̂ =
exp (𝑧𝑐)

∑ exp (𝑧𝑗)𝑘
𝑗=1

 () 

Where 𝑝𝑐̂ represents the probability 

4) MLP classifier 

This feed-forward ANN uses a MLP architecture, 

which consists of an input layer, an output layer, and a 

hidden layer (or layers) [37].   As shown in Figure 13, 

each layer of an MLP architecture has a directionally 

connected neurone or neurones that communicate with 

those in the layer below and above it. The perceptron 

takes in a large number of real-valued inputs, creates a 

linear combination using those inputs as weights, and 

then runs that value through a nonlinear activation 

function to produce a single output.   One way to 

represent MLP is using Equation (18): 

 𝑦𝑡 = 𝜑(∑ 𝑤𝑡 , 𝑥𝑡 , +𝑏𝑡
𝑛
𝑗=1 ) (18) 

The hidden unit layer receives the activation function 

𝜑 as weight, x as input, and 𝑏𝑡 as bias.   Classification 

tasks can be accomplished with the help of scikit-learn 

models, wherein the network learns to associate input 

features with output labels.  

 

Fig. 13. Architecture of MLP model 

Training a network entails feeding it input 

information, computing an output, and then, to reduce 

the discrepancy between the anticipated and real labels, 

modifying the internal weights via backpropagation.  As 

long as the model reaches an optimal solution within 300 

iterations (max_iter=300), the results consistent between 

runs thanks to a fixed random_state=42. The model is 

able to detect complex, non-linear patterns in the data 

because of the configuration. 

G. Performance Matrix 

Consider using the diagnostic confusion matrix 

(Figure 14) in conjunction with other important 

diagnostic metrics such as sensitivity (REC), specificity 

(true negative rate), ACC (PRE), and F1 when 

evaluating classifier models. 

 Actual Value 

Predicted 

value 

 Positive Negative 

Positive TP FP 

Negative FN TN 

Fig. 14. Confusion matrix 

• False positive (FP) indicates the total number of 

incorrect predictions where the model 

mistakenly classifies normal cases as positive. 

• A False Negative (FN) is the culmination of all 

the incorrect predictions that the model makes 

when it fails to identify genuine stroke cases and 

incorrectly classifies them as negative. 

• The number of times a model correctly identifies 

real stroke cases as positive is called the number 

of true positives (TP). 

• The amount of predictions that accurately 

classify normal brain scans as negative is one 

metric for accuracy in model-based brain scan 

categorization. 
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1) Accuracy 

The classification model's ACC is found by dividing 

the number of correct predictions by the total number of 

predictions. Although accuracy gives a good idea of how 

well a model is doing overall, it might not be able to tell 

how it works on datasets that aren't balanced. The 

formula for this statistic is given by Equation (19), 

which represents the division of the total dataset 

instances by the number of cases that were correctly 

classified. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100 (19) 

2) Precision 

Medical diagnosis depends on high accuracy for two 

reasons: first, to eliminate false alarms (as described in 

Equation (20)), and second, to assess the fraction of 

actual positive predictions out of all positive predictions 

made by the model: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑅
× 100 (20) 

3) Recall 

A high recall is essential in medical diagnosis since 

it reduces the number of missed diagnoses; for example, 

when the data actually conforms to the class stated in 

Equation (21) for stroke cases, a high recall ensures that 

actual cases were correctly diagnosed: 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100 (21) 

 

 

4) F1 Score 

The harmonic mean of PRE and REC is the F1, 

which is a metric that is particularly advantageous when 

both are equally significant for model evaluation.  

Explained in Equation (22) below, it shines when 

working with datasets that are severely skewed: 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑟𝑒𝑐𝑎𝑙𝑙×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (22) 

5) ROC Curve 

The AUC and the ROC curve are two methods for 

assessing the proposed models' efficacy. The ROC curve 

displays the category model's accuracy across all 

thresholds. The line that follows is made up of the 𝑇𝑃𝑅 

and the F𝑃R. 

VIII. RESULT AND DISCUSSION 

The computed tomography brain stroke CT image 

dataset is the subject of this section, which presents the 

experimental results for the identification of brain 

strokes using DL and machine learning approaches. 

REC, ACC, PRE, ROC AUC, and F1, all important 

measures for binary classification tasks were used to 

evaluate the model's performance.  Python was used for 

the implementation on Google Colab's Jupiter Notebook 

environment. TensorFlow, Keras, scikit-learn, pandas, 

NumPy, seaborn, and matplotlib are essential Python 

libraries for processing and assessing computed 

tomography images. The studies were conducted using 

a computing system capable of building deep learning 

models for high-resolution computed tomography image 

analysis, including CNN, VGG-16, MLP, and ResNet 

architectures.  In this configuration, and have an Intel i7 

CPU, a 2 TB solid-state drive, an NVIDIA GeForce 

RTX graphics card, and a 3.4 GHz clock speed. The 

analysis includes performance comparison of individual 

models like CNN, VGG-16, ResNet, and MLP 

classifier, as well as their comprehensive evaluation 

through confusion matrices and ROC curve analysis on 

computed tomography imaging data. The following 

outputs provide detailed insights into the stroke 

detection results from computed tomography scans, 

supporting the effectiveness of the proposed approach 

for automated medical diagnosis in clinical 

environments utilizing computed tomography image 

quality standards. 

 

Fig. 15. Confusion matrix of CNN classifier 

The CNN classifier's confusion matrix on the dataset 

of CT images of brain strokes is shown in Figure 15. The 

y-axis of this classification performance matrix displays 
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the actual labels, while the x-axis displays the 

anticipated labels. Class 0 hit a very high rate of 

accuracy with 448 right predictions and 3 false positives, 

whilst Class 1 was slightly less accurate with 210 right 

predictions and 10 FN.  Darker blue indicates greater 

values on the colour scale, which represents the forecast 

frequency. The overall performance demonstrates strong 

classification accuracy. 

 

Fig. 16. Confusion matrix of ResNet model 

The confusion matrix of the ResNet model for the 

cerebral stroke CT image dataset is depicted in Figure 

16.  On one side of the matrix, and can see the 

classification performance, and on the other, and see the 

anticipated labels. There were 121 accurate predictions 

and 6 false positives in the Normal class and 94 accurate 

predictions and just 3 false negatives in the Stroke class. 

On a scale from 0 to 120, the colour gradient goes from 

white at the bottom to a deep reddish brown at the top. 

The ResNet model demonstrates excellent classification 

performance with high TPR and minimal 

misclassification errors between normal and stroke cases 

 

Fig. 17. Confusion matrix of VGC 16 Model 

Confusion matrix for the VGG-16 model. In Figure 

17, the classification performance matrix, the x-axis 

displays the predicted labels and the y-axis displays the 

actual labels. In contrast to the Stroke class's 100 

accurate predictions and 6 false negatives, the Normal 

class managed 141 right predictions. At lower levels, the 

colour scale is light blue; at higher values (up to 140), it 

becomes dark blue. The VGG-16 model demonstrates 

robust classification accuracy with high precision for 

both normal and stroke cases, showing minimal 

confusion between the two classes. 

 

Fig. 18. Confusion matrix of MLP classifier 

Using the y-axis for actual labels and the x-axis for 

predicted labels, the matrix displays the classification 

performance in Figure 18. The Normal class achieved 

157 correct predictions with 7 false positives, while the 

Stroke class had 78 correct predictions with 9 false 

negatives. The color scheme uses a green gradient, with 

darker green representing higher values and lighter 

green indicating lower values. The MLP classifier 

demonstrates good classification performance, though 

with slightly higher misclassification rates compared to 

deep learning models, particularly showing 9 false 

negatives for stroke detection. 

 

Fig. 19. Accuracy curve of VGC 16  model 
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Virtual G-Network-16 Accuracy Curve Figure 19 is 

a plot showing the training and validation accuracy over 

a span of 10 runs. Throughout training, the blue line—

representing accuracy sprints from around 0.90 at epoch 

0 to nearly 1.00 by epoch 2, and it stays high. The orange 

line shows validation accuracy, starting at around 0.90, 

peaking at approximately 0.97 around epoch 2, with 

slight fluctuations but stabilizing near 0.96 in later 

epochs. The congruence between the two curves' 

training and validation accuracies proves that the models 

performed admirably with little overfitting. 

 

Fig. 20. Loss graph of VGC 16 classifier 

The loss curve for the VGG-16 model, which 

illustrates the training and validation loss over a period 

of 10 epochs, is detailed in Figure 20. Commencing at 

around 1.1 and plunging precipitously to almost 0.0 by 

epoch 2, the blue line signifies the training loss. From 

there, it remains pretty consistent at low levels for the 

remaining epochs. The orange line shows validation 

loss, beginning at around 0.25, quickly dropping to 

approximately 0.15 by epoch 1, with slight fluctuations 

between 0.15-0.20 but generally maintaining low and 

stable values. Model training was successful with strong 

generalization performance and minimal overfitting 

when both loss curves converged to low values. 

 

Fig. 21. Accuracy curve of CNN classifier 

The CNN classifier's training and validation 

accuracy contours for the cerebral stroke CT image 

dataset are illustrated in Figure 21.  Accuracy progress 

over 50 epochs is depicted in the plot.  The blue line with 

the circles on it shows the training accuracy, which is 

around 0.86 at the beginning and rises to nearly 0.99 by 

the end of the 15th epoch, and then stays extremely high. 

The orange line with triangle markers shows validation 

accuracy, beginning around 0.85 and exhibiting more 

fluctuation while generally trending upward to stabilize 

around 0.95-0.96 The training accuracy demonstrates 

consistent improvement and convergence, while 

validation accuracy shows characteristic oscillations but 

maintains good generalization performance, indicating 

effective model learning without significant overfitting 

 

Fig. 22. Loss graph of CNN classifier 

Curves representing the loss during CNN classifier 

training and validation. The plot displays the loss 

progression over 50 epochs in Figure 22. The blue line 

with the circles on it shows the training loss, which is at 

0.38 at the beginning and quickly drops to around 0.0 by 

the 20th epoch, staying at very low values for the rest of 

the generations. The orange line with triangle markers 

shows validation loss, beginning around 0.20 and 

exhibiting fluctuations between 0.10-0.20 with 

occasional spikes, but generally stabilizing around 0.15. 

The steep decline in training loss indicates effective 

learning, while the relatively stable validation loss with 

some oscillations suggests good generalization 

capability with minimal overfitting. 

TABLE III.  PROPOSED MODELS PERFORMANCE ON 

COMPUTED TOMOGRAPHY ON BRAIN STROKE CT 

IMAGE DATASET 
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Measure CNN VGC 

16 

ResNet MLP 

Classifier 

Accuracy 99.50 96.50 97.75 94 

Precision 99.60 96.54 96.99 95 

Recall 99.40 97.10 98.56 96 

F1-score 99.50 97.34 97.77 95 

ROC 

AUC 

99.58. 98.10 97.75 98.20 

 

Fig. 23. Comparison of model performance metrics 

Figure 23 and Table III show the results of 

comparing the suggested models' performance on a 

dataset of CT images of brain strokes.  The CNN 

classifier got the highest performance with a total of 

99.50% accuracy, 99.60% precision, 99.40 percent 

recall, 99.50% F1-score, and 99.58%  ROC area under 

the curve. Among its competitive metrics, the ResNet 

model achieved 97.75% ACC, 96.99% PRE, 98.56% 

REC, 97.77% F1, and 97.75% ROC AUC.  Strong 

performance was demonstrated by the VGG-16 model 

with 96.50% ACC, 96.54% PRE, 97.10% REC, 97.34% 

F1, and 98.10% ROC AUC.  The MLP classifier was 

still successful, although it had the worst performance 

metrics according to 98.20% ROC AUC, 95% F1-score, 

96% recall, 95% precision, and 94% accuracy. All 

models demonstrated excellent discriminative capability 

for brain stroke detection, with the CNN model 

establishing superior classification performance across 

all evaluation metrics. 

 

Fig. 24. Roc curve of for different classifier on brain 

stroke CT image dataset 

The ROC curves for various classifiers are compared 

using the cerebral stroke CT image dataset, as illustrated 

in Figure 24. Here Shows the four models' Receiver 

Operating Characteristic curves: CNN (AUC= 0.9958), 

VGC-16 (AUC= 0.9810), ResNet (AUC= 0.9775), and 

MLP (AUC= 0.9820). All curves demonstrate excellent 

classification performance, with steep rises toward the 

upper-left corner and minimal distance from the ideal 

point (0,1). Random classification (AUC = 0.5) is shown 

by the diagonal dashed line, which shows that all models 

have greater discriminative ability for differentiating 

between non-stroke and stroke patients in CT brain 

images. 

The proposed approach leverages an ensemble of 

deep learning models CNN, VGG16, ResNet, and MLP 

to perform comprehensive analysis of brain CT images 

for stroke detection. Each model contributes distinct 

strengths: CNN effectively captures local spatial 

patterns, VGG16 extracts deep hierarchical features 

through its multiple convolutional layers, ResNet 

mitigates vanishing gradient issues enabling deeper 

architecture learning, and MLP integrates complex 

nonlinear relationships from extracted features. By 

combining these models, the approach ensures robust 

detection of stroke lesions, even in the presence of image 

noise, low contrast, or subtle tissue variations, which are 

common challenges in clinical CT imaging. Compared 

to single-model approaches, this ensemble method 

demonstrates superior performance in sensitivity, 

specificity, and overall accuracy, providing reliable 

differentiation between normal and pathological 

regions. Further evidence of its efficacy is provided by 

its high ROC AUC scores, which indicate outstanding 
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discriminatory capacity, and its balanced performance 

across precision and recall metrics, which are essential 

for reducing false negatives and guaranteeing prompt 

intervention.  In conclusion, the ensemble approach 

improves diagnostic certainty while facilitating 

automated, scalable, and real-time CT image processing 

in clinical environment. This opens the door to better 

patient outcomes and more efficient healthcare 

procedures. 

A. Discussion 

The results of the comparison for CT scan detection 

are shown in Table IV. The table below provides a 

concise summary of how several deep learning models 

fared on a CT image categorization test involving brain 

strokes. CNN had the best results overall, with a 99.50% 

F1-score, 99.40% recall, 99.60% precision, and 99.50% 

accuracy. The findings were solid for VGC16 (96.50% 

accuracy, 96.54% precision, 97.10% recall, 97.34% F1-

score), and ResNet (97.75% accuracy, 96.99% 

precision, 98.56% recall, 97.77% F1-score) was also 

excellent. MLP offered balanced outcomes at 96% for 

all measures, and Xception delivered 95.62% accuracy 

with slightly lower precision and recall (90% and 94%, 

respectively). DNN showed modest performance around 

72% across metrics, and Mobile Net V2 attained 

intermediate values (87.36% accuracy, 87.13% 

precision, 87.68% recall, 87.40% F1-score). These 

results highlight that convolutional architectures, 

particularly CNN and ResNet, are most effective for 

extracting spatial and textural patterns from CT images, 

enabling accurate differentiation of normal, ischemic, 

and hemorrhagic stroke cases in medical environment. 

TABLE IV.  COMPARISON BETWEEN ALL PROPOSED 

MODEL AND EXISTING MODELS FOR COMPUTED 

TOMOGRAPHY IMAGE IN MEDICAL ENVIRONMENT 

Measure Accuracy Precision Recall F1-

Score 

CNN 99.50 99.60 99.40 99.50 

VGC 16 96.50 96.54 97.10 97.34 

ResNet 97.75 96.99 98.56 97.77 

MLP 96 95 96 95 

DNN[38] 72% 71% 72.6% 72% 

Mobile Net 

V2[39] 

87.36 87.13 87.68 87.40 

The proposed ensemble of four ML models 

demonstrates strong performance in CT image analysis 

for brain stroke detection, with CNN achieving the 

highest accuracy of 99.50%, followed by ResNet at 

97.75%, VGG16 at 96.50%, and MLP at 96.00%. By 

leveraging diverse algorithmic approaches including 

deep convolutional networks, transfer learning, and 

multilayer perceptron the models effectively capture 

complex spatial, textural, and intensity-based patterns 

within CT scans, enabling precise differentiation 

between ischemic and hemorrhagic strokes. The 

outstanding performance of CNN highlights its 

capability to extract fine-grained features from high-

dimensional medical images, while ResNet and VGG16 

effectively leverage hierarchical feature learning to 

enhance robustness and generalization. Transfer 

learning further contributes to improved model 

performance by adapting pre-trained networks to the 

specific domain of stroke CT images, reducing the need 

for extensive annotated datasets. Challenges remain, 

such as variability in image acquisition protocols, noise 

in clinical datasets, and the computational complexity of 

deploying these models in real-time clinical 

environment. Integrating this multi-model framework 

into neuroimaging workflows can provide clinicians 

with reliable decision support, accelerate diagnosis, 

inform treatment planning, and potentially improve 

patient outcomes. Future work may focus on optimizing 

computational efficiency, incorporating multimodal 

imaging data, and validating the models across diverse 

clinical populations to ensure broad applicability and 

scalability. 

B. Application of CT Image  

CT image analysis is useful for many clinical 

purposes, including the diagnosis of tumors and lesions, 

evaluation of organ structures, bone integrity, 

circulatory systems, and therapeutic response, and the 

assessment of organ structures and structures. Its 

sophisticated algorithms improve several areas of 

medicine, including diagnosis, therapy planning, and 

patient monitoring. 

• Tumor and Lesion Detection: Tumors, 

nodules, and other lesions can be detected and 

characterized early on with the help of CT image 

analysis. By applying image enhancement, 

segmentation, and classification techniques, it 

enables accurate localization of abnormal tissues 

and assessment of their size, shape, and density. 

Advanced ML and DL models further improve 

sensitivity and specificity, supporting timely 
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diagnosis, staging, and personalized treatment 

planning while reducing observer variability. 

• Organ Segmentation and Volumetric 

Analysis: Organ segmentation in CT imaging 

involves accurately delineating anatomical 

structures such as the brain, lungs, liver, kidneys, 

and heart to facilitate quantitative and qualitative 

analysis. It supports volumetric measurements, 

shape assessment, and the extraction of clinically 

relevant parameters for disease diagnosis, 

treatment planning, and surgical navigation. 

• Bone and Fracture Assessment: CT image 

analysis provides high-resolution evaluation of 

bone structures, enabling accurate detection of 

fractures, micro-cracks, and degenerative 

changes. It supports the assessment of bone 

density and geometry, which is essential for 

diagnosing conditions such as osteoporosis and 

for planning orthopedic or trauma-related 

surgeries. Advanced algorithms can differentiate 

subtle fractures from normal anatomical 

variations, while 3D reconstructions and 

quantitative measurements enhance surgical 

navigation and treatment planning. 

• Radiomics and Quantitative Feature 

Extraction: Converts CT images into 

measurable texture, shape, and intensity features 

for prognosis and personalized medicine. 

• Brain Imaging for Neurological Disorders: 

Supports detection of hemorrhage, stroke, 

edema, and neurodegenerative changes in cranial 

CT scans. 

• Cardiac and Coronary Artery Analysis: CT 

image analysis is widely used to assess cardiac 

anatomy and the coronary arteries with high 

spatial resolution. It enables precise evaluation 

of coronary artery stenosis, plaque burden, and 

calcium scoring, which are critical for assessing 

cardiovascular risk and planning interventions. 

Advanced techniques, such as CT angiography 

and automated vessel segmentation, facilitate 

detailed visualization of the heart chambers, 

valves, and vascular structures, supporting early 

diagnosis, treatment planning, and monitoring of 

cardiac diseases. 

C. Limitation of CT Image Analysis   

Dataset Constraints - Limited dataset size and 

diversity significantly impact model robustness, as 

training on small or homogeneous populations may not 

adequately represent global demographic variations, 

genetic factors, and regional disease patterns. The 

scarcity of annotated medical data due to privacy 

regulations and the time-intensive nature of expert 

labeling further restricts model development and 

validation across different clinical environment. 

Computational Requirements - The considerable 

amount of processing power and memory that deep 

learning models demand might limit their use in real-

time applications and clinical environment with limited 

resources. 

Class Imbalance Issues - Unequal distribution of 

stroke types (hemorrhagic vs. ischemic vs. normal) can 

lead to biased predictions and reduced performance for 

underrepresented classes. 

Scanner Variability - Significant variations exist 

across CT scanner manufacturers, imaging protocols, 

slice thickness, reconstruction algorithms, and contrast 

enhancement techniques. These technical differences 

create domain shift problems where models trained on 

one scanner type may perform poorly on images from 

different equipment, limiting cross-institutional 

deployment and standardization efforts. 

Limited Temporal Analysis - Current static image 

analysis approaches cannot capture stroke evolution, 

treatment response monitoring, or progression 

assessment over time. Additionally, models struggle 

with detecting hyperacute ischemic changes that may 

not be visible in early CT scans, potentially missing 

critical treatment windows for interventions like 

thrombolysis or thrombectomy procedures. 

D. Future Work of Computed Tomography Image  

Large-scale Multi-center Collaboration and Data 

Harmonization - Establish international consortiums 

for sharing de-identified stroke imaging data, 

developing standardized annotation protocols, and 

creating diverse datasets that represent global 

populations. Take advantage of data harmonization 

methods to deal with scanner variability and build 

reliable models that can be applied to various imaging 

devices and clinical procedures. 
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Advanced Neural Architectures and Hybrid 

Models - Integrate cutting-edge architectures including 

vision transformers, capsule networks, and graph neural 

networks to capture complex spatial relationships in 

brain anatomy. Develop hybrid models combining 

convolutional and transformer-based approaches, 

incorporate attention mechanisms for interpretable 

diagnosis, and explore self-supervised learning 

techniques to leverage unlabeled medical images 

effectively. 

Federated Learning and Privacy-Preserving 

Technologies - Establish federated learning frameworks 

to permit cross-hospital collaborative model training in 

a way that protects patients' privacy.  To ensure data 

integrity while enabling global model improvement and 

knowledge exchange, develop differential privacy 

approaches, secure multi-party computing protocols, 

and blockchain-based systems. 

Real-time Processing and Edge Computing 

Solutions - Optimize model architectures for mobile 

deployment using techniques like knowledge 

distillation, neural architecture search, and quantization 

methods. Develop edge computing solutions with 

specialized medical imaging processors, implement 

cloud-edge hybrid systems for scalable deployment, and 

create point-of-care diagnostic tools for emergency and 

ambulatory environment. 

Multimodal Integration and Comprehensive 

Diagnostic Systems - Combine CT imaging with 

perfusion studies, MRI sequences, clinical laboratory 

values, patient demographics, and electronic health 

records to create holistic diagnostic systems. Develop 

longitudinal analysis capabilities for tracking treatment 

response, implement prognostic models for outcome 

prediction, and integrate natural language processing for 

automated report generation and clinical decision 

support systems 

IX. CONCLUSION  

The timely and precise identification of cerebral 

stroke through the use of CT images is essential in 

clinical practice, as early diagnosis has an impact on the 

overall efficiency of healthcare, patient outcomes, and 

treatment options.  For the purpose of evaluating the 

quality of CT images and classifying strokes, this study 

compares and contrasts four deep learning models—

ResNet, CNN, VGG16, and MLP with an emphasis on 

the importance of noise-aware preprocessing methods 

like data augmentation, strength normalization, and 

noise reduction. These preparatory procedures were 

critical for enhancing the dependability and resilience of 

the model, which enabled the extraction of pertinent 

hierarchical and spatial characteristics even from CT 

images impacted by noise. This study highlights the 

superior performance of convolutional architectures in 

capturing complex patterns indicative of stroke. Among 

the analyzed models, CNN achieved the greatest 

accuracy of 99.50%, followed by ResNet, VGG16, and 

MLP. Findings highlight need for preprocessing 

pipelines that integrate deep learning algorithms to 

achieve high diagnostic accuracy, decrease 

misclassification, and facilitate real-time clinical 

decision-making. For future work, the framework can be 

extended by incorporating 3D CT volumes and 

multimodal imaging data, which would provide richer 

spatial context and improve detection of subtle stroke 

patterns. Integration of XAI techniques can enhance 

interpretability for clinicians, aiding decision-making 

and regulatory compliance. Furthermore, real-time 

deployment using adaptive learning algorithms can 

improve responsiveness to evolving stroke 

characteristics. Validation on larger, heterogeneous 

datasets will ensure generalizability and robustness, 

enabling practical clinical implementation. Overall, the 

proposed approach demonstrates significant potential to 

support automated, accurate, and rapid stroke diagnosis, 

ultimately improving patient care outcomes and 

optimizing clinical workflow in time-sensitive 

healthcare environments. 
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