
Letters in High Energy Physics 
ISSN: 2632-2714 

Volume 1 no. 3 2018 

 

 

1 

On the Stability of Nuclei Propagating with Momentum 

Dependent Interactions 

Dr. Supriya Goyal 

Department of Physics, G.S.S.D.G.S Khalsa College, Patiala, Punjab 

ashuphysics@gmail.com 

Abstract: The present study deals with the role of momentum dependent interactions (MDI) in heavy-ion 

collisions using a semi-classical nuclear model. Our goal here is to understand the stability of nuclei propagating 

under the influence of momentum dependent interactions. For this study, a semi-classical theory in terms of 

quantum molecular dynamics model (QMD) is employed. The role of momentum dependent interactions is 

studied by employing static as well as momentum dependent interactions and then studying the time evolution 

of the phase space of various fragments. Our observations, spanning over entire periodic table, suggest that 

momentum dependent interactions destabilize the stable nuclei which start emitting nucleons artificially if 

propagating with momentum dependent interactions. One should, therefore, be careful while studying the 

multifragmentation with momentum dependent interactions. 
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I. INTRODUCTION 

Nuclear physics at low and intermediate energies 

[1-6] is one of the most extensively studied 

branches of the physics. After many decades of 

critical analysis, nuclear physics has reached a 

moment of critical differentiation: One of its 

branches separated itself from the traditional 

nuclear physics to leap into the unexplored space of 

deconfinement and quark-gluon plasma. Its second 

branch led to the study of low energy γ- ray 

spectroscopy. The third branch deals with the study 

of nuclear collectivity through giant resonances. 

Lastly, the branch that grew out of the compound 

nucleus and fission studies, and matured through 

the low energy deep inelastic scattering, is now 

exploring the field of intermediate energy heavy-

ion reactions. In last two decades, lots of efforts 

have been made experimentally as well as 

theoretically to understand the nuclear physics at 

intermediate energies which ranges between 10 

MeV/A and 2 GeV/A. 

     The main interest to study the low energy 

nuclear physics or the heavy-ion collisions is to 

look for the low-density phenomena. As the 

colliding nuclei cannot compress each other 

substantially at low incident energies, one has 

studied the physics of sub-density phenomena that 

give unique possibility to look for the nuclear 

interactions, fusion –fission, cluster radioactivity as 

well as formation of super heavy nuclei.  

    With the passage of time, one was able to 

accelerate the heavy–ions with bombarding 

energies comparable to its rest mass. This opened 

up new dimensions in the research of nuclear 

physics. Due to the formation of compressed and 

hot piece of nuclear matter at intermediate and 

relativistic energies, it gives unique possibilities to 

study the properties of nuclear matter at the 

extreme conditions of temperature and density. Due 

to the complicated physics, simple pure quantum or 

classical theories are not adequate to study these 

reactions. For dynamical calculations, one needs to 

have a mixture of quantum as well as classical 

theories generally referred as semi-classical 

theories. In any realistic theory developed for the 

heavy ion collisions, nuclear interactions can be 

represented in terms of real and imaginary parts of 

the G-matrix. It is worth mentioning that G-matrix 

is higher version of the reaction matrix where Pauli 

principle is also incorporated. The real part of the 

G-matrix represents the nucleon-nucleon potential, 

where as imaginary part is responsible for the 

nucleon-nucleon scatterings. The real part of the G-

matrix cannot be solved as such [3, 4, 5]. Instead, 

one parameterizes it in terms of static Skyrme 

forces supplemented by the Yukawa, Coulomb as 

well as momentum dependent interactions 

responsible for the relative velocities of different 

nucleons. Generally, momentum dependent 

interactions, due to their nature, generate repulsion 

in the medium and may destabilize the colliding 
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nuclei [6, 7]. This can have a serious implication if 

one is studying the multifragmentation, where 

many body correlations and fluctuations are very 

sensitive and important. It is worth mentioning that 

multifragmentation (breaking of nuclei into many 

pieces) is one of the most sought-after phenomena 

in heavy ion physics. We shall here concentrate on 

the effect of momentum dependent interactions on 

the stability of different nuclei and shall compare 

the outcome with static interactions. This will give 

us opportunity to see whether nuclei can be kept 

cold and stable or not. Section II deals with the 

models and section III deals with results and 

discussion followed by conclusion in Section IV. 

II. MODEL  

A: QUANTUM MOLECULAR DYNAMICS 

(QMD) MODEL 

In QMD model nucleons are represented by 

Gaussian wave packets which interact via mutual 

two and three-body interactions [3, 7-17]. Each 

nucleon in nuclear matter propagates under the 

classical equation of motion. It is widely accepted 

that the static equation of state cannot describes the 

heavy-ion reaction adequately. The fate of a 

reaction depends not only on the density, but also 

on the momentum space. In the frame work of G 

matrix, which is a solution of Bethe-Goldstone 

equation, the momentum dependence comes in a 

natural way [15]. However, one cannot solve the 

Bethe-Goldstone equation numerically at each 

point in the phase space and time. Therefore, the 

only way is to parameterize the density and 

momentum-dependent G matrix elements in terms 

of two-body interactions. However, the numerical 

utility of the G matrix is limited. As an alternate, 

we use parameterized momentum-dependent 

potential which takes care of the momentum 

dependence in mean field potential. 

    The momentum dependent interactions are 

obtained by parameterizing the measured energy 

dependence of the proton-nucleus optical potential 

[16]. A parameterized form of the local plus 

momentum dependent potential can be represented 

as: 
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 In table I, we list different parameters used in the static as well as momentum dependent interactions.  

Table I: The parameters of static and momentum-dependent interactions. 

K(MeV)  α(MeV)   β(MeV)        γ   δ(MeV)        ε   EOS 

200 -356 303 1.17 ----- -----      S 

380 -124 70.5 2 -----  -----     H 

200 -390(3189)* 320(3176)* 1.14(1.011)* 1.57 21.54   SMD 

380  -130(63.13)* 59(49.42)* 2.09(2.12)* 1.57 21.54   HMD 

 *These values are based on experimental data of Hama et al. [16] fitted by Hartnack and Aichelin [16]. 

 

With the help of above methodology, we simulate 

the reaction on an event-by-event method. This 

reaction is divided into large number of time steps 

which takes care of propagation and scattering part. 

As an outcome, we store the phase-space of all 

nucleons at all time steps. Generally, reactions are 

simulated till a time of 200 fm/c. This reaction time 

is assumed to be large enough for nucleon-nucleon 

interactions to happen. Now, experimentally, this 

phase-space cannot be measured, instead, this 

phase-space is used to further analyze the reactions 

in terms of some measurable quantities. One of the 

quantities of recent interest is the size and number 

of clusters/fragments and their velocity profiles. 

One, therefore, needs to clusterize the phase-space 

to extract emitted fragments. There are several 

different methods to clusterize the phase-space. 

Among all these methods, minimum spanning tree 

(MST) method has been used very frequently to 

study the fragmentation. 
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B: MINIMUM SPANNING TREE (MST) 

METHOD 

In MST method, two nucleons share the same 

fragment if their centroids (ri, rj) are closer than a 

distance dmin, 

 
minji

d−rr                                             (10) 

where ri and rj are the spatial positions of both 

nucleons. The value of dmin can vary between 2-4 

fm. As reported, the variation of dmin has small 

effect on the multifragmentation [18-20]. For the 

present study, we take dmin = 4 fm. It is worth 

mentioning that this method can only be used to 

analyze the asymptotic configurations in which 

fragmenting system can be viewed as a very dilute 

mixture of free particles and almost equilibrated 

fragments. Overlapping of nucleons at asymptotic 

times around 150-200 fm/c defines directly the 

clusters [3, 7]. 

 III. RESULTS AND DISCUSSION 

 For the present study, we restrict ourselves to the 

dynamics of a single excited projectile, propagating 

with finite energy of 100 MeV/A in lab frame. 

Propagation of a single excited projectile was 

simulated for static soft (S) equation of state and 

soft equation of state with momentum dependent 

potential (SMD). As a first part of the problem, we 

tested few events with reference to technical 

parameters and made sure that no artificial events 

are there in the test run. After that we employed 

quantum molecular dynamics model for generating 

the phase space of nuclei under study. We have 

tested through the impact parameter of b = 100 fm 

which is enough to derive the physics of a single 

nucleus. The QMD model after very complicated 

calculations gives us the phase space of nucleons in 

terms of x, y, z, Px, Py and Pz. This phase space was 

then clusterized using minimum spanning tree 

(MST) algorithm as described in section II. It is 

worth mentioning that a large number of algorithms 

have been reported in the literature for 

clusterization of phase space [17-20]. The MST 

method is the simplest among all these methods. 

In fig. I, we plot the characteristic emission of 

fragments and clusters from a single gold nucleus. 

The left panel is for the soft EoS whereas right 

panel is for the SMD EoS. We see that the largest 

fragment <Amax > is close to around mass of 197 

units with soft EoS where as it is reduced to about 

180 units when momentum dependent interactions 

are also used. As a result, we see not only the 

nucleons, but also the light charged particles LCP’s 

[2≤A≤4]. This number is nearly insignificant with 

soft EoS whereas it turns sizeable with SMD EoS. 

This trend is further supported by the enhanced 

emission of fragments with mass A=2, medium 

mass fragments MMF’s [5≤A≤9] and intermediate 

mass fragments IMF’s [5≤A≤65] as shown in fig. 

II. We see that the above conclusions remain valid 

in these cases also. This clearly indicates that the 

gold nucleus when propagating under the influence 

of momentum dependent interactions results in 

destabilization and as a result it emits nucleons as 

well as clusters artificially.  
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Figure I.  The time evolution of the largest fragment Amax and multiplicities of free nucleons as well as 

light charged particles, LCPs [2≤A≤4]. 
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Figure II. The time evolution of fragments with A=2, MMF’s [5≤A≤9] and IMF’s [5≤A≤65]. 

This observation is further strengthening when we 

compare root mean square (rms) radii of nuclei 

propagating under the influence of soft and SMD 

EoS. In fig. III, we show the rms radii of 40Ca and 
197Au nuclei propagating with soft and SMD 

equations of states. As we see, SMD EoS 

destabilizes the nucleus over the time span of 150-

200 fm/c effectively whereas soft EoS keeps the 

most of nucleons bound in nuclei for reasonable 

reaction time. 

0 50 100 150 200
0

4

8

12

16

20

 

 time(fm/c)

Au
197

nucleus

 

 

R
rm

s (f
m

)

 Soft

 SMD

4

8

12

16

20

 

 

Ca
40

 nucleus

 

 

 

Figure III. The root mean square (rms) radii of 40Ca (upper panel) and 197Au (lower panel) nuclei as a 

function of reaction time. The solid and dashed lines show the results for static soft and momentum 

dependent soft equations of state, respectively. 
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It would be of further interest to extend this study 

to different nuclei over the periodic table. This also 

may be helpful to search for the finite size effects 

in disassembly of nuclear matter. For this, we 

simulated the nuclei of 40Ca, 93Nb, 129Xe, 139La, 

167Er and 197Au for 200fm/c. In figure IV, we 

display the average size of largest fragment <Amax > 

for nuclei ranging between mass 40 and 197. We 

can see that MDI leads to smaller <Amax> 

compared to soft EoS. This decrease is larger in 

heavy mass region. In other words, effect of MDI is 

much larger for heavier nuclei compared to light 

nuclei. This is understandable since heavy nuclei 

generate higher densities leading to more repulsion. 

The above observation points toward the 

importance of finite size effects in the stability of 

excited nuclei. The larger effects of MDI in the 

heavier mass region are also pronounced in the 

multiplicity of various fragments displayed in fig. 

V.                  
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Figure IV. The average size of largest fragment <Amax > as a function of the mass of system. Here we 

considered 40Ca, 93Nb, 129Xe, 139La, 167Er and 197Au nuclei. 
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Figure V. The multiplicities of free-nucleons, fragments with mass A=2, light charged particles LCP’s 

[2≤A≤4], medium mass fragments MMF’s [5≤A≤9] for 40Ca, 93Nb, 129Xe, 139La, 167Er and 197Au nuclei. 
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Figure VI. The least square fit of the reduced multiplicities of free-nucleons, fragments with A=2, light 

mass fragments (LCP’s) [2≤A≤4], medium mass fragments (MMF’s) [5≤A≤9] as a function of mass for 

the 40Ca, 93Nb, 129Xe, 139La, 167Er and 197Au systems with static soft equation of state (shown by solid 

points) and SMD (shown by open circles). 

    In fig. VI, we again observed the mass 

dependence phenomenon for reduced multiplicities 

of various fragments in de-excitation of projectile 

nuclei. The solid circles represent the reduced 

multiplicities with soft EoS while open circles 

show the reduced multiplicities with SMD EoS. 

We also attempted to fit the reduced multiplicities 

of various fragments as a function of initial mass of 

the projectile A with power law y= cAτ and 

obtained the values of exponent τ, which are also 

indicated in the figure. The trend of larger reduced 

multiplicities obtained with MDI is clearly visible 

over the entire mass region. The negative slope of 

power law fit can be attributed to smaller surface-

to-volume ratio in the heavier nuclides. As a result, 

yield of nucleons emitted from the surface decrease 

with the size of the projectile nucleus. This has 

clear bearing in the study of fragmentation in 

heavy-ion collisions. 

 IV. CONCLUSION 

Using the quantum molecular dynamics (QMD) 

model coupled with minimum spanning tree 

method, we studied the stability of nuclei 

propagating under the influence of momentum 

dependent interactions. We see that the nuclei 

propagating under the influence of momentum 

dependent interactions tend to be more unstable 

compared to the soft equation of state. This has 

been checked for a large number of masses of 

nuclei ranging from 40Ca to 197Au. Our study 

clearly indicates that one should be very careful 

when studying multifragmentation with momentum 

dependent interactions.                   
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