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Abstract: 

In modern high-rise construction, thin-walled slender columns are commonly used due to their structural efficiency 

and aesthetic appearance. These columns often require retrofitting using Fibre-Reinforced Polymer (FRP) laminates 

to enhance their load-carrying capacity or to strengthen existing structures. The present investigation examines the 

stability behaviour of such columns, both with and without FRP retrofitting, when subjected to partial or 

concentrated edge loads. The analysis is carried out using a finite element (FE) formulation that incorporates shear 

deformation and rotary inertia effects. The column is discretized using an eight-noded plate element, with five 

degrees of freedom per node. This study primarily focuses on understanding the influence of different ply 

orientations in the retrofitted FRP laminates, positioning of partial/concentrated loads, and number of stories (height 

effect) on the stability performance of the thin-walled slender columns.  

Keywords: Buckling, thin-walled columns, finite element method, FRP retrofitting. 

1. Introduction: 

Rapid advancements in material science and 

structural engineering have enabled the 

development of slender and efficient structural 

members, particularly in high-rise construction. 

Among these, thin-walled reinforced concrete (RC) 

columns have gained prominence due to their 

optimized use of material and increased permissible 

stress levels. However, despite their advantages, 

such columns are prone to stability failures—such 

as buckling—long before reaching their material 

strength limits. This has shifted the focus of 

structural analysis from traditional strength-based 

approaches to those emphasizing stability 

considerations. In the rehabilitation and upgrading 

of aging or damaged columns, Fiber-Reinforced 

Polymer (FRP) composites have emerged as a 

reliable retrofitting solution due to their high 

strength-to-weight ratio, corrosion resistance, and 

ease of application. A significant body of work has 

focused on the performance of FRP-wrapped or 

laminated RC columns, particularly under 

concentric loads. Experimental and numerical 

studies have demonstrated improvements in 

strength and ductility by varying laminate types, 

sizes, and configurations [1–3]. Common 

techniques include externally bonded FRP fabrics, 

bars, and laminates. For instance, Hussein et al. [4] 

studied the impact of wrapping size on circular RC 

columns and found minimal discrepancies between 

experimental and numerical results. However, the 

stress behavior in non-circular cross sections 

remains complex and underexplored. Addressing 

eccentric loading, Hadi [5] evaluated CFRP-

confined RC columns and observed enhanced load 

capacity and ductility, alongside improved moment 

redistribution. Similarly, Belouar et al. [6] showed 

that while increasing the number of CFRP layers 

improves compressive strength, greater slenderness 

ratios reduce ductility. On the modeling front, 

Charalambidi et al. [7] used finite element analysis 

with 8-noded elements to simulate partial GFRP 

confinement of low-strength concrete columns. 

Meanwhile, internal retrofitting approaches using 

FRP spirals and longitudinal bars were studied by 

Hales et al. [8], who found that these 

reinforcements significantly enhance tensile 

capacity and overall load resistance. The lack of 

existing design guidelines for slender FRP-
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confined columns has prompted theoretical work. 

Jiang and Teng [9] developed a numerical 

integration-based model using Lam and Teng’s 

stress–strain relations. Their predictions aligned 

well with experimental data, but the authors 

emphasized the need for further large-scale testing 

to enhance the model's robustness. Expanding on 

hybrid systems, Chellapandian et al. [10] explored 

RC columns strengthened with both CFRP 

laminates and external fabrics under axial and 

eccentric loads. Using experimental, analytical, and 

finite element (FE) approaches, their study 

confirmed that hybrid retrofitting significantly 

improved initial stiffness, peak load, and ductility. 

FE and analytical predictions were within 5% of 

test results, confirming their validity. Similarly, 

Mosallam [11] investigated FRP-retrofitted RC 

beam-column joints using high-strength and high-

modulus carbon/epoxy laminates, as well as hybrid 

composite connectors. These systems improved 

structural performance under full cyclic and gravity 

loads with good agreement between experimental 

and numerical outcomes.From a plate-theory 

perspective, Sahu et al. [12] analyzed laminated 

plates under buckling using varied ply 

orientations—symmetric and antisymmetric—to 

understand load interaction effects. In a related 

study, Nali and Carrera [13] investigated the 

mechanical response of orthotropic and anisotropic 

laminated composites with different stacking 

sequences, further contributing to the 

understanding of composite behavior under 

complex loads. 

Despite these substantial efforts, most existing 

research focuses on square or circular RC columns 

under concentric loading. The buckling behavior of 

thin-walled slender RC columns retrofitted with 

FRP under eccentric or partial edge loading 

conditions remains largely unaddressed. Given the 

importance of such columns in modern structural 

systems, a detailed parametric study is essential. 

This research addresses this gap by examining the 

effects of FRP retrofitting, ply orientation, 

eccentric load positioning, column height, and 

boundary constraints on the stability behavior of 

thin-walled slender columns. The study offers a 

comprehensive evaluation under varying load 

scenarios to enhance the understanding and design 

of retrofitted slender RC columns. 

2. Thin-Walled Slender Columns and 

Influence of Loading Position. 

Thin-walled slender columns are structural 

elements characterized by relatively small cross-

sectional dimensions in relation to their length, 

often leading to stability concerns under axial or 

eccentric loads. In such columns, the ultimate load-

bearing capacity is not determined solely by the 

material strength and cross-sectional area but is 

significantly affected by their slenderness ratio. 

Figures 1(a) and 1(b) illustrate the slender nature of 

these thin-walled columns. Compared to short or 

stocky columns, slender columns—especially those 

with thin walls—exhibit reduced axial load 

capacity as their length increases, making them 

more sensitive to buckling and load positioning. 

 

 
Fig 1: (a)-(b) Thin walled slender columns 
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The typical partial in-plane edge loading and 

concentrated loading cases that are considered in 

the following investigations are shown in Fig 2 (a) 

– (d) respectively. The original pre-buckling 

stresses are determined where the column's load (P) 

remain constant irrespective of the length of the 

localized edge load. These localized edge loading 

in Fig 2 (a) – (d) are compressive in nature. In these 

localized edge loading, the parameter ‘c’ defines 

the width of loading, ‘b’ defines the width of the 

column. When c/b = 1 the column becomes 

uniformly loaded for loading cases as specified 

above. 

p c

h

p/2

b 

c/2

p/2

c/2

h

(d)

P c P/2

c
/2

P/2

c
/2

b 

(a)

h

b 

(b)

h

b 

(c)  

Fig 2: Problem description: Partial edge loading (a) from one end, (b) from both ends and Point load (c) 

from one end, (d) from both ends. 

 

3. Finite element formulation and 

governing equations 

A typical plate, as illustrated in Fig. 3, has 

dimensions a × b × h along the x, y, and z axes, 

respectively. The plate is composed of a 

unidirectional composite fiber laminate. To derive 

the expression for strain energy, five independent 

displacement coordinates are considered: u, v, and 

w, representing displacements along the x, y, and z 

directions, and Өx and Өy, representing rotations 

about the y and x axes, respectively. These 

displacement components form the basis for 

analyzing the plate's deformation behavior under 

loading. 

z;w

3

1

2

4

t

 

Fig 3: Lamina geometry of plate 

The First-order Shear Deformation Theory (FSDT) 

is employed, incorporating a shear correction factor 

to account for the non-linear shear strain 

distribution through the thickness. The 

displacement field assumes that normals to the 

mid-surface remain straight but not necessarily 

perpendicular after deformation, such that 

     ( , , ),  ( , , ),  ( , , )  ( , ),  ( , ),  ( , )   ( , ),  ( , ),  0p p p p p p p p

x yu x y z v x y z w x y z u x y v x y w x y z x y x y = +  (1) 

where 𝑢̅𝑝,𝑣̅𝑝𝑖and  𝑤̅𝑝represent the displacements in 

the x, y, and z directions,while up, vp, and 

wpdenotemid-plane displacements along x, y, and z 

axes. Additionally,𝜃𝑥
𝑝
 and 𝜃𝑦

𝑝
indicate rotations of 

the normalto the un-deformed mid-plane of the 

plate about the y and x-axes, respectively. In the 

current formulation, Eq. (2) presents the Green-

Lagrange's strain displacement relation for a plate 

element. 
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 (2) 

The strain-displacement equation, which is shown in Eq. (2) has two parts, i.e., linear strain and non-linear 

strains, 

          = +L NL

ij ij ij       (3) 

The linear strain vector {εij
L} is employed for the 

elastic stiffness matrix, and the non-linear strain 

term {εij
NL} is used for the geometric stiffness 

matrix. Under the assumption of minimal and 

neglected normal stresses, the stress-strain relation 

for the laminated panel is derived based on the 

displacement model as, 
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where the comma subscript denotes differentiation 

with respect to the coordinates following the 

subscript.  

The laminates constitutive coefficients in Eq. (4) 

are defined by, 

( )
1
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( ,  ,  )  (1,  ,  ) 
k

k

zm
p

P P P

ij ij ij ij

k z

A B D Q z z dz

−
=
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for i, j= 1, 2, 6      (5) 

whereas the shear component is indicated by ( )
1

 1

  
k

k

zm
p

P p

ij ij

k z

S Q dz

−
=

=     for i, j= 4,5   (6) 

Here κp is the shear correction factor, which is used 

to compensate for the parabolic shear stress 

distribution across the plate thickness and is taken 

to be 5/6. 

The linear and non-linear strain terms in Eq (2) and 

resultant stress-strain relations in Eq. (4) are used 

to derive the different level stiffness matrices as 

follows: 
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where   
p

ek ,   
p

Gk
 
and   

pm represents element 

level stiffness, geometric stiffness and mass 

matrices, respectively. Structural stiffness matrices 

are assembled from individual element-level 

matrices using the skyline technique.  

The governing differential equation of equilibrium 

for a structural component under the application of 

in-plane edge load can be obtained by using 

extended Hamilton’s principle as, 

 

 

          s s s s s s s s s s s s0 GM q K P K q   0 + − =   
(10) 

 

The assembled matrices [K], [KG], and [M] 

represent system elastic stiffness, geometric 

stiffness, and mass, respectively. Equation (10) can 

be simplified for buckling and vibration scenarios.  

In the case of buckling, when{𝑞̈}=0, the 

equationreduces to: 

 

       s s s s s s s s s scr GK q P K q   0− =  
(11) 

      

In the case of vibration, equation (10) becomes, 

          s s s s s s s s s s s s s s s

2

0 GK q - P K q - M q   0 . =  
(12) 

 

In Eq. (12), when P0 approaches zero, the equation 

describes free vibration without in-plane load, 

while the presence of P0 signifies a vibration 

problem with in-plane load effects. Setting ω2 to 

zero in Eq. (12) for a specific P0 value identifies the 

critical buckling load. This dynamic approach to 

determine critical loads is advantageous as it 

circumvents singularity issues posed by Eigen 

value solvers in static analysis. This method has 

been applied to ascertain critical loads for diverse 

problems in the study. 

4. PROBLEM DEFINITIONS 

Buckling responses of a retrofitted thin-walled 

column under various in-plane edge loading 

conditions (Fig. 2) are presented. The stress–strain 

relationships, engineering constants, and failure 

theories for an angle lamina have been established 

and serve as key parameters for evaluation. Unlike 

isotropic materials, determining these parameters 

experimentally for composites is time-consuming 

and costly due to dependencies on constituent 

properties, volume fraction, geometry, and 
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processing. When the material symmetry aligns 

with the fiber direction, five independent elastic 

constants are needed to describe the elastic 

behavior. 

Numerous analytical models have been developed 

to estimate these constants by relating fiber and 

matrix properties. These models, based on different 

experimental data and assumptions, are well-

documented in the works of Whitney and Riley 

[16], Halpin and Tsai [17], Selvadurai and 

Nikopour [18], and Hashin and Rosen [19].  

 

Table 1:  Isotropic properties of concrete and steel 

Particulars Concrete 

Young’s modulus Ec 25000 MPa 

Shear modulus Gc 10869.5 MPa 

Poisson’s value ϑc 0.15 

Density  ρc   2400 Kg/m3 
  

Particulars Steel 

Young’s modulus Es 200000 MPa 

Shear modulus Gs 76869.5 MPa 

Poisson’s value ϑs 0.30 

Density  ρs   7850 Kg/m3 

 

Table 2: Calculated concrete equivalent young’s modulus for varying % of steel 

Sl.

No 

Particulars Percentage of steel (Volume fraction Vs) 

0.8 1 2 2.5 3 

 

1. Longitudinal Direction(E11) (N/mm2) 

a.  Rule of mixture 26400.00 26750.00 28500.00 29375.00 30250.00 

b.  MROM 26400.00 26750.00 28500.00 29375.00 30250.00 

c.  Chamis method 26400.00 26750.00 28500.00 29375.00 30250.00 

d.  Elasticity  approach 26407.10 26759.11 28517.93 29397.23 30276.40 

2. Transverse Direction(E22) (N/mm2) 

a.  Inverse rule of 

mixture 
 

25176.20 25220.60 25445.90 25559.11 25673.90 

b.  MROM 25338.80 25421.93 25829.46 26028.80 26225.60 

c.  Chamis method 31377.90 31746.03 33277.59 33937.40 34556.80 

d.  Halpin– Tsai [17] 25201.10 25252.53 25510.20 25641.03 25773.20 

3. Rigidity Shear Modulus (G12= G13 and  G23) (N/mm2) 

a.  Rule of mixture 10944.70 10963.71 11059.50 11108.03 11156.90 

b.  MROM 10994.70 11026.32 11185.52 11266.04 11347.20 

c.  Chamis method 13901.60 14064.70 14743.24 15035.56 15310.00 

d.  Elasticity approach 11001.20 11034.37 11201.68 11286.31 11371.80 
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The above mentioned Table 2 provides the young’s 

modulus of RCC by assigning the  properties of 

concrete and steel specifically, for different 

percentage of steel varying from 0.8% to 3.0%. 

 

Table 3: Geometric boundary conditions 

Boundary condition Position of the edge 

y = 0 (bottom) y = b (top) 

Simply supported (S) x = 0, w = 0, θy = 0 w = 0, θy = 0 

Clamped 

(C) 

BC-1 x = 0, y = 0, w = 0, θx = 0, θy = 0 x = 0, w = 0, θx = 0, θy = 0 

BC-2 x = 0, y = 0, w = 0, θx = 0, θy = 0 x = 0, θx = 0, θy = 0 

Free (F) No restraints 

 

The present investigation in mainly focused on the 

slender concrete column with retrofitting. First the 

isotropic properties of concrete and steel are used 

to calculate the orthotropic properties of the RCC 

by considering it as composite material and the 

properties of the retrofitting material is selected 

from Kishore et al. [15] as mentioned in table 4. 

 

Table 4: Material properties of slender column for 2% steel and epoxy/carbon laminate. 

Material Material constants 

E11 E12 G12 G13 G23 ν12 

RC Column 28.54e3 25.82e3 11.20e3 11.20e3 11.20e3 0.153 

Carbon/epoxy 172.5e3 6.9e3 3.5e3 3.5e3 1.4e3 0.25 

 

5. RESULTS AND DISCUSSIONS 

Convergence studies 

For adequate convergence conditions, it is vital to 

properly discretize the structure in the finite 

element method. In this respect, the column is 

discretized in m, row number and n, columns, i.e. 

m x n column elements and the respective values 

are shown in Table 5. The ratio of local width c/b = 

0.5. Results convergence is observed to be 

satisfactory for 20 x 10 mesh sizes as observed in 

Table 5. This mesh size is therefore retained based 

on the loading throughout the work. 

 

Table 5: Convergence of buckling load (γcr) for CC edge partial load for c/b = 0.5 

Mesh order, m x n [±0]s/RCC/[±0]s [±90]s/RCC/[±90]s
 

4 x 2 3.775 x 104 5.332 x 104 

e.  Rule of mixture (G23) 11005.30 11038.61 11200.98 11280.08 11358.00 

4. ϑ value (ϑ12) 

a.  Rule of mixture 0.1512 0.1515 0.153 0.1537 0.1545 

b.  elasticity approach 0.1519 0.1523 0.1547 0.1559 0.1571 
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8 x 4 3.764 x 104 5.236 x 104 

12 x 6 3.695 x 104 5.165 x 104 

16 x 8 3.601 x 104 5.095 x 104 

20 x 10 3.512 x 104 5.068 x 104 

24 x 12 3.512 x 104 5.068 x 104 

 

Comparison studies 

Comparison studies are needed to determine the 

precision and effectiveness of various matrices and 

in discretization of the structure engaged in 

buckling problems. In order to validate the 

accuracy of the computed stiffness matrix, buckling 

analysis of a square laminated plate is predicted 

using an 8-noded serendipity element (8-NSE) and 

compared with the closed forms solutions of Sahu 

et al. [12] as shown in table 6. 

 

Table 6:  Non-dimensional buckling load comparison for simply supported loads between current finite 

element methods.(W = Pcr*b2 / E22*h3) a/b = 1, E11/E22 = 25, G12 = G13 = 0.5E22, G23 = 0.1E22 and v12 = 0.25. 

C/b ratio Particulars Ply-orientation [θ/- θ/ θ/- θ] 

0 15 30 45 60 90 

0.2 Sahu et al. [12] 70.5 73.4 76.6 35.25 19.65 14.91 

Present values 70.13 73.05 76.41 35.01 19.58 14.77 

0.6 Sahu et al. [12] 34.68 39.98 49.76 35.25 25.78 13.01 

Present values 33.68 39.63 49.04 35.03 25.52 12.84 

1.0 Sahu et al. [12] 23.37 25.21 32.03 35.78 29.59 10.45 

Present values 23.07 24.97 31.84 35.21 29.16 10.22 

 

6. Buckling analysis of column with 

retrofitting 

By considering various parameters, the buckling 

analysis of the column with retrofitting under the 

application of different partial and concentrated 

positioning in plane edge load (c/b) is studied such 

as variation in loading position, height of column, 

constrain position, storey constrain position and 

different boundary condition. A 4-layered laminate 

of 2mm thick symmetrically stacked is considered 

on each face of the column, (±ϴ)S. The load 

applied on the column is considered to be of 

constant intensity for partial and concentrated load 

i.e. for partial load and concentrated load of 

P=1000N is considered. The characteristics 

strength of concrete is taken as M25 and 

dimensions of column are Height (h) = 3000 mm, 

width (b) = 1000 mm, thickness (t) = 150 mm.  

6.1 Effect of position of partial edge load.  

The effect of load position ratio (c/b) for column 

subjected to partial load from one and both edge on 

the buckling behaviour of fixed-fixed (C-C) 

column retrofitted with different ply-oriented 

laminate of carbon/epoxy with a thickness of 2mm 

on each face of column is shown in Fig. 4 (a) and 

Fig 4 (b). The partial load width is kept constant as 

200 mm and its position is changing from c/b = 0.1 

to 0.5. It is observed from Fig 4(a) that the buckling 

load increases with the increase in load position 

ratio (c/b) up o c/b = 0.5 irrespective of ply-

orientation.  
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Fig 4: Variation of buckling load (γcr) with the position of (a) partial load from one edge (b) partial load 

from both edges. 

 

It is worth to mention that the buckling load is 

found to be maximum at c/b = 0.5 and it is found to 

be minimum when c/b = 0.1. But where as in Fig 

4(b) the critical buckling load does not vary much 

for different c/b ratio irrespective of ply-

orientation. It is also observed that the buckling 

load increases with the increases in ply-orientation 

and found to be maximum at θ = (±90°)S and 

minimum at  θ = (±15°)S or (±0°)S irrespective of 

position of load and edges. It may be attributed to 

the fact that the fibre contribution towards the 

buckling resistance is predominant when θ = 

(±90°)S and it decreases as the ply-orientation 

decreases and the fibre contribution becomes 

almost negligible when θ = (±0°)S. 

 

 

Fig. 5: Stress distributiom for partial load from one edge for θ = (±90°)S: (a) c/b = 0.1, (b) c/b = 0.2, (c) c/b 

= 0.3, (d) c/b = 0.4, (e) c/b = 0.5. 

 

The buckling behaviour of panel is dependent on 

the various parameters, in which pre-buckling 

stress distribution plays an important role, as the 

pre-buckling stress depends on the parameters like 

nature of loading, loading position, ply-orientation 

and boundary condition. Retrofitted slender 

columns are subjected to non-uniform loading that 

may develop non-uniform stress for columns with 

different ply-orientation. Hence, it becomes 

necessary to study the nature of in-plane stress 

distribution for non-uniform edge loads as in Fig 5 

and Fig 6. 
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Fig. 6: Stress distributiom for partial load from both edge for θ = (±90°)S:(a) c/b = 0.1,(b) c/b =0.2, (c) c/b 

=0.3, (d) c/b =0.4, (e) c/b = 0.5. 

 

As seen in the above figures, it may be due the fact 

the region of maximum stress occurs around the 

central part of the column, the column is expected 

to yield least buckling resistance as the stiffness of 

the panel is very less in that portion and there is 

only slight variation in the pre-buckling stress and 

the critical load that occurs at the middle portion of 

the column where the stress is maximum as 

observed in Fig 6 (a) to (e), whereas in column 

subjected to partial load from one edge the stresses 

are concentrated towards the edge of column when 

c/b = 0.1 wherein the stiffness of column is 

comparably less and these stresses are becoming 

uniform throughout the width of column when c/b 

approach towards the centre, i.e., c/b = 0.5. 

6.2 Effect of position of concentrated edge load. 

The effect of concentrated load from one and both 

sides of a slender column retrofitted with different 

ply-orientation varying from θ ≈ (±0°)s to (±90°)s 

with a laminate thickness of 2mm on each face of 

column on the stability behaviour of partial loaded 

column for C-C edged conditions are depicted in 

Fig 7(a) and (b). 

 

 

Fig 7: Variation of buckling load (γcr) with the position of (a) point load from one edge (b) point load from 

both edges. 
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In this analysis load width ratio of c/b = 0.1 to 0.5 

was considered, intensity of load considered is 

1000 N and kept constant for partial and 

concentrated load. As seen in Fig 7(a) and (b) 

variation of bucking load and stress distribution is 

similar and depicts same variation as partial load as 

in Fig. 4(a) and (b). One can observe from the Fig. 

4(a) and (b) and Fig 7(a) and (b) that the buckling 

characteristic of column with concentrated load is 

similar to that of column with partial or strip load. 

Therefore, whatever the explanation given for Fig 

4(a) and 4(b) is also holds good for Fig 7(a) and 

(b). Therefore it can be concluded from the above 

results that for analysis of column when subjected 

to partial in-plane edge load or concentrated load, it 

generates same results and similar type of stress 

distribution. So from results it is concluded that 

partial load is used for the study here onwards. 

6.3 Effect of height of column. 

The effect of height of column on the buckling 

behaviour with changing in c/b ratio from 0.1 to 0.5 

with a ply-orientation of θ ≈ (±90°)s has been 

studied in Fig 8(a) and (b) for partial load acting 

from one edge and from both edges respectively. 

 

 

Fig 8: Variation of buckling load (γcr) for different height (H) with the position of        (a) partial load 

from one edge (b) partial load from both edges. 

 

As observed in Fig 8(a) buckling load increases as 

the c/b ratio increases and it is found to be 

maximum when c/b = 0.5 and maximum variation 

is seen for 2m height column and as the column 

height is increased variation in buckling load can 

be seen upto 4m, and thereafter when the height of 

column is increased form 5m to 10m there is no 

significant variation in the buckling load even with 

the increase of c/b ratio, it is worth mentioning that 

the buckling load more or less remains constant for 

column with height form 7m to 10m. There is 

approximately 90% decrease in the buckling load 

from 7m height column as seen in Fig 8(a). But 

whereas for column subjected to partial load from 

both edges as in fig 8(b), the variation in the 

buckling load pattern is similar to Fig 8(a), but in 

Fig 8(b) the buckling load variation for different 

c/b ratio from 0.1 to 0.5 is similar for all specified 

height of column. In both cases as the height of 

column is increased the stress distribution varies 

and is higher for short column and it is 

concentrated more at the centre. And the stress 

concentration decreases as the height of column 

increases eventually the buckling load also gets 

decreased because the stiffness of the column 

decreases. 

7. Conclusions 

The results from the analysis of slender thin walled 

column on buckling behaviour with retrofitting 

subjected to partial and concentrated edge loading 

in the plane can be summarized as follows: 

1. The ply-orientation plays a significant part 

in the retrofitted column buckling strength. The 
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bucking strength of the column also improves as 

the ply orientation increases and found to be 

maximum at θ = (±90°)s and minimum at θ = (±0°). 

2. The loading position also plays a vital role 

in the column's buckling strength. The buckling 

load increases with the increase in the load position 

(c / b) and is observed to be minimum at c / b = 0.1 

and maximum at c/b = 0.5 when loaded from one 

edge and found to be symmetry beyond c/b = 0.5. 

But it is not so in the case of loading from both 

edges, where the variation in the buckling load is 

almost negligible in the load position. 

3. Around 47% is the maximum increase in 

buckling load when the column is retrofitted with θ 

= (±90°)S ply-orientation as compared to that of the 

column without retrofitting whereas it is only 2% in 

case of (±0°)S ply-orientation.  

4. The buckling strength of columns depends 

on many parameters, in which the height of the 

column governs major role. In case of short column 

the buckling load is greater eventually when the 

height of column is increased the stiffness gets 

decreased. 

5. It can be noted that boundary condition 

play a main role on the buckling strength of 

column. It is found that for any given ply-

orientation, the C-C edge column provides 

maximum buckling load relative to other boundary 

conditions. 
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