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Abstract 

The Ulysses spacecraft's detection of electromagnetic ion-cyclotron waves in the Jovian magnetosphere is 

examined in this research. In this area, several kinds of high-frequency radio emissions from resonant interactions 

have been detected. In light of the parallel propagation of electromagnetic ion-cyclotron waves, the study focuses 

on the wave-particle interactions between these waves and fully ionized magnetospheric plasma particles. As a 

result, the dispersion relation with a ring distribution in a collisionless magneto-plasma at 17 RJ with a parallel 

alternating current (AC) electric field may be thoroughly examined. We derive a relativistic growth rate expression 

using a kinetic approach and a method of characteristics. We also examine injection events captured in the Jovian 

magnetosphere by the Galileo spacecraft's energetic particle detector (EPD). We perform a parametric analysis of 

different plasma properties, including temperature anisotropy, AC frequency, and relativistic variables, after a hot 

ion beam is injected to investigate their impact on the growth rate, which is displayed. 

Keywords- Oblique Electromagnetic ion-cyclotron waves, Ring distribution, hot ion injection, Jovian 

magnetosphere  

Introduction 

The electromagnetic ion cyclotron (EMIC) wave is 

typically a left-handed polarized transverse wave, 

generated when the perpendicular ion temperature 

(T⊥) exceeds the parallel temperature (T∥), with ion 

temperatures in the range of 10–100 keV [1]. EMIC 

waves are thought to originate near the magnetic 

equator, where the magnetic field strength is 

minimal along a given field line, and subsequently 

propagate along the field lines toward higher 

latitudes [2,3]. In Earth's magnetosphere, EMIC 

waves are categorized into three distinct frequency 

bands based on the gyrofrequencies of dominant ion 

species: the Hydrogen band (H-band), between the 

gyrofrequencies of H+ and He+ ions; the Helium 

band (He-band), between the gyrofrequencies of 

He+ and O+ ions; and the Oxygen band (O-band), 

which occurs at frequencies below the 

gyrofrequency of O+ ions[4,5] . 

These waves play a significant role in wave-particle 

interactions and can lead to ion scattering, which is 

particularly relevant for radiation belt dynamics and 

plasma heating in planetary magnetospheres [6.7]. 

Recent studies have also highlighted the generation 

and propagation mechanisms of EMIC waves in 

other planetary magnetospheres, such as those of 

Jupiter and Saturn, where similar wave phenomena 

are observed [8,9,10]. 

Previous research has demonstrated that 

electromagnetic ion cyclotron (EMIC) waves can 

interact with both energetic ions non relativistic and 

relativistic electrons [11,12]. Through wave-particle 
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interactions, particles can be scattered into the loss 

cone, leading to their precipitation into the upper 

atmosphere. Furthermore, observational studies 

have shown that EMIC waves can induce heating of 

He+ ions as well as electrons [13]. These 

interactions are crucial for the energization of cold 

plasma particles and the loss of high-energy 

relativistic particles within the magnetosphere[3]. 

Jupiter, the largest planet in our solar system, is a gas 

giant with distinct properties that make it a prime 

target for scientific investigation. Named after the 

king of the Roman gods, Jupiter has intrigued 

astronomers and space scientists for centuries 

(NASA Solar System Exploration: Jupiter). Its 

magnetosphere is a vast and powerful region shaped 

by the planet’s rapid rotation, metallic hydrogen 

core, and interactions with the solar wind [14] This 

magnetic environment is primarily driven by 

Jupiter's fast rotational period, the metallic hydrogen 

within its interior, and the extensive influence of its 

large moon system. 

Numerous studies have identified various sources 

that contribute to the generation of EMIC waves in 

different regions of the magnetosphere. EMIC 

waves observed in the post-noon to dusk sector, for 

example, are primarily generated by energetic ions 

within the current ring region [8]. In this sector, the 

thermal anisotropy of these high-energy particles 

plays a critical role in the generation of EMIC 

waves. Additionally, it has been shown that the high 

density of cold plasma within the plasmasphere 

diminishes the resonant strength of the energetic 

ions, thereby influencing the efficiency of wave 

generation. These findings suggest that the optimal 

region for EMIC wave production is where the 

energetic ion rings intersect with the cold ions of the 

plasmasphere [15,16,17,18]. Furthermore, cold 

plasma condensation and the formation of cold ions 

have been identified as key mechanisms influencing 

the structure and generation of EMIC waves [17]. 

Beyond the current rings, the presence of ion sheets 

in the outer magnetosphere also plays a significant 

role in modulating EMIC wave emissions [8,19]. 

Numerous studies have identified that the primary 

source regions of EMIC waves under geomagnetic 

disturbances (such as magnetic storms and 

substorms) are associated with the injection and 

concentration of cold plasma within the 

magnetosphere. To explore the spatial distribution 

of EMIC waves in relation to geomagnetic activity, 

several studies have correlated wave occurrence 

with geomagnetic indices such as AE (Auroral 

Electrojet index), SYM-H (symmetrical component 

of the horizontal geomagnetic field), and Kp 

(planetary K-index). However, research examining 

the correlation of EMIC wave properties with 

geomagnetic indices (SYM-H, AE, and Kp) using 

observations from the Combined Release and 

Radiation Effects Satellite (CRRES) has shown that 

these indices do not provide a reliable means of 

determining the specific characteristics of EMIC 

waves. These findings suggest that distinguishing 

internal wave sources from external sources is 

challenging when relying solely on geomagnetic 

indices [20]. 

Recent observations by the Juno spacecraft have 

revealed a new class of broadband plasma wave 

emissions (~50 Hz to 40 kHz) detected on 27 August 

2016, as the spacecraft passed over Jupiter's low-

altitude polar regions. Large-amplitude 

electromagnetic waves were simultaneously 

detected with intense electron fluxes precipitating 

along auroral field lines at Jupiter. These 

observations support the idea that counter-streaming 

electron beams drifting along the magnetic field in 

electron–proton plasmas can generate electrostatic 

(ES) waves and structures commonly observed in 

planetary magnetospheres. In electron–positron 

plasmas, streaming electron/positron beams along 

the magnetic field can initially produce ES waves, 

followed by the generation of electromagnetic (EM) 

waves with significant magnetic field perturbations 

[21,22]. 

This paper aims to investigate the effect of hot ion 

injection on electromagnetic ion cyclotron (EMIC) 

wave instability in the Jovian magnetosphere, 

drawing parallels with cold beam injection studies 

for whistler wave generation in Saturn's 

magnetosphere [23]. Plasma injection processes and 

energy exchange play a crucial role in the dynamics 

of Jupiter's magnetosphere. A detailed derivation of 

the dispersion relation for EMIC waves is presented, 

considering a ring distribution in the presence of a 

parallel AC electric field. Additionally, an 

expression for the growth rate of EMIC waves is 

derived in terms of temperature anisotropy and the 

electric field in an anisotropic plasma. Finally, the 

growth rate for EMIC waves under Jovian 

magnetospheric conditions at L = 17 R_J is 

calculated, and the results are discussed. This 
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analysis will contribute to a deeper understanding of 

the physical mechanisms behind the various 

broadband emissions observed in Jupiter's 

magnetosphere and ionosphere [24,25,26]. 

Dispersion relation and Growth rate 

A spatially homogeneous, collisionless, and 

anisotropic plasma is assumed, aligned with the z-

direction of the ambient magnetic field B and an 

external alternating current (AC) electric field. This 

configuration is used to derive the dispersion 

relation, while accounting for small 

inhomogeneities within the interaction zone. The 

Vlasov-Maxwell equations are employed, and after 

separating the equilibrium and non-equilibrium 

components, higher-order terms are neglected. This 

approach follows the methodology and geometric 

considerations outlined of [27], as well as similar 

techniques used in previous studies of plasma wave 

interactions in magnetospheres. The assumptions 

and simplifications are consistent with the 

treatments of wave-plasma interactions in 

anisotropic plasmas discussed , where similar 

configurations of AC electric fields and magnetic 

field alignments have been considered from 

[28,29,30].  

The dispersion relation for relativistic case with 

parallel AC electric field is written from Garima et 

al[31] of equations (1) and (2)  for n=1as: 

𝑘2𝑐2 cos𝜃

𝜔2 = 1 + ∑
4e𝑠

2𝜋

(βm𝑠)
2𝜔2

∑ 𝐽𝑝(𝜆2) ∫
𝑑3𝑝

2
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[
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𝜕𝑝⊥

−𝑘||(βm𝑠)
𝜕𝑓𝑜
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−
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𝜔𝑐
𝛽

)             ...(1)                                                                                                                                        

where, subscript ‘s’ denotes type of species i.e. 

electrons and ions. where, β is the relativistic factor 

and defined as = 1/√1 −
𝑣2

𝑐2 . For propagation of 

electromagnetic wave 

The ring distribution function is assumed to be 

distribution function of the trapped particles from 

[30,32] 

𝑓(𝑝⊥,p
||
) =

𝑛𝑠/n

𝜋3/2𝑝𝑜||𝑠𝑝𝑜⊥𝑠
2 𝐴

exp [−
(𝑝⊥−𝑣𝑜)2

𝑝𝑜⊥𝑠
2 −

(𝑝||
2)

𝑝𝑜||𝑠
2 ]                                                                       …(2)                            

𝐴 = exp (−
𝑣𝑜
2

𝑝𝑜⊥𝑠
2 ) + √𝜋 (

𝑣𝑜

𝑝𝑜⊥𝑠
) erfc (−

𝑣𝑜

𝑝𝑜||𝑠
)                                                                               …(3)                                                           

𝑝𝑜||𝑒 = (𝑘𝑏𝑇||𝑒/𝛽𝑚𝑒)
1/2

, 𝑝𝑜⊥𝑒 = (𝑘𝑏𝑇⊥/𝛽𝑚𝑒)
1/2, 𝑝𝑜||𝑖 = (𝑘𝑏𝑇||𝑖/𝛽𝑚𝑖)

1/2
 and 𝑝𝑜⊥𝑖 = (𝑘𝑏𝑇⊥𝑖/𝛽𝑚𝑖)

1/2  

are the associated parallel and perpendicular thermal 

momenta of ions and electrons. 

For oblique propagation of electromagnetic ion-

cyclotron wave, the general dispersion relation 

reduces to 𝜀11 ± 𝑖𝜀12 = 𝑁2cos2𝜃  

ns/n in equation (2) represents the ratio of particle 

total density captured and characterized by high 

energy, and erfc(x) in equation (3) is a 

complementary error function. The drift velocity is 

represented as 𝑣𝑜.  

Substituting 𝑑3𝑝 = 2π ∫ 𝑝⊥dp
⊥

∞

0
∫ dp

||

∞

−∞
 and using 

expression (2) in equation (1) and after solving the 

integrations, we get the dispersion relation as:  

𝑘2𝑐2 cos𝜃

𝜔2 = 1 +
4e𝑠

2𝜋

(𝛽𝑚𝑠)
2𝜔2 ∑

𝑝
𝐽𝑝(𝜆2)

(𝑛𝑠/n)

𝐴
(𝛽𝑚𝑠) [

𝛽𝑚𝑠

𝑝𝑜||𝑠
(

𝜔

𝑘||
−

𝛤||𝑠

𝛽𝜈
(

𝑝

𝜆2
− 1))𝑋1𝑍(𝜉) + 𝑋2(1 +

𝜉𝑍(𝜉))]                                                                                                                                                        …(4)  

The above dispersion relation is now approximated 

in ion cyclotron range of frequencies. In this case 

electrons temperature T
^e

= T
||e

= T
e
 are assumed 

and magnetized with w
r
+ ig << w

ci
whereas ions 

are assumed to have the condition T
^i

>T
||i

 and 

k
||
a

||i
<< w

r
±w

ci
+ ig . So, considering these 

approximations, equation (4) becomes: 
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, the dispersion relation reduces to  
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The function of plasma dispersion is given by𝑍(𝜉) =
1

√𝜋
∫
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Now, dimensionless parameter wave vector 𝑘̃ =
𝑘||𝑝𝑜||𝑖

𝜔𝑐𝑖
 is introduced. The expression for dimensionless growth 

rate by using standered formula can be written for oblique propagation of EMIC wave as 
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where 𝜃1 is propogation angle 

    𝑋4 =
𝑘||𝛤||𝑖

𝛽𝜈𝜔𝑐
−

𝑝𝜈

𝜔𝑐
     

The above expresssion has been used for beam and 

background plasma to analyze the effect of hot 

injected ion beam on EMIC waves.  

Magnetic field model used is taken from Agarwal et 

al.,[33]  
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 𝐵 = 𝐵0 (
[1+3 𝑠𝑖𝑛2 𝜃]

1
2

𝑐𝑜𝑠6 𝜃
)                                                                                                            

 where, 

B0 is magnetic field at equator and 

𝜃 represents the magnetic latitude.  

Plasma Parameters 

In their study, [33] reported injection events 

observed by the Galileo spacecraft within Jupiter's 

magnetosphere, specifically between radial 

distances of 9 and 27 Jovian radii (RJ), for energetic 

particles with energies exceeding 20 keV. To assess 

the effect of hot ion injection on electromagnetic ion 

cyclotron (EMIC) wave growth within the Jovian 

magnetosphere, a set of background plasma 

parameters was considered at a radial distance of R 

~ 17 RJ, where the background magnetic field 

strength is approximately B₀ = 51 nT, p=1 Kivelson 

and Khurana, [34]. The key plasma parameters 

include a cold ion number density of , with a 

temperature anisotropy of AT = 1.5, and propagation 

angle for oblique propagation, θ1 =10° ion and 

electron thermal energies of KBT||i =1 keV and KBT||e 

=200eV respectively. Upon injecting warm plasma, 

the following parameters were adopted for the warm 

ion distribution: a number density of nw = 3 × 107 

m⁻³, with varying temperature anisotropies AT=1.75, 

2, 2.25, thermal energy of ions and electrons KBT||i 

=3 keV and KBT||e =200eV. The ratio of cold to 

warm ion number densities was set at nc/nw=1/10. 

According to previous studies, the approximate 

magnitudes of the electric and magnetic fields in this 

region were taken to be E ≈ 10 mV/m and B ≈ 51 

nT, and latitude, θ =10° respectively.  

This setup allows for an investigation into the 

influence of warm plasma injection on EMIC wave 

instability, with a particular focus on how varying 

ion temperature anisotropies and the cold-to-warm 

plasma ratio affect the wave growth rate. The 

derived dispersion relation and growth rate for 

parallel-propagating EMIC waves under these 

conditions are crucial for understanding the 

dynamics of wave-particle interactions in the Jovian 

magnetosphere.  

Result and Discussion 

To study the variation of various plasma parameters 

on growth rate with the effect of hot injection for 

ring distribution function in the presence of AC 

electric field, mathematical calculations have been 

performed. 

Figure 1 shows the variation of growth rate (𝛾 𝜔𝑐⁄ ) 

with the effect of hot injection on ion-cyclotron 

wave with respect to increasing 𝑘̃ for various values 

of AC frequency. Ring distribution function is 

assumed with the beam of energetic particles. 

Behavior of ion-cyclotron wave is shown in the 

graph by interaction of wave with hot injected 

particles in Jovian magnetosphere. AC frequency 

range has been taken from 2 Hz to 2.2 Hz. The 

growth rate (𝛾 𝜔𝑐⁄ ) for 𝜐 = 2 Hz is 4.84211×10-06 at 

𝑘̃=0.35, the growth rate (𝛾 𝜔𝑐⁄ ) for 𝜐 = 2.1 Hz is 

0.000011353024571591 at 𝑘̃=0.35 and for 𝜐 =2.2 

Hz, the growth rate is 𝛾 𝜔𝑐⁄ = 

0.000025023536544779 at 𝑘̃=0.35. It is clearly seen 

that growth rate increases as the values of AC 

frequency increases. In figure 2, the variation of 

growth rate (𝛾 𝜔𝑐⁄ ) with respect to increasing 𝑘̃ with 

the hot injection effect on EMIC for various values 

temperature anisotropy of cold ions has been 

plotted. For AT =1.5, 2 and 2.5, the peak values are 

observed at 𝑘̃= 0.35, 0.35, 0.35 and the growth rates 

are 𝛾 𝜔𝑐⁄ = 3.41842223973875×10-06, 

0.0000169021159039714 and 

0.0000720765136280518 respectively. Thus, the 

relativistic growth rate increases as temperature 

anisotropy of cold plasma increases. Usually the 

temperature anisotropy of ions is greater than the 

electron’s temperature anisotropy. Hence this 

condition leads to the wave growth reported by 

Kumari and Pandey[27].  

Using Figure 3, variation of dimensionless growth 

rate in background plasma on EMIC wave in Jovian 

magnetosphere with respect to wave number 𝑘̃ for 

different values of number density n0 at other fixed 

parameters is shown. For n0=4×106, the peak value 

of growth rate is 𝛾 𝜔𝑐⁄ = 0.00023367 appears at 

𝑘̃=0.4, for n0=5×106, growth rate is 𝛾 𝜔𝑐⁄ = 

0.002254457 at 𝑘̃=0.45 and as number density is 

increasing to n0=6×106, peak value 𝛾 𝜔𝑐⁄ = 

0.009471069 at 𝑘̃=0.5. So, as we increase number 

density n0 from 4×106 to 6×106, growth rate 

increases, and peaks appear at same wave number 𝑘̃. 

Figure 4, shows the variation of growth rate (𝛾 𝜔𝑐⁄ ) 

with the effect of propagation angle, θ1 on ion-

cyclotron wave with respect to increasing 𝑘̃. 

Propagation angle, θ1 range has been taken from θ1 

=10° to 30°. The growth rate (𝛾 𝜔𝑐⁄ ) for θ1 =10°  is 
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1.44723E-06 at 𝑘̃=0.30, the growth rate (𝛾 𝜔𝑐⁄ ) for 

θ1 =20° is 3.66646E-06 at 𝑘̃=0.35 and for θ1 =30°, 

the growth rate is 𝛾 𝜔𝑐⁄ = 1.7475E-06 at 𝑘̃=0.40. It is 

clearly seen that growth rate increases as the values 

of AC frequency increases. 

Figure 5, shows the variation of growth rate (𝛾 𝜔𝑐⁄ ) 

with the effect of background on ion-cyclotron wave 

with respect to increasing 𝑘̃ for various values of AC 

frequency with effect of magnetic field model. Ring 

distribution function is assumed with the beam of 

energetic particles. Behavior of ion-cyclotron wave 

is shown in the graph by interaction of wave with 

hot injected particles in Jovian magnetosphere. AC 

frequency range has been taken from 2 Hz to 2.2 Hz. 

The growth rate (𝛾 𝜔𝑐⁄ ) for 𝜐 = 2 Hz is 6.3028E-09 

at 𝑘̃=0.35, the growth rate (𝛾 𝜔𝑐⁄ ) for 𝜐 = 2.1 Hz is 

2.2927E-08 at 𝑘̃=0.35 and for 𝜐 =2.2 Hz, the growth 

rate is 𝛾 𝜔𝑐⁄ = 7.49878E-08 at 𝑘̃=0.35. It is clearly 

seen that growth rate increases as the values of AC 

frequency increases. In figure 6, shows the effect of 

temperature anisotropy on growth rate with the 

effect of hot injected plasma with effect of magnetic 

field with respect to 𝑘̃of electromagnetic ion-

cyclotron waves using ring distribution function in 

the Jovian magnetosphere. It can be seen that for 

AT=1.5 the maxima occurs at 𝑘̃= 0.3 with  𝛾 𝜔𝑐⁄ = 

9.1863E-09, for AT=2 the highest peak 𝛾 𝜔𝑐⁄ = 

4.24628E-08 occurs at 𝑘̃=0.3 and for AT=2.5 the 

peak value 𝛾 𝜔𝑐⁄ = 1.77683E-07 appears at 𝑘̃=0.3. It 

shows that growth increases for parallel propagation 

of EMIC wave in Jupiter’s magnetosphere with 

increasing the magnitude of temperature anisotropy. 

Figure 7, shows the variation of growth rate (𝛾 𝜔𝑐⁄ ) 

with the effect of propagation angle , θ1 with the 

effect of magnetic field in ion-cyclotron wave with 

respect to increasing 𝑘̃. Propagation angle, θ1 range 

has been taken from θ1 =10° to 30°. The growth rate 

(𝛾 𝜔𝑐⁄ ) for θ1 =10°  is 6.60128E-09 at 𝑘̃=0.35, the 

growth rate (𝛾 𝜔𝑐⁄ ) for θ1 =20° is 2.04613E-09at 

𝑘̃=0.40 and for θ1 =30°, the growth rate is 𝛾 𝜔𝑐⁄ = 

7.49878E-09 at 𝑘̃=0.40. It is clearly seen that growth 

rate increases as the values of AC frequency 

increases. 

Figure 8 shows the effect of temperature anisotropy 

on growth rate with the effect of hot injected plasma 

with respect to 𝑘̃of electromagnetic ion-cyclotron 

waves using ring distribution function in the Jovian 

magnetosphere. It can be seen that for AT=1.5 the 

maxima occurs at 𝑘̃= 0.55 with  𝛾 𝜔𝑐⁄ = 

0.525446451, for AT=2 the highest peak 𝛾 𝜔𝑐⁄ = 

0.589756008 occurs at 𝑘̃=0.50 and for AT=2.5 the 

peak value 𝛾 𝜔𝑐⁄ = 0.658963625 appears at 𝑘̃=0.5. It 

shows that growth increases for parallel propagation 

of EMIC wave in Jupiter’s magnetosphere with 

increasing the magnitude of temperature anisotropy. 

Figure 9 shows the effect of relativistic factor on 

growth rate with the effect of hot injected plasma 

with respect to 𝑘̃of electromagnetic ion-cyclotron 

waves using ring distribution function in the Jovian 

magnetosphere. It can be seen that for β=0.7 the 

maxima occurs at 𝑘̃= 0.55 with  𝛾 𝜔𝑐⁄ = 

0.525446451, for β=0.8 the highest peak 𝛾 𝜔𝑐⁄ = 

0.531257736 occurs at 𝑘̃=0.50 and for β=0.9 the 

peak value 𝛾 𝜔𝑐⁄ = 0.520711317 appears at 𝑘̃=0.45. 

It shows that growth rate shifts for higher value of 

wave number with decrease in the value of 

relativistic factor for parallel propagation of EMIC 

wave in Jupiter’s magnetosphere with increasing the 

magnitude of relativistic factor. Figure 10 shows the 

effect of number density ratio of electrons and ions 

on growth rate after injecting hot plasma with 

respect to 𝑘̃of EMIC waves using ring distribution 

function at Jupiter. It can be observe that for nc/nw = 

1/10 the maxima occurs at 𝑘̃= 0.55 with  𝛾 𝜔𝑐⁄ = 

0.525446451, for nc/nw = 1/20 the highest peak 

𝛾 𝜔𝑐⁄ = 0.529429323 occurs at 𝑘̃=0.55 and for nc/nw 

= 1/30 the peak value 𝛾 𝜔𝑐⁄ = 0.530342417 appears 

at 𝑘̃=0.55. It can be concluded that growth increases 

for parallel propagation of EMIC wave in Jupiter’s 

magnetosphere as the magnitude increases. Thus, 

number density of electron does not affect the 

growth rate in the case of hot injection ion beam 

as[35] that dependence of dispersive properties of 

EMIC wave are on density and thermal plasma 

composition of ions. Using Figure 11, variation of 

dimensionless growth rate in background plasma 

with the effect of hot injection on EMIC wave with 

magnetic field model in Jovian magnetosphere with 

respect to wave number 𝑘̃ for different values of 

temperature anisotropy at other fixed parameters is 

shown. For AT=1.75, the peak value of growth rate 

is 𝛾 𝜔𝑐⁄ = 0.522046615 appears at 𝑘̃=0.55, for AT=2, 

growth rate is 𝛾 𝜔𝑐⁄ = 0.59197259 at 𝑘̃=0.55 and as 

AT is increasing to 2.25, peak value 𝛾 𝜔𝑐⁄ = 

0.656393317 at 𝑘̃=0.5. So, as we increase 

temperature anisotropy from 1.5 to 2.5, growth rate 

increases, and peaks appear to shift towards a lower 

value of wave number 𝑘̃. Figure 12 shows the effect 

of relativistic factor on growth rate with the effect of 



Letters in High Energy Physics 
ISSN: 2632-2714 

Volume 2024 
 

 

 

7473 

hot injected plasma with respect to 𝑘̃of 

electromagnetic ion-cyclotron waves using ring 

distribution function in the Jovian magnetosphere in 

the presence of external magnetic field model. It can 

be seen that for β=0.7 the maxima occurs at 𝑘̃= 0.5 

with  𝛾 𝜔𝑐⁄ = 0.437003397, for β=0.8 the highest 

peak 𝛾 𝜔𝑐⁄ = 0.48355298 occurs at 𝑘̃=0.5 and for 

β=0.9 the peak value 𝛾 𝜔𝑐⁄ = 0.516484702 appears 

at 𝑘̃=0.5. It shows that growth increases for parallel 

propagation of EMIC wave in Jupiter’s 

magnetosphere with increasing the magnitude of 

relativistic factor. 
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Fig.1: Variation of Growth Rate versus for different values of A.C frequency at n0 = 3×106 m⁻³,

Bo=5.1x10-8T, AT=1.5, KBT||i=1 keV, KBT||ib=3 keV, KBT||e=200 eV, Eo=0.1 V/m, θ1=10° and
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Fig.11: Variation of Growth Rate versus for different values of temperature anisotropy with

beam with magnetic field model at nc/nw=1/10, ν=2 Hz, KBT||i=1 keV, KBT||ib=3 keV,
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Conclusion 

This research examines the effects of hot injection 

on ring distribution in the magnetosphere of Jupiter 

at a radial distance of 17 RJ using parallel 

propagating electromagnetic ion-cyclotron waves in 

the presence of an AC electric field. The kinetic 

technique has been used to improve uniformity and 

efficiency. For the parametric investigation, the 

dispersion relation, true frequency, and growth rate 

have all been expressed in detail. Graphs have been 

produced in relation to wavenumber in order to 

examine plasma properties such as temperature 

anisotropy, AC frequency, etc. The findings indicate 

that ion-cyclotron waves increase at Jupiter. 

Following hot ion beam injection, growth rate rises 

as AC frequency rises and falls as temperature 

anisotropy rises from 1.5 to 2.5. Graphs demonstrate 

that for a given parameter, the peak emerges at the 

same wavenumber value. 
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