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Abstract

This paper undertakes a feasibility analysis and evaluates the performance issues associated with the use of
Electronically Commutated Motor (ECM) drives in solar photovoltaic (PV) pumping applications, optimized
using Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). The integration of ECM drives with
solar PV systems is assessed for its potential to enhance efficiency and adaptability under varying solar
irradiance and load conditions. The optimization techniques, PSO and GA, are employed to optimize key
parameters such as maximum power point tracking, energy losses, and system reliability. The results highlight
the trade-offs between different performances metrics, including efficiency, stability, and response time,
providing insights into the suitability of ECM drives optimized by PSO and GA for solar PV pumping
applications. This research aims to contribute to the development of more efficient and sustainable water
pumping solutions, leveraging the advantages of advanced drive technologies and optimization algorithms.

Keywords: Artificial Neural Network (ANN), BLDC motor, Boost Converter, Maximum Power Point Tracking
(MPPT), Solar Photovoltaic (SPV) array, Particle Swarm Optimization (PSO) and Genetic Algorithm (GA)

1.1 Introduction ability to adapt to varying solar irradiance and load
conditions, which can be effectively managed

The increasing demand for sustainable and efficient
! g vstal ! through PSO and GA optimization.

water pumping solutions has led to a significant

interest in solar photovoltaic (PV) systems. These This study aims to investigate the feasibility and
systems offer a promising alternative to traditional performance issues associated with the use of ECM
fossil fuel-based pumping methods, especially in drives in solar PV pumping applications optimized
remote or off-grid areas. However, the performance by PSO and GA. It will delve into the technical
and feasibility of these systems can be greatly aspects of integrating ECM drives with solar PV
enhanced by the integration of advanced drive systems, analyze the benefits and challenges of
technologies. One such technology is the using these optimization algorithms, and evaluate
Electronically Commutated Motor (ECM) drive, the overall system performance under different
known for its high efficiency and reliability. operating  conditions. By providing a

comprehensive analysis, this research seeks to
contribute to the development of more efficient and
sustainable water pumping solutions that leverage
the potential of solar energy and advanced drive
technologies.

ECM drives, when optimized using advanced
algorithms, can further improve the overall
efficiency and performance of solar PV pumping
systems. Particle Swarm Optimization (PSO) and
Genetic  Algorithm (GA) are two powerful
optimization techniques that can be employed to 2. Literature Survey
optimize the operation of ECM drives. These
algorithms can help in adjusting various parameters
to ensure maximum power point tracking, reduce
energy losses, and enhance the overall system
reliability. The feasibility of using ECM drives in
solar PV pumping applications hinges on their

The traditional energy sources such as oil, gas, and
coal are facing increasing pressure due to the
growing global energy demand. Additionally, the
use of fossil fuels has detrimental effects on the
environment. Each year, the global -electricity
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supply sector contributes over 7,700 million tons of
CO2 emissions, accounting for 37.5% of total
emissions [1-2]. Moreover, fossil fuel reserves are
finite.

The rising global energy demand has driven
researchers to explore cleaner, more sustainable
energy sources. Solar energy, in particular, offers a
promising solution. Approximately 1.8 x 1071
MW of solar power is received by the Earth [3].
This energy, available globally, can be harnessed
efficiently through solar photovoltaic (SPV)
systems, which have several advantages, including
lightweight structures, ease of installation, wide
coverage, noiseless operation, and low maintenance

[4].

SPV systems are especially valuable in remote
areas where electricity transmission is challenging
or unfeasible. Solar power is used to operate
domestic appliances, fans, water pumps, air
conditioners, and lighting, heating, and drying
systems [5-6]. By 2030, SPV energy use is
projected to account for 7% of global energy
consumption, and by 2050, this figure is expected
to rise to 25%, with an annual growth rate of 35-
40%. SPV technology is one of the fastest-growing
energy solutions worldwide [7].

Standalone SPV systems offer a low-cost, low-
maintenance solution for water pumping in remote
regions [8]. The Maximum Power Point Tracking
(MPPT) system is essential for optimizing the
efficiency of SPV systems. Typically, a DC-DC
converter is used in MPPT systems, with its duty
cycle adjusted to ensure maximum power output
from the SPV system. Popular MPPT techniques
include the open-circuit voltage method, short-
circuit current method, perturb and observe
method, incremental conductance method, and
more advanced neural network and fuzzy logic
methods. While the open-circuit voltage and short-
circuit current methods are simple, they require
periodic load shedding. Artificial neural networks,
though accurate, add complexity to the system.

Perturb and observe and incremental conductance
methods are straightforward, cost-effective, and
offer fast convergence. Selecting an appropriate
DC-DC converter is critical for the optimal
performance of the system. A non-isolated DC-DC
converter provides better performance in low-
voltage applications compared to an isolated
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converter, as it eliminates conduction losses

typically found during energy transfer.

Among various DC-DC converter topologies, the
Cuk converter outperforms others like buck, boost,
buck-boost, SEPIC, zeta, and canonical switching
cell converters. The Cuk converter provides
smooth, non-pulsating input and output currents,
which eliminates the need for external filtering. It
also offers an unbounded MPPT region, as shown
in Table 1.

For solar pumping systems under 5 kW, DC motors
are commonly used. For higher power systems,
Permanent Magnet Synchronous Motors (PMSMs)
are preferred over induction and DC motors, as
they offer superior performance with optimal
efficiency, high torque-to-size ratios, dynamic
response, and rugged reliability. PMSMs also help
in the optimal sizing of SPV arrays and voltage
source inverters (VSIs).

3. Materials Methods

The methodology of this research focuses on a
comprehensive feasibility study and performance
evaluation of using Electronically Commutated
Motors (ECM) in solar photovoltaic (PV) pumping
applications, optimized through Particle Swarm
Optimization (PSO) and Genetic Algorithms (GA).
The first phase involves analyzing the integration
of ECM drives with solar PV systems, considering
their operational and economic feasibility. This
includes assessing the compatibility of ECM
motors with solar energy sources, evaluating the
system’s energy efficiency, cost-effectiveness, and

the potential for reducing operational costs.
Additionally, the research investigates the
performance of ECM drives in different

environmental conditions, ensuring that the chosen
technology meets the required operational
standards for solar PV pumping systems.

The second phase of the study focuses on
optimizing the performance of ECM drives using
PSO and GA. These optimization techniques are
employed to improve the overall system efficiency
by fine-tuning parameters such as the sizing of the
solar array, motor speed control, and pump
operation. PSO and GA are applied to identify the
best configurations that enhance the power output,
minimize energy losses, and ensure robust
performance under varying sunlight and load
conditions. The effectiveness of both algorithms is
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compared through simulations and real-time testing
to determine their suitability for optimizing ECM-
based solar PV pumping systems. The results
provide insights into the practical implementation
of optimized ECM drives in renewable energy
applications.

4. Results and Discussions

The given Simulink model represents an ANN-
based MPPT (Maximum Power Point Tracking)
control system for a photovoltaic (PV) system
driving an induction motor. The PV array (orange

block) generates DC power based on irradiance and
temperature inputs. A boost converter regulates the
PV output voltage, ensuring operation at the
maximum power point. The ANN-based MPPT
controller (blue block) takes PV voltage Vpv and
current Ipv as inputs and predicts the optimal duty
cycle D for the DC-DC converter. The converter
then adjusts the power fed to the motor drive. The
power electronics stage includes a three-phase
inverter, controlled via PWM, which converts DC
to AC for driving the induction motor.
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Figure 1: ANN-based MPPT for a solar-powered water pumping system, combined with MPC and
optimized using PSO

The right section of the model represents the
induction motor drive system. The inverter output
supplies three-phase AC to the induction motor,
whose performance parameters such as stator
current, rotor speed N, and electromagnetic torque
Te are monitored. The control strategy likely
includes field-oriented control (FOC) or direct
torque control (DTC) to optimize motor
performance. The simulation captures real-time
variations in motor speed and torque based on the
ANN-MPPT-controlled PV  power, ensuring
efficient energy utilization in renewable energy-
driven motor applications.

Particle Swarm Optimization (PSO) is a nature-
inspired optimization algorithm that mimics the
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social behavior of birds or fish to find optimal
solutions. In the context of ANN-based MPPT,
PSO is used to optimize the neural network's
weights and biases, improving its ability to
accurately track the maximum power point (MPP)
of the PV system under varying environmental
conditions. Each particle in the swarm represents a
potential solution, adjusting its position based on
personal experience and the best-performing
particle in the group. By iteratively refining the
neural network parameters, PSO enhances MPPT
efficiency, reducing power losses and improving
the overall performance of the solar-powered motor
drive system.
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Figure 2: ANN-based MPPT for a solar-powered water pumping system, combined with MPC and
optimized using GA,

The given Simulink block diagram represents an
ANN-based MPPT (Maximum Power Point
Tracking) system** used for optimizing the power
output of a photovoltaic (PV) system driving an
induction motor. The system integrates a neural
network controller, trained using either Particle
Swarm Optimization (PSO) or Genetic Algorithm
(GA), to regulate the duty cycle of the DC-DC
converter, ensuring the PV system operates at its
maximum power point. The optimized power is
then supplied to an inverter, which converts the DC
voltage to AC and drives the **three-phase
induction motor. The feedback loops in the system
monitor critical parameters such as voltage,
current, and power, ensuring stable operation and
efficient energy conversion.
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Genetic Algorithm (GA) is an evolutionary
optimization technique inspired by natural selection
and genetic principles such as mutation, crossover,
and selection. When applied to ANN-based MPPT,
GA helps optimize the neural network’s parameters
by iteratively selecting the best-performing
solutions and evolving them over multiple
generations. This approach enhances the network's
ability to predict the optimal operating points of the
PV  system, improving energy efficiency.
Compared to PSO, GA can explore a broader
search space but may converge more slowly,
making it suitable for complex, nonlinear
optimization problems where global optimality is
crucial.

— — ><
=
Stoprredcd Value | Taraget Valure
= | so
000001 | =
S 36e-06 | 1e-0S
O ooa=a | 1e-07
1Te-05 | 1Tes+10
1

o s

Traming State |

Regression ]

Figure 3: Training results
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The displayed Neural Network Training window
shows that the training process has successfully
met the performance criterion. The training was
conducted using the Levenberg-Marquardt
algorithm, which is well-suited for optimizing
nonlinear models like neural networks. The
network was trained with a Mean Squared Error
(MSE) performance metric, ensuring that the model
minimizes the error between predicted and actual
values. The training was stopped at 5 epochs, much
earlier than the target of 50 epochs, indicating fast
convergence. The performance value reduced from
0.0133 to 9.36e-06, showing a significant
improvement, and the gradient value decreased to
0.00434, which confirms the model reached a near-
optimal state.

Additionally, the training process involved random
data division and was computed using MEX
(MATLAB Executable) functions, which optimize
performance. The Mu parameter, which controls
the step size in the Levenberg-Marquardt
algorithm, adjusted from 0.001 to 1le-05, showing
that the network adapted well. The validation
checks remained at 0, meaning no early stopping
due to overfitting was needed. The interface also
provides options to visualize key training plots
such as Performance, Training State, Error
Histogram, and Regression, which help in further
analyzing model behavior and accuracy.

Prediction Comparison

The "Predictions Comparison™ graph illustrates
how three different Artificial Neural Network
(ANN) models perform in predicting a given
variable. The X-axis represents the sample number,
denoting individual observations, while the Y-axis
displays both actual and predicted values. The plot
contains four distinct lines: the blue line represents
the actual values, serving as a benchmark; the red
dashed line indicates predictions from a basic ANN
model; the green dashed line corresponds to
predictions from an ANN enhanced using Particle
Swarm Optimization (PSO); and the black dotted
line reflects predictions from an ANN optimized
with the Genetic Algorithm (GA).

The graph visually compares the predictive
capabilities of the three ANN models, highlighting
the impact of optimization techniques. Both the
PSO-ANN and GA-ANN models closely follow
the actual values compared to the base ANN,
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demonstrating the benefits of optimization in
enhancing accuracy. However, some deviations
from actual values still exist, indicating potential
areas for further refinement. Overall, the graph
underscores how optimization algorithms such as
PSO and GA contribute to improving ANN model
accuracy by reducing prediction errors.

Error Distribution

The accompanying graph, likely a histogram,
illustrates the distribution of prediction errors for
the three ANN models: Base ANN, PSO-ANN, and
GA-ANN. The X-axis represents the error
magnitude, while the Y-axis denotes the probability
or frequency of those errors occurring. The
histogram is color-coded, with blue depicting the
Base ANN's error distribution, orange representing
the PSO-ANN, and yellow illustrating the GA-
ANN model.

Key observations suggest that all three error
distributions follow a roughly bell-shaped pattern,
implying a normal distribution of errors. The PSO-
ANN and GA-ANN models exhibit error
distributions that are more concentrated around
zero compared to the Base ANN, indicating
improved prediction consistency. The Base ANN
model has a wider distribution spread, suggesting
greater variability in its predictions. Furthermore,
the Base ANN's peak shifts slightly towards
positive error values, hinting at a tendency to
overestimate. Conversely, the PSO-ANN and GA-
ANN distributions are more centered around zero,
reflecting better alignment with actual values. This
analysis confirms that the PSO-ANN and GA-ANN
models provide more accurate and consistent
predictions than the Base ANN.

Regression Analysis

The regression scatter plot offers a comparative
analysis of the three ANN models by plotting
actual values ("Targets") on the X-axis and
predicted values ("Predictions™) on the Y-axis. The
red dots signify predictions from the Base ANN
model, the green dots correspond to the PSO-ANN
model, and the black dots represent the GA-ANN
model. A blue reference line, known as the "Perfect
Fit" line (y = x), is included to indicate where
perfect predictions would align.

This plot visually highlights how closely the
predictions of each model match the actual values.
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Ideally, points should align along the blue line if
predictions were perfect. The PSO-ANN and GA-
ANN models show a tighter clustering around this
line compared to the Base ANN, indicating greater
accuracy. The Base ANN model exhibits more
scattered predictions, reinforcing the earlier

Predictions Comparison
X | E

findings that its predictions have higher variability.
In contrast, the PSO-ANN and GA-ANN models
yield more accurate results, demonstrating the
advantages of optimization in improving ANN-
based predictions.
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Figure 4: ANN methods comparison

Regression Plot

Key insights indicate that none of the models align
exactly with the "Perfect Fit" line, highlighting
discrepancies between predicted and actual values.
Among them, the GA-ANN model demonstrates
the closest fit, suggesting superior predictive
accuracy. Conversely, the Base ANN model
exhibits the most significant deviations, reflecting
lower precision, while the PSO-ANN model
performs moderately between the two. The
dispersion of data points around the blue line
represents prediction errors, with a tighter
clustering signifying reduced error margins.

Overall, the regression plot suggests that the GA-
ANN model delivers better accuracy compared to
the others, though none achieve a perfect match
with the "Perfect Fit" line. To further assess
performance, evaluating statistical metrics such as
R-squared, Mean Squared Error (MSE), or Root
Mean Squared Error (RMSE) would provide
deeper insights. Additionally, analyzing the
distribution and spread of points could reveal
potential systematic biases or the presence of
random variations in predictions.
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Mean Absolute Percentage Error

The bar graph presents a comparative analysis of
the Mean Absolute Percentage Error (MAPE) for
three ANN models: Base ANN, PSO-ANN, and
GA-ANN. The X-axis labels the models, while the
Y-axis quantifies MAPE as a percentage, a widely
used metric for evaluating forecasting accuracy.
The visualization indicates that the Base ANN
model exhibits the highest MAPE, approximately
30%, suggesting lower prediction accuracy. In
contrast, the PSO-ANN model significantly
reduces the error to around 3%, while the GA-ANN
model achieves a MAPE of approximately 7%,
demonstrating improved performance.

This graphical representation underscores the
effectiveness of optimization techniques like
Particle Swarm Optimization (PSO) and Genetic
Algorithm (GA) in enhancing predictive accuracy.
Both optimized models outperform the Base ANN,
with the GA-ANN model achieving the lowest
error, affirming the impact of optimization on
model performance. However, interpreting MAPE
values requires consideration of the dataset and
application-specific error thresholds. The results
highlight that integrating optimization algorithms
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into ANN models can significantly enhance their
forecasting capabilities.

The table compares three ANN models—BASE
ANN, PSO ANN, and GA ANN—based on test
Mean Squared Error (tMSE), training time, and
accuracy. Lower tMSE indicates better predictions,
with PSO ANN achieving the lowest (5.0000e-06),
showing the highest accuracy, while BASE ANN
had the highest tMSE (8.2300e-04), indicating
poorer  performance. Training time was
significantly longer for PSO ANN and GA ANN
(about 350s) compared to BASE ANN (1.84s) due

to the computational complexity of optimization
techniques.

In terms of accuracy, PSO ANN performed best
(98.3%), followed by GA ANN (91.5%), and
BASE ANN (82.6%). This shows that optimization
methods greatly enhance accuracy but increase
training time. If speed is crucial, BASE ANN is
preferable, but for maximum accuracy, PSO ANN
is the best choice. GA ANN offers a balance
between accuracy and training time, making it a
middle-ground option.

Method tMSE
1 |BASE ANN 8.2300e-04
2 |PSO ANN 5.0000e-08
3 |GAANN 45000e-05

tTime(s)

Accuracy
1.8400
359.4500
354.7000

82,6000
88.3000 |
51.5000

Figure 5: Comparison of thee models performance

This graph shows a Speed Response Comparison
between PID (Proportional-Integral-Derivative)
and MPC (Model Predictive Control) methods for
managing system speed, likely in an industrial or

2500
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1500

robotic application. It displays how each controller
adjusts speed (in RPM) over time (in seconds) to
follow a target speed of around 1000 RPM.
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Figure 6: comparison of speed response

The plot (6.77) shows that both controllers
overshoot initially. The MPC controller (red) has a
larger overshoot, reaching 1600 RPM, and settles
with oscillations. ThePID controller (blue dashed)
overshoots to 1200 RPM but stabilizes faster,
though slightly below the reference, indicating a
steady-state error. The MPC’s oscillations suggest
tuning issues that may require further adjustments.

6913

Speed Control Metrics

Comparative Analysis of PID and MPC Speed
Control Methods

This table compares the performance of PID and
MPC speed control methods based on key metrics,
focusing on four critical parameters: Rise Time,
Settling Time, Overshoot, and Steady-State Error.
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Method Na... | Speed Control Metri..., Rise Time
1 IPD Speed 21.5895
2 IMPC Speed 163.8591

Settling Time | Overshoot | Steady-State Error
22.1000 136.1087 26,6552
164.5759 56.6045 9.9569

Figure 7: ANN methods comparison

The key findings indicate that the PID controller
reaches the desired speed faster (21.59 seconds)
compared to the MPC (163.86 seconds), and it also
stabilizes around the target speed quicker (22.10
seconds) than the MPC (164.58 seconds).
However, the MPC has a lower overshoot (56.60%)
than the PID (136.11%), meaning less speed
fluctuation beyond the set point. Additionally, the
MPC maintains a lower steady-state error (9.96%)
compared to the PID (26.66%), reflecting better
accuracy in achieving the desired speed.

In end part, while the PID controller offers faster
response times, it suffers from higher overshoot
and steady-state error. In contrast, the MPC
controller, although slower in response, provides
better accuracy with less overshoot. This trade-off
between response speed and accuracy highlights
the importance of considering specific application
requirements when choosing between PID and
MPC control strategies. The choice of controller
ultimately depends on whether rapid response or
precise speed regulation is more critical for the
particular application.

5. Conclusion

The study concludes that integrating Electronically
Commutated Motors (ECM)  with  solar
photovoltaic (PV) systems, optimized through
Particle Swarm Optimization (PSO) and Genetic
Algorithm (GA), significantly enhances the
efficiency and adaptability of solar PV pumping
applications  under  varying  environmental
conditions. The comparative analysis of PSO and
GA demonstrates their effectiveness in fine-tuning
system parameters for maximum power point
tracking, thus minimizing energy losses and
ensuring robust performance. This current research
contributes valuable insights into optimizing
renewable energy technologies, paving the way for
more sustainable and cost-effective water pumping
solutions that can effectively meet the increasing
global demand for clean energy.
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