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Abstract 

This paper undertakes a feasibility analysis and evaluates the performance issues associated with the use of 

Electronically Commutated Motor (ECM) drives in solar photovoltaic (PV) pumping applications, optimized 

using Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). The integration of ECM drives with 

solar PV systems is assessed for its potential to enhance efficiency and adaptability under varying solar 

irradiance and load conditions. The optimization techniques, PSO and GA, are employed to optimize key 

parameters such as maximum power point tracking, energy losses, and system reliability. The results highlight 

the trade-offs between different performances metrics, including efficiency, stability, and response time, 

providing insights into the suitability of ECM drives optimized by PSO and GA for solar PV pumping 

applications. This research aims to contribute to the development of more efficient and sustainable water 

pumping solutions, leveraging the advantages of advanced drive technologies and optimization algorithms. 

Keywords: Artificial Neural Network (ANN), BLDC motor, Boost Converter, Maximum Power Point Tracking 
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1.1 Introduction 

The increasing demand for sustainable and efficient 

water pumping solutions has led to a significant 

interest in solar photovoltaic (PV) systems. These 

systems offer a promising alternative to traditional 

fossil fuel-based pumping methods, especially in 

remote or off-grid areas. However, the performance 

and feasibility of these systems can be greatly 

enhanced by the integration of advanced drive 

technologies. One such technology is the 

Electronically Commutated Motor (ECM) drive, 

known for its high efficiency and reliability. 

ECM drives, when optimized using advanced 

algorithms, can further improve the overall 

efficiency and performance of solar PV pumping 

systems. Particle Swarm Optimization (PSO) and 

Genetic Algorithm (GA) are two powerful 

optimization techniques that can be employed to 

optimize the operation of ECM drives. These 

algorithms can help in adjusting various parameters 

to ensure maximum power point tracking, reduce 

energy losses, and enhance the overall system 

reliability. The feasibility of using ECM drives in 

solar PV pumping applications hinges on their 

ability to adapt to varying solar irradiance and load 

conditions, which can be effectively managed 

through PSO and GA optimization. 

This study aims to investigate the feasibility and 

performance issues associated with the use of ECM 

drives in solar PV pumping applications optimized 

by PSO and GA. It will delve into the technical 

aspects of integrating ECM drives with solar PV 

systems, analyze the benefits and challenges of 

using these optimization algorithms, and evaluate 

the overall system performance under different 

operating conditions. By providing a 

comprehensive analysis, this research seeks to 

contribute to the development of more efficient and 

sustainable water pumping solutions that leverage 

the potential of solar energy and advanced drive 

technologies. 

2. Literature Survey 

The traditional energy sources such as oil, gas, and 

coal are facing increasing pressure due to the 

growing global energy demand. Additionally, the 

use of fossil fuels has detrimental effects on the 

environment. Each year, the global electricity 
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supply sector contributes over 7,700 million tons of 

CO2 emissions, accounting for 37.5% of total 

emissions [1-2]. Moreover, fossil fuel reserves are 

finite.   

The rising global energy demand has driven 

researchers to explore cleaner, more sustainable 

energy sources. Solar energy, in particular, offers a 

promising solution. Approximately 1.8 × 10^11 

MW of solar power is received by the Earth [3]. 

This energy, available globally, can be harnessed 

efficiently through solar photovoltaic (SPV) 

systems, which have several advantages, including 

lightweight structures, ease of installation, wide 

coverage, noiseless operation, and low maintenance 

[4].   

SPV systems are especially valuable in remote 

areas where electricity transmission is challenging 

or unfeasible. Solar power is used to operate 

domestic appliances, fans, water pumps, air 

conditioners, and lighting, heating, and drying 

systems [5-6]. By 2030, SPV energy use is 

projected to account for 7% of global energy 

consumption, and by 2050, this figure is expected 

to rise to 25%, with an annual growth rate of 35-

40%. SPV technology is one of the fastest-growing 

energy solutions worldwide [7].   

Standalone SPV systems offer a low-cost, low-

maintenance solution for water pumping in remote 

regions [8]. The Maximum Power Point Tracking 

(MPPT) system is essential for optimizing the 

efficiency of SPV systems. Typically, a DC-DC 

converter is used in MPPT systems, with its duty 

cycle adjusted to ensure maximum power output 

from the SPV system. Popular MPPT techniques 

include the open-circuit voltage method, short-

circuit current method, perturb and observe 

method, incremental conductance method, and 

more advanced neural network and fuzzy logic 

methods. While the open-circuit voltage and short-

circuit current methods are simple, they require 

periodic load shedding. Artificial neural networks, 

though accurate, add complexity to the system.   

Perturb and observe and incremental conductance 

methods are straightforward, cost-effective, and 

offer fast convergence. Selecting an appropriate 

DC-DC converter is critical for the optimal 

performance of the system. A non-isolated DC-DC 

converter provides better performance in low-

voltage applications compared to an isolated 

converter, as it eliminates conduction losses 

typically found during energy transfer.   

Among various DC-DC converter topologies, the 

Cuk converter outperforms others like buck, boost, 

buck-boost, SEPIC, zeta, and canonical switching 

cell converters. The Cuk converter provides 

smooth, non-pulsating input and output currents, 

which eliminates the need for external filtering. It 

also offers an unbounded MPPT region, as shown 

in Table 1.   

For solar pumping systems under 5 kW, DC motors 

are commonly used. For higher power systems, 

Permanent Magnet Synchronous Motors (PMSMs) 

are preferred over induction and DC motors, as 

they offer superior performance with optimal 

efficiency, high torque-to-size ratios, dynamic 

response, and rugged reliability. PMSMs also help 

in the optimal sizing of SPV arrays and voltage 

source inverters (VSIs). 

3. Materials Methods 

The methodology of this research focuses on a 

comprehensive feasibility study and performance 

evaluation of using Electronically Commutated 

Motors (ECM) in solar photovoltaic (PV) pumping 

applications, optimized through Particle Swarm 

Optimization (PSO) and Genetic Algorithms (GA). 

The first phase involves analyzing the integration 

of ECM drives with solar PV systems, considering 

their operational and economic feasibility. This 

includes assessing the compatibility of ECM 

motors with solar energy sources, evaluating the 

system’s energy efficiency, cost-effectiveness, and 

the potential for reducing operational costs. 

Additionally, the research investigates the 

performance of ECM drives in different 

environmental conditions, ensuring that the chosen 

technology meets the required operational 

standards for solar PV pumping systems. 

The second phase of the study focuses on 

optimizing the performance of ECM drives using 

PSO and GA. These optimization techniques are 

employed to improve the overall system efficiency 

by fine-tuning parameters such as the sizing of the 

solar array, motor speed control, and pump 

operation. PSO and GA are applied to identify the 

best configurations that enhance the power output, 

minimize energy losses, and ensure robust 

performance under varying sunlight and load 

conditions. The effectiveness of both algorithms is 
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compared through simulations and real-time testing 

to determine their suitability for optimizing ECM-

based solar PV pumping systems. The results 

provide insights into the practical implementation 

of optimized ECM drives in renewable energy 

applications. 

4. Results and Discussions 

The given Simulink model represents an ANN-

based MPPT (Maximum Power Point Tracking) 

control system for a photovoltaic (PV) system 

driving an induction motor. The PV array (orange 

block) generates DC power based on irradiance and 

temperature inputs. A boost converter regulates the 

PV output voltage, ensuring operation at the 

maximum power point. The ANN-based MPPT 

controller (blue block) takes PV voltage Vpv and 

current Ipv as inputs and predicts the optimal duty 

cycle D for the DC-DC converter. The converter 

then adjusts the power fed to the motor drive. The 

power electronics stage includes a three-phase 

inverter, controlled via PWM, which converts DC 

to AC for driving the induction motor. 

 

Figure 1: ANN-based MPPT for a solar-powered water pumping system, combined with MPC and 

optimized using PSO 

The right section of the model represents the 

induction motor drive system. The inverter output 

supplies three-phase AC to the induction motor, 

whose performance parameters such as stator 

current, rotor speed N, and electromagnetic torque 

Te are monitored. The control strategy likely 

includes field-oriented control (FOC) or direct 

torque control (DTC) to optimize motor 

performance. The simulation captures real-time 

variations in motor speed and torque based on the 

ANN-MPPT-controlled PV power, ensuring 

efficient energy utilization in renewable energy-

driven motor applications. 

Particle Swarm Optimization (PSO) is a nature-

inspired optimization algorithm that mimics the 

social behavior of birds or fish to find optimal 

solutions. In the context of ANN-based MPPT, 

PSO is used to optimize the neural network's 

weights and biases, improving its ability to 

accurately track the maximum power point (MPP) 

of the PV system under varying environmental 

conditions. Each particle in the swarm represents a 

potential solution, adjusting its position based on 

personal experience and the best-performing 

particle in the group. By iteratively refining the 

neural network parameters, PSO enhances MPPT 

efficiency, reducing power losses and improving 

the overall performance of the solar-powered motor 

drive system. 
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Figure 2: ANN-based MPPT for a solar-powered water pumping system, combined with MPC and 

optimized using GA, 

The given Simulink block diagram represents an 

ANN-based MPPT (Maximum Power Point 

Tracking) system** used for optimizing the power 

output of a photovoltaic (PV) system driving an 

induction motor. The system integrates a neural 

network controller, trained using either Particle 

Swarm Optimization (PSO) or Genetic Algorithm 

(GA), to regulate the duty cycle of the DC-DC 

converter, ensuring the PV system operates at its 

maximum power point. The optimized power is 

then supplied to an inverter, which converts the DC 

voltage to AC and drives the **three-phase 

induction motor. The feedback loops in the system 

monitor critical parameters such as voltage, 

current, and power, ensuring stable operation and 

efficient energy conversion. 

Genetic Algorithm (GA) is an evolutionary 

optimization technique inspired by natural selection 

and genetic principles such as mutation, crossover, 

and selection. When applied to ANN-based MPPT, 

GA helps optimize the neural network's parameters 

by iteratively selecting the best-performing 

solutions and evolving them over multiple 

generations. This approach enhances the network's 

ability to predict the optimal operating points of the 

PV system, improving energy efficiency. 

Compared to PSO, GA can explore a broader 

search space but may converge more slowly, 

making it suitable for complex, nonlinear 

optimization problems where global optimality is 

crucial. 

 

Figure 3: Training results 
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The displayed Neural Network Training window 

shows that the training process has successfully 

met the performance criterion. The training was 

conducted using the  Levenberg-Marquardt 

algorithm, which is well-suited for optimizing 

nonlinear models like neural networks. The 

network was trained with a Mean Squared Error 

(MSE) performance metric, ensuring that the model 

minimizes the error between predicted and actual 

values. The training was stopped at 5 epochs, much 

earlier than the target of 50 epochs, indicating fast 

convergence. The performance value reduced from 

0.0133 to 9.36e-06, showing a significant 

improvement, and the gradient value decreased to 

0.00434, which confirms the model reached a near-

optimal state. 

Additionally, the training process involved random 

data division and was computed using MEX 

(MATLAB Executable) functions, which optimize 

performance. The Mu parameter, which controls 

the step size in the Levenberg-Marquardt 

algorithm, adjusted from 0.001 to 1e-05, showing 

that the network adapted well. The validation 

checks remained at 0, meaning no early stopping 

due to overfitting was needed. The interface also 

provides options to visualize key training plots 

such as Performance, Training State, Error 

Histogram, and Regression, which help in further 

analyzing model behavior and accuracy. 

 Prediction Comparison   

The "Predictions Comparison" graph illustrates 

how three different Artificial Neural Network 

(ANN) models perform in predicting a given 

variable. The X-axis represents the sample number, 

denoting individual observations, while the Y-axis 

displays both actual and predicted values. The plot 

contains four distinct lines: the blue line represents 

the actual values, serving as a benchmark; the red 

dashed line indicates predictions from a basic ANN 

model; the green dashed line corresponds to 

predictions from an ANN enhanced using Particle 

Swarm Optimization (PSO); and the black dotted 

line reflects predictions from an ANN optimized 

with the Genetic Algorithm (GA).   

The graph visually compares the predictive 

capabilities of the three ANN models, highlighting 

the impact of optimization techniques. Both the 

PSO-ANN and GA-ANN models closely follow 

the actual values compared to the base ANN, 

demonstrating the benefits of optimization in 

enhancing accuracy. However, some deviations 

from actual values still exist, indicating potential 

areas for further refinement. Overall, the graph 

underscores how optimization algorithms such as 

PSO and GA contribute to improving ANN model 

accuracy by reducing prediction errors.   

Error Distribution   

The accompanying graph, likely a histogram, 

illustrates the distribution of prediction errors for 

the three ANN models: Base ANN, PSO-ANN, and 

GA-ANN. The X-axis represents the error 

magnitude, while the Y-axis denotes the probability 

or frequency of those errors occurring. The 

histogram is color-coded, with blue depicting the 

Base ANN's error distribution, orange representing 

the PSO-ANN, and yellow illustrating the GA-

ANN model.   

Key observations suggest that all three error 

distributions follow a roughly bell-shaped pattern, 

implying a normal distribution of errors. The PSO-

ANN and GA-ANN models exhibit error 

distributions that are more concentrated around 

zero compared to the Base ANN, indicating 

improved prediction consistency. The Base ANN 

model has a wider distribution spread, suggesting 

greater variability in its predictions. Furthermore, 

the Base ANN's peak shifts slightly towards 

positive error values, hinting at a tendency to 

overestimate. Conversely, the PSO-ANN and GA-

ANN distributions are more centered around zero, 

reflecting better alignment with actual values. This 

analysis confirms that the PSO-ANN and GA-ANN 

models provide more accurate and consistent 

predictions than the Base ANN.   

Regression Analysis   

The regression scatter plot offers a comparative 

analysis of the three ANN models by plotting 

actual values ("Targets") on the X-axis and 

predicted values ("Predictions") on the Y-axis. The 

red dots signify predictions from the Base ANN 

model, the green dots correspond to the PSO-ANN 

model, and the black dots represent the GA-ANN 

model. A blue reference line, known as the "Perfect 

Fit" line (y = x), is included to indicate where 

perfect predictions would align.   

This plot visually highlights how closely the 

predictions of each model match the actual values. 
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Ideally, points should align along the blue line if 

predictions were perfect. The PSO-ANN and GA-

ANN models show a tighter clustering around this 

line compared to the Base ANN, indicating greater 

accuracy. The Base ANN model exhibits more 

scattered predictions, reinforcing the earlier 

findings that its predictions have higher variability. 

In contrast, the PSO-ANN and GA-ANN models 

yield more accurate results, demonstrating the 

advantages of optimization in improving ANN-

based predictions. 

 

 

Figure 4: ANN methods comparison 

Regression Plot 

Key insights indicate that none of the models align 

exactly with the "Perfect Fit" line, highlighting 

discrepancies between predicted and actual values. 

Among them, the GA-ANN model demonstrates 

the closest fit, suggesting superior predictive 

accuracy. Conversely, the Base ANN model 

exhibits the most significant deviations, reflecting 

lower precision, while the PSO-ANN model 

performs moderately between the two. The 

dispersion of data points around the blue line 

represents prediction errors, with a tighter 

clustering signifying reduced error margins.   

Overall, the regression plot suggests that the GA-

ANN model delivers better accuracy compared to 

the others, though none achieve a perfect match 

with the "Perfect Fit" line. To further assess 

performance, evaluating statistical metrics such as 

R-squared, Mean Squared Error (MSE), or Root 

Mean Squared Error (RMSE) would provide 

deeper insights. Additionally, analyzing the 

distribution and spread of points could reveal 

potential systematic biases or the presence of 

random variations in predictions. 

 

Mean Absolute Percentage Error 

The bar graph presents a comparative analysis of 

the Mean Absolute Percentage Error (MAPE) for 

three ANN models: Base ANN, PSO-ANN, and 

GA-ANN. The X-axis labels the models, while the 

Y-axis quantifies MAPE as a percentage, a widely 

used metric for evaluating forecasting accuracy. 

The visualization indicates that the Base ANN 

model exhibits the highest MAPE, approximately 

30%, suggesting lower prediction accuracy. In 

contrast, the PSO-ANN model significantly 

reduces the error to around 3%, while the GA-ANN 

model achieves a MAPE of approximately 7%, 

demonstrating improved performance. 

This graphical representation underscores the 

effectiveness of optimization techniques like 

Particle Swarm Optimization (PSO) and Genetic 

Algorithm (GA) in enhancing predictive accuracy. 

Both optimized models outperform the Base ANN, 

with the GA-ANN model achieving the lowest 

error, affirming the impact of optimization on 

model performance. However, interpreting MAPE 

values requires consideration of the dataset and 

application-specific error thresholds. The results 

highlight that integrating optimization algorithms 
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into ANN models can significantly enhance their 

forecasting capabilities. 

The table compares three ANN models—BASE 

ANN, PSO ANN, and GA ANN—based on test 

Mean Squared Error (tMSE), training time, and 

accuracy. Lower tMSE indicates better predictions, 

with PSO ANN achieving the lowest (5.0000e-06), 

showing the highest accuracy, while BASE ANN 

had the highest tMSE (8.2300e-04), indicating 

poorer performance. Training time was 

significantly longer for PSO ANN and GA ANN 

(about 350s) compared to BASE ANN (1.84s) due 

to the computational complexity of optimization 

techniques.   

In terms of accuracy, PSO ANN performed best 

(98.3%), followed by GA ANN (91.5%), and 

BASE ANN (82.6%). This shows that optimization 

methods greatly enhance accuracy but increase 

training time. If speed is crucial, BASE ANN is 

preferable, but for maximum accuracy, PSO ANN 

is the best choice. GA ANN offers a balance 

between accuracy and training time, making it a 

middle-ground option.

 

 

Figure 5: Comparison of thee models performance 

This graph shows a Speed Response Comparison 

between PID (Proportional-Integral-Derivative) 

and MPC (Model Predictive Control) methods for 

managing system speed, likely in an industrial or 

robotic application. It displays how each controller 

adjusts speed (in RPM) over time (in seconds) to 

follow a target speed of around 1000 RPM. 

 

 

Figure 6: comparison of speed response 

The plot (6.77) shows that both controllers 

overshoot initially. The MPC controller (red) has a 

larger overshoot, reaching 1600 RPM, and settles 

with oscillations. ThePID controller (blue dashed) 

overshoots to 1200 RPM but stabilizes faster, 

though slightly below the reference, indicating a 

steady-state error. The MPC’s oscillations suggest 

tuning issues that may require further adjustments. 

Speed Control Metrics 

Comparative Analysis of PID and MPC Speed 

Control Methods 

This table compares the performance of PID and 

MPC speed control methods based on key metrics, 

focusing on four critical parameters: Rise Time, 

Settling Time, Overshoot, and Steady-State Error. 
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Figure 7: ANN methods comparison 

The key findings indicate that the PID controller 

reaches the desired speed faster (21.59 seconds) 

compared to the MPC (163.86 seconds), and it also 

stabilizes around the target speed quicker (22.10 

seconds) than the MPC (164.58 seconds). 

However, the MPC has a lower overshoot (56.60%) 

than the PID (136.11%), meaning less speed 

fluctuation beyond the set point. Additionally, the 

MPC maintains a lower steady-state error (9.96%) 

compared to the PID (26.66%), reflecting better 

accuracy in achieving the desired speed. 

In end part, while the PID controller offers faster 

response times, it suffers from higher overshoot 

and steady-state error. In contrast, the MPC 

controller, although slower in response, provides 

better accuracy with less overshoot. This trade-off 

between response speed and accuracy highlights 

the importance of considering specific application 

requirements when choosing between PID and 

MPC control strategies. The choice of controller 

ultimately depends on whether rapid response or 

precise speed regulation is more critical for the 

particular application. 

5. Conclusion 

The study concludes that integrating Electronically 

Commutated Motors (ECM) with solar 

photovoltaic (PV) systems, optimized through 

Particle Swarm Optimization (PSO) and Genetic 

Algorithm (GA), significantly enhances the 

efficiency and adaptability of solar PV pumping 

applications under varying environmental 

conditions. The comparative analysis of PSO and 

GA demonstrates their effectiveness in fine-tuning 

system parameters for maximum power point 

tracking, thus minimizing energy losses and 

ensuring robust performance. This current research 

contributes valuable insights into optimizing 

renewable energy technologies, paving the way for 

more sustainable and cost-effective water pumping 

solutions that can effectively meet the increasing 

global demand for clean energy. 
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