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Abstract: This paper investigates the vibration and buckling behavior of thin-walled, slender reinforced concrete 

(RC) columns retrofitted with carbon fiber-reinforced polymer (CFRP) laminates. The study addresses the structural 

performance of such columns under various partial and concentrated edge loading conditions, which are less 

explored in existing literature. A finite element code developed in MATLAB is employed to perform a 

comprehensive parametric analysis. The natural frequencies of the columns are evaluated by incorporating key 

influencing factors, including load eccentricity, column height, boundary conditions, and ply orientation of CFRP 

laminates. The impact of applied loads on the dynamic characteristics is also examined. Material properties are 

carefully computed by accounting for both concrete and embedded reinforcement, ensuring realistic modeling. 

Furthermore, the buckling behavior of retrofitted columns is studied under varying loading and geometric 

conditions. Results demonstrate that CFRP retrofitting significantly enhances both stiffness and stability, while load 

eccentricity and slenderness influence vibration modes and critical loads. This study contributes valuable insights 

toward the design and analysis of slender RC columns in modern construction systems, especially where retrofitting 

and performance under complex loading are of concern. 
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1. Introduction: 

In recent years, the focus on strengthening and 

rehabilitating aging or structurally deficient 

buildings has intensified within the construction 

industry [[1], [2]]. To enhance the load-bearing 

capacity of reinforced concrete (RC) columns 

under various loading scenarios, a range of 

strengthening techniques has been developed. 

Traditional solutions such as concrete jacketing 

with or without supplemental reinforcement [[3], 

[4]] along with ferro-cement layers [[5], [6]] and 

engineered cementatious composites (ECC) [[7], 

[8]], have proven effective, but often at the cost of 

increased column dimensions and dead load. 

To address these drawbacks, fiber-reinforced 

polymer (FRP) composites have emerged as a 

promising alternative. Known for their exceptional 

strength-to-weight ratio, resistance to corrosion, 

and ease of installation, FRPs are now widely used 

in civil engineering applications [[9], [10]]. Over 

the past two decades, substantial research has 

confirmed that the application of FRP can 

significantly improve both the strength and 

ductility of plain and reinforced concrete elements 

[[11], [12]]. Given the critical role that columns 

play in maintaining the structural integrity of 

buildings, strengthening deficient columns remains 

a key concern. One widely adopted method 

involves wrapping columns with FRP, with fibers 

oriented primarily in the hoop direction to restrict 

lateral expansion of the concrete core and enhance 

confinement [[13], [14]]. Numerous studies have 

validated the efficacy of FRP confinement. Hadi 

[15], for example, observed that RC columns 

confined with CFRP exhibited notable 

improvements in load-carrying capacity, ductility, 

and moment redistribution. Similarly, Belouar et al. 

[16] demonstrated that adding more CFRP layers 

increases compressive strength, although ductility 

tends to decrease with higher slenderness ratios. 

From a computational perspective, Charalambidi et 

al. [17] used finite element models employing 8-

noded elements to simulate partial GFRP 
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confinement in low-strength concrete, while Hales 

et al. [18] explored the benefits of internal FRP 

spirals and longitudinal bars, which were shown to 

substantially enhance tensile strength and overall 

load resistance. 

Due to the absence of comprehensive design 

guidelines for slender FRP-confined columns, 

researchers have proposed various theoretical 

models. Jiang and Teng [19], for instance, 

introduced a numerical model based on Lam and 

Teng’s stress–strain relationship, achieving results 

that closely matched experimental outcomes. 

However, they emphasized the importance of 

further large-scale testing for validation. In the 

context of hybrid systems, Chellapandian et al. [20] 

investigated RC columns retrofitted with both 

CFRP laminates and external fabrics under axial 

and eccentric loading. Their experimental, 

analytical, and finite element evaluations confirmed 

that hybrid retrofitting significantly enhances initial 

stiffness, peak load, and ductility, with predictions 

deviating by less than 5% from actual test results. 

Similarly, Mosallam [21] studied retrofitted RC 

beam-column joints using high-strength, high-

modulus CFRP laminates and hybrid composite 

connectors, showing enhanced performance under 

cyclic and gravity loads. Beyond column 

confinement, researchers have also focused on the 

behavior of laminated composite plates. Sahu et al. 

[22] examined the buckling behavior of plates with 

various symmetric and anti-symmetric ply 

orientations, while Nali and Carrera [23] analyzed 

the mechanical response of orthotropic and 

anisotropic laminates with different stacking 

configurations, contributing valuable insights into 

structural behavior under complex loading. 

Despite these advancements, the literature remains 

limited with respect to slender, thin-walled RC 

columns especially those retrofitted with FRP and 

subjected to eccentric or edge loads. Most prior 

studies have focused on square or circular columns 

under concentric loading. As slender columns are 

frequently used in modern structural systems, 

understanding their vibration and buckling 

behavior is crucial. This study aims to bridge that 

gap by conducting a detailed parametric 

investigation into the effects of FRP confinement, 

ply orientation, eccentric load application, column 

height, and boundary conditions. Through this 

comprehensive assessment, the research seeks to 

advance the design and retrofitting strategies for 

slender FRP-retrofitted RC columns under diverse 

loading conditions. 

2. Thin-Walled Slender Columns under 

Eccentric Loading. 

Thin-walled slender columns are structural 

elements with relatively small cross-sections 

compared to their length, making them vulnerable 

to instability under axial and eccentric loads. 

Unlike stocky columns, their load-carrying capacity 

is significantly influenced by slenderness ratio 

rather than material strength alone. Figures 1(a) and 

1(b) highlight the geometric slenderness of these 

columns. As length increases, their sensitivity to 

load placement and buckling effects becomes more 

pronounced, underscoring the need for precise 

stability assessment in design. 

 

 
Fig 1: (a)-(b) Thin walled slender columns 
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The representative cases of partial in-plane edge loading and concentrated edge loading considered in this study 

are illustrated in Fig. 2(a)–(d). For each configuration, the total axial load PPP remains constant regardless of 

the localized load width along the column edge. These loads are compressive and applied over a limited portion 

of the column’s cross-section. In the diagrams, the parameter ‘c’ denotes the width of the applied load, while ‘b’ 

represents the total width of the column. When the ratio c/b = 1, the loading becomes uniform across the column 

width for the respective cases shown. 
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Fig 2: Problem description: Partial edge loading (a) from one end, (b) from both ends and Point load (c) 

from one end, (d) from both ends. 

 

3. Finite element formulation and 

governing equations 

A typical plate, as illustrated in Fig. 3, has 

dimensions a × b × h along the x, y, and z axes, 

respectively. The plate is composed of a 

unidirectional composite fiber laminate. To derive 

the expression for strain energy, five independent 

displacement coordinates are considered: u, v, and 

w, representing displacements along the x, y, and z 

directions, and Өx and Өy, representing rotations 

about the y and x axes, respectively. These 

displacement components form the basis for 

analyzing the plate's deformation behavior under 

loading. 

z;w
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t

 

Fig 3: Lamina geometry of plate 

The First-order Shear Deformation Theory (FSDT) 

is employed, incorporating a shear correction factor 

to account for the non-linear shear strain 

distribution through the thickness. The 

displacement field assumes that normals to the 

mid-surface remain straight but not necessarily 

perpendicular after deformation, such that 

 

     ( , , ),  ( , , ),  ( , , )  ( , ),  ( , ),  ( , )   ( , ),  ( , ),  0p p p p p p p p

x yu x y z v x y z w x y z u x y v x y w x y z x y x y = +  (1) 

 

where 𝑢̅𝑝,𝑣̅𝑝𝑖and  𝑤̅𝑝represent the displacements in 

the x, y, and z directions,while up, vp, and 

wpdenotemid-plane displacements along x, y, and z 

axes. Additionally,𝜃𝑥
𝑝
 and 𝜃𝑦

𝑝
indicate rotations of 

the normalto the un-deformed mid-plane of the 

plate about the y and x-axes, respectively. In the 

current formulation, Eq. (2) presents the Green-

Lagrange's strain displacement relation for a plate 

element. 
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 (2) 

The strain-displacement equation, which is shown in Eq. (2) has two parts, i.e., linear strain and non-linear 

strains, 

          = +L NL

ij ij ij       (3) 

The linear strain vector {εij
L} is employed for the 

elastic stiffness matrix, and the non-linear strain 

term {εij
NL} is used for the geometric stiffness 

matrix. Under the assumption of minimal and 

neglected normal stresses, the stress-strain relation 

for the laminated panel is derived based on the 

displacement model as, 
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where the comma subscriptdenotes differentiation 

with respect to the coordinates following the 

subscript.  

The laminates constitutive coefficients in Eq. (7) 

are defined by, 

( )
1

2
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k

k

zm
p
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ij ij ij ij

k z

A B D Q z z dz

−
=
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for i, j= 1, 2, 6      (5) 

whereas the shear component is indicated by ( )
1

 1

  
k

k

zm
p

P p

ij ij

k z

S Q dz

−
=

=     for i, j= 4,5   (6) 

Here κp is the shear correction factor, which is used 

to compensate for the parabolic shear stress 

distribution across the plate thickness and is taken 

to be 5/6. 

The linear and non-linear strain terms in Eq (2) and 

resultant stress-strain relations in Eq. (4) are used 

to derive the different level stiffness matrices as 

follows: 
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where   
p

ek ,   
p

Gk
 
and   

pm represents element 

level stiffness, geometric stiffness and mass 

matrices, respectively. Structural stiffness matrices 

are assembled from individual element-level 

matrices using the skyline technique. The complete 

FE formulation, including different stiffness 

matrices for the heterosis element in this study is 

referenced from the work of  Rajannaet al. [20] and 

is not discussed here for brevity. 

The governing differential equation of equilibrium 

for a structural component under the application of 

in-plane edge load can be obtained by using 

extended Hamilton’s principle as, 

 

          s s s s s s s s s s s s0 GM q K P K q   0 + − =   
(10) 

 

The assembled matrices [K], [KG], and [M] 

represent system elastic stiffness, geometric 

stiffness, and mass, respectively. Equation (10) can 

be simplified for buckling and vibration scenarios.  

In the case of buckling, when{𝑞̈}=0, the 

equationreduces to: 

 

       s s s s s s s s s scr GK q P K q   0− =  
(11) 

      

In the case of vibration, equation (10) becomes, 

          s s s s s s s s s s s s s s s

2

0 GK q - P K q - M q   0 . =  
(12) 

 

In Eq. (12), when P0 approaches zero, the 

equationdescribes free vibration without in-plane 

load, while the presence of P0 signifies a vibration 

problem with in-plane load effects. Setting ω2 to 

zero in Eq. (12) for a specific P0 value identifies the 

critical buckling load. This dynamic approach to 

determine critical loads is advantageous as it 

circumvents singularity issues posed by eigen value 

solvers in static analysis. This method has been 

applied to ascertain critical loads for diverse 

problems in the study. 

4. PROBLEM DESCRIPTION 

This study investigates the buckling and vibration 

behavior of retrofitted thin-walled RC columns 

subjected to various in-plane edge loading 

scenarios, as illustrated in Fig. 2. Key parameters 

such as stress–strain relations, engineering 
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constants, and failure criteria for angle-ply 

laminates are established for analysis. Unlike 

isotropic materials, composite properties depend on 

multiple factors—fiber and matrix characteristics, 

volume fraction, geometry, and manufacturing 

process—making experimental determination 

complex and costly. When material symmetry 

aligns with the fiber direction, five independent 

elastic constants are required to define the lamina's 

elastic response. 

Several analytical models exist to estimate these 

constants based on micromechanical relations 

between the matrix and fiber, as detailed in the 

works of Whitney and Riley [26], Halpin and Tsai 

[27], Selvadurai and Nikopour [28], and Hashin 

and Rosen [29]. 

4.1 governing elastic properties of the composite 

material. 

The rule of mixture is known as Voigt model, while 

the Reuss model is renowned as the inverse rule of 

mixture. Rule of mixture is a simple relationship or 

approach to approximate longitudinal and 

transverse direction of the composite material 

characteristics and these relations are mentioned 

below,

 

a) Longitudinal direction (E1) 

E11 = [(ES ∗ VS) + (EC ∗ VC)] 

(12) 

b) Transverse direction (E2) 

1

E22

=
VS

ES

+
VC

EC

 

 

 

Where, 

𝐸 𝑆= Young’s Modulus of reinforcement steel 

𝐸𝑐= Young’s Modulus of Cement concrete 

𝑉𝑆 = Volume of Steel 

𝑉𝑐 = Volume of Concrete. 

(13) 

c) Rigidity Modulus (G) 

1

G12

=
VS

GS1

+
VC

GC

G23 =
E22

2 ∗ (1 + γ23)
 

(14) 

 

4.1.2 Semi Empirical Models 

Semi-empirical modelling is a generic word for 

operations that by observation and experimentation 

generate models. Semi-empirical modelling relates 

to a specific range of empirical relationships in 

which models are built on specific principles. Here 

in this case semi empirical models have been 

emerged to correct the errors, under this category 

some of the important models are modifies rule of 

mixture, the Halpin-Tsai model [27] and Chamis 

model [30]. 

i. Modified Rule of Mixture (MROM) equations are as follows. 

1

E22

=
ns ∗ Vs

Es
+

nc ∗ Vc

Ec
 

Where nsandncarecorrectionfactors 

ηs =
Es ∗ Vs + [(1 − γs ∗ γs)Ec + γcγs ∗ Es]Vm

Es ∗ Vs + Ec ∗ Vc
 

ηc =
[Es ∗ (1 − γc2

− (1 − γc ∗ γs) ∗ Ec] ∗ Vs + Ec ∗ Vc

Es ∗ Vs + Ec ∗ Vc
 

Where  Vs = Volume fraction of steel 

Vc =  Volume fraction of concrete 

               γs = poisson′sratioofsteel 

               γc = poisson′sratioofconcrete 

 

(15) 

 

 

(16) 

 

(17) 
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1

G12

=

Vs

G12
s +

η∗Vc

Gc

Vs + η′ ∗ Vc
with 0 < η′ < 1 [it′spreferredη = 0.6]  

(18) 

 

ii.Halpin and Tsai [27] proposed semi empirical relations for predicting elastic modulus. These relationships have 

been created by adjusting the curve to the elasticity based outcomes and the equations are as shown below. 

E22 = EC (
1 + ζ ∗ η ∗ Vs

1 − η ∗ Vs

) 

G12 = EC (
1 + ζ ∗ η ∗ Vs

1 − η ∗ Vs
) 

ζ = reinforcing factor depending upon diretion of loading  (1 and 2 for E and G 

respectively, 

η = Stress Participation Factor,  

(19) 

 

(20) 

 

 

 

      η =
(Es/Ec) − 1

(Es Ec⁄ ) + ζ
 

(21) 

iii.Chamis [30] has proposed equations similar to Halpin and Tsai, for calculating elastic modulus in transverse 

direction and shear modulus as follows 

E11 = [(ES ∗ VS) + (EC ∗ VC)] (22) 

E22 =
Ec

1 − √Vs ∗ (1 −
Ec

Es
)
 

(23) 

γ12 = (Vs ∗ γs) + (Vc ∗ γc) (24) 

 G12 =
Gc

1 − √Vs ∗ (1 −
Gc

Gs
)
 

(25) 

G23 =
Gc

1 − √Vs ∗ (1 −
Gc

Gs
)
 

(25) 

The values of E11, G12, G23 and γ12 are correlated to 

experimental data for different Vs values, but only 

when E22 correlates with experimental data the 

volume of fiber is greater than or equal to 30% or 

0.3 as specified. 

4.1.3 Elasticity Approach Model 

There are also expressions for elastic moduli based 

on elasticity in relation to the strength of materials 

and semi-empirical equation methods. Elasticity 

approach [19]accounts for Hooke’s law 

relationships in three dimensions, equilibrium of 

forces and compatibility, the strength of materials 

approach may not satisfy compatibility and/or 

account for Hooke’s law in three dimensions. The 

other feasible approach for evaluating the elastic 

module of a UD lamina is therefore the elasticity 

method suggested by Hashin & Rosen [29].In this 

category the models based on composite cylinder 

assemblage(CCA) model. 

 

E1 = Vs ∗ Es + Ec ∗ Vc +
4 ∗ Vs ∗ Vc(γs − γc)2

Vs

Kc +
1

Gc +
Vc

Ks

 
(26) 

γ12 = Vs ∗ γ12
s + Vc ∗ γc (27) 
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G12 = Gc ∗
Gs(1 + Vs) + Gc ∗ Vc

Gs ∗ Vc + Gc(1 + Vs)
 

(28) 

 

4.1.4 Whitney And Riley Estimates 

The elastic constants of a unidirectional fiber-

reinforced elastic matrix were estimated by 

Whitney and Riley [26]. These developments are 

based on the representative elements ' structural 

mechanics models and are less strict than the 

processes established by Hashin and Rosen and 

others based on elasticity variation theorems, the 

equations are discussed below. 

 E11 = [((Es − Ec) ∗ VS) + (EC ∗ VC)] (29) 

G23 =
[(Gs + Gc) + (Gs − Gc) ∗ GcVs]

[(Gs + Gc) − (Gs − Gc) ∗ Vs]
 

(30) 

γ12 = γc −
2 ∗ (γc − γs)(1 − γc)2 ∗ Es ∗ Vs

Ec(1 − Vs)L1 + Es(VsL2 + (1 + γc))
 

(31) 

γ23 = (Vs ∗ γs) + (Vc ∗ γc) (32) 

where, L1 = 1 − γs − γs
2 and  L2 = 1 − γc − γc

2 (33) 

Isotropic properties of concrete and steel are noted 

as in table 1. The values mentioned in Table. 2 

where validated with the help of ‘Autodesk Helius 

Composite 2016’ and the values obtained are in Psi 

units. Based on the comparison with 

Phenomenological Models and software it was 

concluded that the values were approximately equal 

or near to the valued that were obtained from 

software.  

 

Table 1:  Isotropic properties of concrete and steel 

Particulars Concrete 

Young’s modulus Ec 25000 MPa 

Shear modulus Gc 10869.5 MPa 

Poisson’s value ϑc 0.15 

Density  ρc   2400 Kg/m3 
  

Particulars Steel 

Young’s modulus Es 200000 MPa 

Shear modulus Gs 76869.5 MPa 

Poisson’s value ϑs 0.30 

Density  ρs   7850 Kg/m3 

 

Table 2: Calculated concrete equivalent young’s modulus for varying % of steel 

Sl.

No 

Particulars Percentage of steel (Volume fraction Vs) 

0.8 1 2 2.5 3 

 

1. Longitudinal Direction(E11) (N/mm2) 

a.  Rule of mixture 26400.00 26750.00 28500.00 29375.00 30250.00 

b.  MROM 26400.00 26750.00 28500.00 29375.00 30250.00 

c.  Chamis method [30] 26400.00 26750.00 28500.00 29375.00 30250.00 

d.  Elasticity  approach 26407.10 26759.11 28517.93 29397.23 30276.40 



Letters in High Energy Physics 
ISSN: 2632-2714 

Volume 2024 

 

 

7373 

 

The above mentioned Table. 2 provided values of young’s modulus of RCC by assigning the properties of 

concrete and steel specifically, for different percentage of steel varying from 0.8% to 3.0%. 

Table 3: Geometric boundary conditions 

Boundary condition Position of the edge 

y = 0 (bottom) y = b (top) 

Simply supported (S) x = 0, w = 0, θy = 0 w = 0, θy = 0 

Clamped 

(C) 

BC-1 x = 0, y = 0, w = 0, θx = 0, θy = 0 x = 0, w = 0, θx = 0, θy = 0 

BC-2 x = 0, y = 0, w = 0, θx = 0, θy = 0 x = 0, θx = 0, θy = 0 

Free (F) No restraints 

 

The present investigation in mainly focused on the 

slender concrete column with retrofitting. First the 

isotropic properties of concrete and steel are used 

to calculate the orthotropic properties of the RCC 

by considering it as composite material and the 

properties of the retrofitting material is selected 

from Kishore et al. [25] based on the comparison 

with experimental data and the results. As 

mentioned in table 4. 

 

Table 4: Material properties of slender column for 2% steel and epoxy/carbon laminate. 

Material Material constants 

E11 E12 G12 G13 G23 ν12 

RC Column 28.54e3 25.82e3 11.20e3 11.20e3 11.20e3 0.153 

Carbon/epoxy 172.5e3 6.9e3 3.5e3 3.5e3 1.4e3 0.25 

 

 

2. Transverse Direction(E22) (N/mm2) 

a.  Inverse rule of 

mixture 
 

25176.20 25220.60 25445.90 25559.11 25673.90 

b.  MROM 25338.80 25421.93 25829.46 26028.80 26225.60 

c.  Chamis method [30] 31377.90 31746.03 33277.59 33937.40 34556.80 

d.  Halpin– Tsai [27] 25201.10 25252.53 25510.20 25641.03 25773.20 

3. Rigidity Shear Modulus (G12= G13 and  G23) (N/mm2) 

a.  Rule of mixture 10944.70 10963.71 11059.50 11108.03 11156.90 

b.  MROM 10994.70 11026.32 11185.52 11266.04 11347.20 

c.  Chamis method 30] 13901.60 14064.70 14743.24 15035.56 15310.00 

d.  Elasticity approach 11001.20 11034.37 11201.68 11286.31 11371.80 

e.  Rule of mixture (G23) 11005.30 11038.61 11200.98 11280.08 11358.00 

4. poisson’s  ratios (ϑ12) 

a.  Rule of mixture 0.1512 0.1515 0.153 0.1537 0.1545 

b.  elasticity approach 0.1519 0.1523 0.1547 0.1559 0.1571 
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5. RESULTS AND DISCUSSIONS 

Convergence studies 

Accurate discretization is essential in finite element 

analysis to ensure reliable convergence. In this 

study, the column is modeled using a mesh of m×n 

times ements, representing rows and columns 

respectively. The applied loading, as shown in Fig. 

2, is compressive in nature, with a localized load 

width ratio of c/b =0.5. A mesh size of 20×10 

yielded satisfactory convergence, as shown in 

Table 5, and is therefore adopted consistently 

throughout the analysis. 

 

Table 5: Convergence of buckling load (γcr) for CC edge partial load for c/b = 0.5 

Mesh order, m x n [±0]s/RCC/[±0]s [±90]s/RCC/[±90]s
 

4 x 2 3.775 x 104 5.332 x 104 

8 x 4 3.764 x 104 5.236 x 104 

12 x 6 3.695 x 104 5.165 x 104 

16 x 8 3.601 x 104 5.095 x 104 

20 x 10 3.512 x 104 5.068 x 104 

24 x 12 3.512 x 104 5.068 x 104 

 

Comparison studies 

Comparison studies are essential to evaluate the 

accuracy and reliability of different matrix 

formulations and discretization techniques used in 

vibration and buckling analysis. To validate the 

developed finite element model, the natural 

frequencies and mode shapes of a square laminated 

plate were computed using an 8-noded serendipity 

element (8-NSE). These results were then 

compared with the closed-form solutions reported 

by Sahu et al. [22] (Table 6) and Nali & Carrera 

[23] (Table 7), demonstrating good agreement. 

 

Table 6:  Non-dimensional buckling load comparison for simply supported loads between current finite 

element methods.(W = Pcr*b2 / E22*h3) a/b = 1, E11/E22 = 25, G12 = G13 = 0.5E22, G23 = 0.1E22 and v12 = 0.25. 

C/b ratio Particulars Ply-orientation [θ/- θ/ θ/- θ] 

0 15 30 45 60 90 

0.2 Sahu et al. [22] 70.5 73.4 76.6 35.25 19.65 14.91 

Present values 70.13 73.05 76.41 35.01 19.58 14.77 

0.6 Sahu et al. [22] 34.68 39.98 49.76 35.25 25.78 13.01 

Present values 33.68 39.63 49.04 35.03 25.52 12.84 

1.0 Sahu et al. [22] 23.37 25.21 32.03 35.78 29.59 10.45 

Present values 23.07 24.97 31.84 35.21 29.16 10.22 
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Table 7: Non-dimensional buckling load comparison for simply supported loads between current finite 

element methods;E1/E2 = 30, G12/E2 = G13/E2 = 0.5, G23/E2 = 0.2, v12 = 0.3. 

E1/E2 Nali&  Carrera 

[23] 

D’Ottavio and 

Carrera 

Present values 

3 5.533 5.399 5.539 

10 10.249 9.965 11.244 

20 15.798 15.351 16.401 

30 20.306 19.756 22.525 

40 24.051 24.429 26.551 

 

The simply supported square plate is analysed and non-dimensional natural frequency is determined using 

present method and compared with the research paper of Tseng and Chou [24] and represented in Table 8. 

 

Table 8: Non-dimensional fundamental frequency comparison for simply supported between current 

finite element methods; G12/E22 = G13/E2 = 0.6, G23/E22 = 0.5, v12 = 0.25 (𝝎̅ = 𝝎𝒂𝟐√
𝝆

𝑬𝒉𝟐) 

E1/E2 [0/90/90/0] [0/90/0/90] 

Noor Tseng 

[24] 

Present 

values 

Noor Tseng 

[24] 

Present 

values 

3 0.264 0.263 0.262 0.261 0.259 0.260 

10 0.328 0.330 0.331 0.325 0.324 0.329 

20 0.382 0.380 0.382 0.376 0.376 0.380 

40 0.430 0.429 0.430 0.427 0.429 0.450 

 

6. Vibration and Buckling analysis of 

column with/without retrofitting 

The vibration and buckling performance of thin-

walled RC columns, both with and without CFRP 

retrofitting, was examined under various in-plane 

partial and concentrated edge loading conditions. 

Key parameters considered in the analysis include 

loading position (expressed as the c/b ratio), 

column height, boundary constraints, and the level 

at which restraints are applied. A symmetric 4-layer 

CFRP laminate with a total thickness of 2 mm 

(stacked in a (±θ)S configuration) was applied to all 

column faces for retrofitted cases. The applied load 

was maintained at a constant intensity of P = 1000 

N for both partial and concentrated loading 

scenarios. For modeling purposes, the column was 

assumed to have M25-grade concrete with 

dimensions: height (h) = 3000 mm, width (b) = 

1000 mm, and wall thickness (t) = 150 mm. 

6.1 Effect of Load Position Ratio and Ply 

Orientation on Buckling Behavior. 

Figures 4(a) and 4(b) illustrate the buckling 

behavior of a fixed-fixed (C–C) column retrofitted 

with 2 mm thick carbon/epoxy laminates, applied 

with different ply orientations. The partial load 

width is kept constant at 200 mm, and the load 

position varies with c/b ratios from 0.1 to 0.5. As 

shown in Fig. 4(a), the critical buckling load 

increases as the load position ratio (c/b) increases, 

reaching its maximum at c/b = 0.5, irrespective of 

ply orientation. The buckling load is observed to be 

minimal when c/b = 0.1. In contrast, Fig. 4(b) 

reveals that the critical buckling load remains 

relatively constant for different c/b ratios, 
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independent of ply orientation. Additionally, the 

buckling load increases with the ply orientation, 

reaching its peak at θ = (±90°)S and decreasing with 

lower orientations, such as θ = (±15°)S or (±0°)S. 

This behavior is attributed to the fact that fiber 

contribution to buckling resistance is most 

prominent at θ = (±90°)S and diminishes as the ply 

orientation decreases.  

 

 

Fig 4: Variation of buckling load (γcr) with the position of (a) partial load from one edge (b) partial load 

from both edges. 

 

6.2  Effect of Column Height on Buckling Behaviour. 

 

Fig 5: Variation of buckling load (γcr) for different height (H) with the position of        (a) partial load 

from one edge (b) partial load from both edges . 

 

The effect Figures 5 (a) and 5(b) show the effect of 

column height on buckling behavior, with the c/b 

ratio varying from 0.1 to 0.5 and a ply orientation 

of θ = (±90°)S. In Fig. 8 (a), the buckling load 

increases with the c/b ratio, reaching its maximum 

at c/b = 0.5. The most significant variation is 

observed for a 2m high column, with a steady 

decrease in variation as the height increases from 

4m to 10m. Notably, for column heights from 7m 

to 10m, the buckling load remains almost constant. 
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A dramatic 90% reduction in buckling load is seen 

as the height increases beyond 7m. In Fig. 5 (b), 

where the column is subjected to partial load from 

both edges, the buckling load variation is similar to 

Fig. 5(a), but the c/b ratio shows little effect across 

all heights. As column height increases, the stress 

distribution shifts, becoming more concentrated at 

the center for shorter columns. The decrease in 

stress concentration as the column height increases 

leads to reduced stiffness, which in turn lowers the 

buckling load. 

 

6.3   Effect of Constraint Position and Partial Edge Load on Buckling Behavior 

 

Fig 6: Variation of buckling load (γcr) for different position of constraint when(a) BC-1 is adopted (b) BC-

2 is adopted for intermediate support 

Figures 6 (a) and 6 (b) investigate the effect of 

constraint position on buckling behavior for a 6m 

high column with partial edge load, varying the c/b 

ratio from 0.1 to 0.5. In Fig. 6 (a), where all 

degrees of freedom (d.o.f.) are restrained, the 

buckling load increases as the constraint moves 

from 1m to 5m, with the maximum buckling load 

observed at 5m and c/b = 0.5. In Fig. 9 (b), where 

only the vertical and lateral d.o.f. are free, the 

buckling load is highest at 2m and 4m constraint 

positions, and lowest at 3m, as stress concentration 

is more evenly distributed. The buckling load at 2m 

and 4m increases by 18.09%, while at 3m, it 

decreases by 28.25%. 

 

 

Fig. 7: Stress distributiom for partial load from one edge at c/b = 0.5forBC-1 at intermidate support: (a) 

1m, (b) 2m, (c) 3m, (d) 4m, (e) 5m. 
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Fig. 8: Stress distributiom for partial load from one edge at c/b = 0.5for BC-2 at intermidate support: (a) 

1m, (b) 2m, (c) 3m, (d) 4m, (e) 5m. 

Figure 7 shows stress distribution for BC-1, where 

as the constraint position shifts from 1m to 5m, 

stress concentration decreases but intensity 

increases due to the restriction of all d.o.f. In 

contrast, Fig. 8 illustrates BC-2, where stress is 

more evenly distributed, with higher concentration 

near the constraint positions. The study helps 

identify optimal constraint positions for additional 

strength, highlighting how restraining d.o.f. affects 

stress distribution and buckling load. At 5m 

constraint, buckling load increases by 95.5% for a 

c/b ratio of 0.5, indicating the critical role of 

constraint positioning in improving column 

stability. 

6.4  Effect of Storey Number on Buckling 

Behavior under Partial Load. 

 

Fig 9: Variation of buckling load (γcr) for 

number of storeys with the position of partial 

load at c/b = 0.5 

Figure 9 illustrates the effect of storey number on 

the buckling behavior of a clamped column 

subjected to partial edge load with a c/b ratio of 

0.5. The results show a significant decrease in 

buckling load as the number of storeys increases. 

For a 6m column with 2 storeys, the buckling load 

reduces by 53.06%, with the reduction becoming 

less pronounced as the column height or number of 

storeys increases. The variation in buckling load 

across different modes in a four-storey column is 

minimal, as shown in the figure. Mode shapes for 

two-storey and four-storey columns under partial 

load with a c/b ratio of 0.5 are presented in Figures 

10 and 11. 

 

Fig. 10:Critical Mode shapes for two storey with 

a position of partial edge load edge at c/b = 0.5: 

(a) mode -1, (a) mode -2, (a) mode -3, (a) mode -

4. 
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Fig. 11: Critical Mode shapes for four storey 

with a position of partial edge load edge at c/b = 

0.5: (a) mode -1, (a) mode -2, (a) mode -3, (a) 

mode -4. 

 

6.5  Effect of Boundary Condition on 

Buckling Behavior of Retrofitted Columns 

 

Fig 12: Variation of buckling load (γcr) for 

different boundary condition with partial load 

from one edge c/b = 0.1 to 0.5. 

The effect of boundary conditions on the buckling 

behavior of a column retrofitted with a laminate of 

ply-orientation θ = (±90°)s and a 2mm thick 

laminate on each face, subjected to partial load 

with varying c/b ratios (0.1 to 0.5), is investigated 

under three different boundary conditions, as 

shown in Fig. 12. The results reveal that the critical 

load variation with the c/b ratio is most pronounced 

for the C-C edged column, while the C-S and S-S 

edged columns show similar behavior with 

significant buckling variation across the load width 

ratios.  

7. Vibration Analysis of Retrofitted Concrete 

Columns. 

The vibration analysis of a concrete column 

retrofitted with carbon/epoxy laminates applied to 

each face is conducted, considering the effects of 

various parameters, such as laminate thickness 

variation, different ply orientations, changes in 

steel percentage, variations in the breadth-to-

thickness ratio, and different boundary conditions. 

Unless otherwise specified, the laminate stacking 

sequence is symmetric, with a laminate thickness of 

2mm on each face, and the column is rectangular in 

shape. The column’s top and bottom edges are 

always clamped, except in cases where boundary 

conditions are specifically studied. 

7.1Effect of Laminate Thickness on Vibration 

Behavior. 

This section examines the effect of different 

laminate thicknesses on the vibration behavior of 

columns with various ply orientations, as shown in 

Fig. 13. The results indicate that the natural 

frequency of the column increases with laminate 

thickness, regardless of ply orientation, except for 

ply orientations of θ ≤ (±30°)s, where the increase 

in natural frequency is minimal. Additionally, the 

increase in natural frequency is more pronounced 

when the column is retrofitted with (±90°)s ply 

orientation compared to the (±0°)s ply orientation. 

This can be attributed to the fact that the increase in 

natural frequency primarily depends on the 

column's stiffness, which is significantly influenced 

by fiber orientation. The contribution to stiffness is 

more pronounced when the laminate is oriented 

with (±90°)s fibers, while it is negligible at (±0°)s 

fibers. 
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Fig 13: Variation of natural frequency (ω) for 

different orientation for varying laminate 

thickness 

7.2 Effect of In-Plane Load on Vibration 

Behavior of Retrofitted C-C Thin-           Walled 

Slender Column 

The influence of in-plane load on the vibration 

behavior of a C-C thin-walled slender column 

retrofitted with laminate is examined in Fig. 14, 

considering varying loading positions from a c/b 

ratio of 0.1 to 0.5. 

 

Fig 14: Variation of natural frequency (ω) with 

load for different loading position 

The study is conducted for θ = (±90°)s with a 

laminate thickness of 2mm on each face of the 

column. The results reveal that the frequency at 

zero load corresponds to the fundamental 

frequency. As the intensity of the edge load 

increases, the frequency decreases, regardless of 

the loading position. Furthermore, the natural 

frequency of the column decreases and eventually 

becomes zero at the buckling load, which is the 

point where the frequency vanishes. This approach 

helps overcome the limitations of static methods in 

evaluating critical loads, especially when in-plane 

stress distribution needs to be considered.  

7.3 Variation of Natural Frequency with Ply-

orientation and Partial Edge Load 

Fig. 15 illustrates the change in natural frequency 

for a four-layered symmetric laminated column 

(ply-orientation ranging from θ = (±0°)s to θ = 

(±90°)s) subjected to partial edge load with a c/b 

ratio of 0.5. The results show that at zero loading, 

the natural frequency increases as the ply-

orientation shifts from θ = (±0°)s to θ = (±90°)s. 

However, as the load approaches the critical value, 

the vibrational frequency decreases and eventually 

becomes zero, regardless of the ply-orientation. It 

is also noted that the natural frequency is highest at 

θ = (±90°)S and lowest at θ = (±0°)S or θ = (±15°)S, 

irrespective of the load position. This behavior can 

be attributed to the fact that the fiber contribution 

to the natural frequency is most significant when θ 

= (±90°)S, and it diminishes as the ply-orientation 

decreases, becoming almost negligible at θ = 

(±0°)S. These observations align with the results in 

Fig. 15, supporting the same conclusions. 

 

Fig 15: Variation of natural frequency (ω) with 

load for different ply-orientation. 
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8. Conclusions 

The results from the analysis of slender thin walled 

column on buckling and vibration behaviour with 

retrofitting subjected to partial and concentrated 

edge loading in the plane can be summarized as 

follows: 

1. The buckling load of retrofitted columns is 

highly influenced by ply-orientation, with the 

highest buckling resistance observed at θ = (±90°)S. 

As the ply-orientation decreases, the column’s 

buckling load reduces due to a decrease in fiber 

contribution to structural stiffness. 

2. The buckling load increases with the 

increase in load position ratio (c/b), particularly up 

to c/b = 0.5. However, for columns subjected to 

partial edge loading, the critical buckling load does 

not show significant variation for higher values of 

c/b, especially in columns with complex boundary 

conditions. 

3. The boundary condition plays a crucial 

role in the stress distribution and buckling 

behavior. The clamping of degrees of freedom 

(DOF) increases the stress concentration near the 

constraint, thereby enhancing the buckling 

resistance when compared to free DOF at the 

constraint positions. 

4. Column height significantly influences the 

buckling load, with a considerable reduction in 

buckling resistance observed as the column height 

increases. However, beyond a certain height (e.g., 7 

meters), the variation in buckling load becomes 

negligible, indicating a stabilizing effect of 

increased height. 

5. The natural frequency of retrofitted 

columns increases with the thickness of the 

laminate and changes in ply-orientation, 

particularly for (±90°)S orientations. The natural 

frequency decreases with applied load, reaching 

zero at the critical buckling load. 

6. The vibration response can provide 

valuable insights into the critical load conditions, 

complementing static approaches by considering 

the in-plane stress distribution. The reduction of the 

natural frequency to zero at buckling load serves as 

a reliable indicator of structural failure in slender 

columns. 
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