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Abstract: In recent decades, site layout has been a major challenge for researchers in construction management.
Recognized as an NP-complete problem, it resists exact solutions, particularly for medium to large-scale projects.
Numerous studies have explored metaheuristic approaches to tackle this issue, yet there is a demand for novel
methods that promise improved accuracy within shorter computational periods. In this study, a pioneering
solution is introduced: a hybrid Ant Lion Optimizer Algorithm (ALO) and Aquila Optimizer Algorithm (AO)
based on chaos theory tailored specifically for optimizing construction management tasks. The combination of
ALO and the Aquila Optimizer harnesses the strengths of two distinct optimization strategies. ALO mimics the
trapping behavior of antlions, striking a balance between exploration and exploitation for optimal outcomes. In
contrast, the Aquila Optimizer replicates the dynamic hunting tactics of eagles, facilitating swift and adaptive
search methods. By merging these approaches, the hybrid algorithm adeptly navigates complex problems,
dynamically adapting to environmental changes. This collaborative synergy holds promise for efficient
optimization across various domains. The chaotic hybrid algorithm (CH-ALOAO) utilizes interactive memory
to store optimal solutions throughout the optimization process. Its performance is benchmarked against
established metaheuristic algorithms regarding search capabilities, avoidance of suboptimal solutions, and
convergence speed. The results undergo rigorous statistical analysis, with experimental data showcasing CH-
ALOAQO's superior performance in addressing construction management optimization challenges compared to
its competitors.

Keywords: Construction Management, Site Layout Planning, ALO Optimization, Aquila Optimizer, Chaotic.

1. Introduction site layout. Acknowledging its impact on result
reliability, recent studies have increasingly adopted

Construction site layout planning (CSLP) is a vital
your p 9( ) dynamic approaches to tackle the CSLP problem.

component of construction planning, aimed at

optimizing the arrangement of temporary facilities CSLP is recognized as an 'NP-hard' problem due to
while balancing multiple, often conflicting its complexity [5]. Recent advancements in swarm
objectives within logical and resource constraints intelligence-based meta-heuristic algorithms have
[1]. Key goals include minimizing costs related to proven effective in solving optimization challenges
facility interactions and reducing safety and [6-15], leading researchers to apply these modern
environmental hazards, which have been the focus techniques to CSLP models. Ant colony
of recent research [2]. Traditionally, CSLP has been optimization (ACO) is a bio-inspired metaheuristic
approached as a static problem, where temporary that mimics the foraging behavior of ants, as
facilities are placed at the project's outset and remain described by Dorigo et al. [16]. ACO has been
fixed until completion [3]. However, in practice, the applied to solve facility layout problems in
demand for temporary facilities changes throughout hypothetical medium-sized construction sites [17].
different phases of construction, influenced by the Both Gharaie et al. [18] and Lam et al. [17] utilized
activity schedule. Zouein and Tommelein [4] ACO to address static site layout problems in
emphasized the crucial need to consider the construction projects. Ning et al. [19] presented a
interdependence between activity scheduling and method to tackle the dynamic multi-objective CSLP
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problem using the Max-Min Ant System (MMAS),
a variant of the standard ACO algorithm. While
previous research has addressed the CSLP problem,
the introduction of new metaheuristics continues to
be beneficial, offering potential improvements in
solution quality.

Lien and Cheng [3] developed a hybrid particle-bee
algorithm for optimizing construction site layout
with a single objective function, aiming to place
facilities in predetermined positions. Li and Love
[20] investigated the use of Genetic Algorithms to
find optimal solutions for single-objective CSLP
problems, specifically focusing on facilities with
unequal areas in fixed positions.

Particle swarm optimization (PSO) is a
metaheuristic technique that simulates the social
manners of birds flocking toward a target, as
introduced by Eberhart and Kennedy [21, 22].
Additionally, Xu and Li [2] proposed a multi-
objective PSO algorithm to address the multi-
objective dynamic CSLP problem. Zang and Wang
[23] employed a particle swarm optimization (PSO)
methodology to optimize static layouts for facilities
with varying sizes in predetermined locations.

The genetic algorithm (GA), which simulates the
method of natural evolution, is widely used to
develop effective solutions for optimization and
search issues. GA employs approaches motivated by
natural evolution—such as inheritance,
modification, choice, and crossover—to address
optimization problems. Several studies have applied
GA to address the facility site layout problem,
including works by Adrian et al. [24], Cheung et al.
[25], and Mawdesley and Al-Jibouri [26]. Osman et
al. [27] presented a hybrid CAD-based algorithm
that uses GA to improve the placement of facilities
with unequal areas in any available area at a
construction site.

The artificial bee colony (ABC) algorithm,
developed by Dervis Karaboga [28], is a recent
addition to swarm intelligence-based algorithms,
simulating the foraging manners of honey bees and
other algorithms such as CBO and MBF [29-32]. In
[28], a multi-objective ABC algorithm is employed
to solve the CSLP problem. The standard algorithm
is improved with Levy flight random walks to help
employed bees find new food sources. The study
aims to optimize the dynamic layout problem with
two primary objectives: undervaluing safety hazards
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and environmental concerns and reducing the total
handling cost associated with interchange between
facilities. The model addresses the CSLP issue as a
non-linear layout challenge concerning facilities of
varying sizes, which can be arranged in a horizontal
or vertical orientation. Additionally, the model takes
into account the existence of blocks when
calculating travel distances.

The following are the paper's main contributions:

l.Introducing a hybrid ALO and AO and
assessing its performance on diverse global
optimization problems.

I1.Creating a chaotic hybrid algorithm CH-
ALOAO to optimize construction
management problem.

I11.Experimentally evaluating CH-ALOAO on
construction management problem with
varying complexities and statistically
analyzing the results.

The article is structured as follows: Section 2 covers
the problem and Section 3 outlines background and
preliminaries of the original algorithms. Section 4
summarizes the structure of the proposed modified
optimizer, while Section 5 proposes and examines
the experimental results, and evaluates CH-ALOAO
for optimizing the construction management
problem. Section 6 concludes the paper.

2. Construction Site Layout Problem

As noted, construction site layout issues can be
modeled as quadratic assignment problems, where
the costs related to the flow between facilities are
linearly dependent on the distance crossed and the
amount of flow [33]. The objective is to uniquely
assign several predetermined facilities (n) to several
predetermined locations (m), with the number of
places being equal to or more significant than the
quantity of facilities. If the quantity of positions (m)
exceeds the quantity of facilities (n), then m - n
dummy facilities are added to balance the numbers.
By allocating both the length and frequency as zero,
these dummy facilities will not impact the layout
consequences.

If each predetermined location can accommodate
any facility, the layout problem is modeled as an
equal-area facility layout issue. However, if some
locations can only accommodate specific facilities,
the issue evolves into an unequal-area facility layout
issue, where the predetermined locations have
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varying scopes. Unequal-area layout issues are layout issues due to the additional constraints
generally more challenging to solve than equal-area introduced by the differing area requirements [20].

The objective functions of various models, as presented by [27], are summarized in Table 1 and follow a general
form.

n n (1)
Minimize F = Z Z Wi X d;j

i=1j=1

Table 1. Various types of objective functions have been utilized in previous research studies

No. Obijective function

1 To minimize the total transport expenses of resources between facilities.[25]

2 The objective is to reduce a generalized charge function that accounts for construction costs,
transportation costs, and safety concerns related to the closeness or remoteness of facilities.[34]

3 underestimate the total handling costs of interchange flows between facilities, as well as safety hazards
and environmental concerns. [35]

4 To minimize the costs associated with exchanges between structures. [36]

5 To minimize the whole charge of site layout, and maximize the space between the ‘high-risk’ structures
and the ‘high-protection’ structures to decrease the chance of safety or environmental mishaps. [2]

6 To minimize safety concerns and reducing construction cost. [19]

The objective function F is defined, with n zero. Table 2 provides an instance of a permutation
representing the quantity of structures and positions. matrix for five structures and five places.

The coefficient W;; signifies either the real
transportation cost per unit space between structures
i and j (accounting for the number of travels made)
or a comparative proximity weight indicating the
desired nearness between structures i and j. The term
dij indicates the distance between structures i and j.

A typical solution to the site layout issue, as
demonstrated in Table 2, results in a sparse matrix
that requires significant computing resources for
large issues. A more efficient option is using a
sequence of integers, where each entry illustrates a
structure and the integer indicates its location, as

Each design choice can be described by an n x n depicted in Table 3. However, this method can lead
permutation matrix, where n is the number of to infeasible solutions with overlapping entrances,
structures or places. In this matrix, the rows especially when using meta-heuristic approaches.
correspond to structures and the columns to places. Therefore, adjustments are needed to resolve this
The permutation matrix has a single entry of one in issue [37].

each row and column, with all other entrances being

Table 2. An example of permutation matrix Table 3. An example of the sequence-based illustration for
CSLP
Number of Number of Locations F1 F2 F3 F4 F5
Facilities L1 L2 L3 L4 L5 2 1 3 5 4
F1 1 0 0 0 O
F2 0 0 1 0 O
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F3 0 1 0 0 O
F4 0 0 0o o0 O
F5 0 0 0 o0 O

3. Background
We leverage an improved metaheuristic algorithm named CH-ALOAO that contains ALO optimization and AO
algorithm for optimizing construction management tasks. In this section, we introduce Based algorithms.

3.1. Ant Lion Optimizer Algorithm

The ALO algorithm is inspired by the hunting behavior of ant lions preying on ants [38]. First, we assume ants as
particles in the search area to model their relations. Then, the ant lion is permitted to pursue. The movement of
the ant, as it randomly searches for food in nature, is modeled by Equation 1.

X(@®) = [0, (cumsum(2r(t; — 1), cumsum(2r(t, — 1)), ..., cumsum(2r(t, — 1))] (1)

Thus, cumsum calculates the cumulative sum, where n represents the maximum iterations, t denotes the random
motion phase, and r(t) denotes a random function defined by Equation 2.

_(lif rand > 0.5 2
r(t) = {0 if rand < 0.5

In Equation 2, t represents the random walk step, and rand denotes a random number between 0 and 1. The
positions of the ants are stored in the matrix defined by Equation 3 and used during optimization.

A1,1 Al,d (3)
Myp: = : :
An,l o An,d

Thus, Mant specifies the position of each ant, and A;; determines the j* dimension of the i ant, n shows the number
of ants and d the number of dimensions. A fitness function, according to Equation 4, is used during optimization
for the evaluation of each ant.

Thus, Mant determines the status of each ant, with Aj; representing the j™ dimension of the i ant. Here, n denotes
the count of ants, and d represents the count of dimensions. During optimization, a fitness function, defined by
Equation 4, is used to evaluate each ant.

f([A11, A1z ) Aral) (4)
M., = f([Az1, 422, -, Aza])
04 .

f([An,lﬂAn,Z' (N An,d])

Moa is employed to store the fitness function values for each ant. Additionally, we consider an ant lion obscured
someplace in the search area. Equations 5 and 6 are used to keep the ant lion's location and objective function.

ALy, - ALyg ®)
Myntiion = : :
ALp, - Alpg
f([ALy, ALy, ..y ALy g]) (6)

f([ALZ,IJ ALZ,Z: R ALZ,d])

f([ALny, ALp, ., ALy al)

Mantion @nd Moac specify the location matrix and the objective function matrix of each ant lion, respectively.
Additionally, AL;;represents the j™ dimension of the i ant lion, with n indicating the number of ant lions and d
representing the number of variables.

Moy, =
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During the optimization process, ants move
randomly within the search area, influenced by the
traps set by ant lions. Ant lions create larger pits
based on the objective function, which allows them
to capture more ants. When an ant is caught by an
ant lion, it is taken beneath the sand. The distance
the ant travels towards the ant lion decreases.
Following each capture, the ant lion shifts its
position to target the next ant, forming a new pit with
suitable modifications.

_(Xf—a)x (- c)
P = £ + Ci
(d; — a;)

In Equation (7), & is the minimum value of the
random variable for the i variable. ¢! represents the
minimum value of the i" variable in the t" iteration,
while df is the maximum value of the i variable in

cf = Antlion; + c*

df = Antlion{ + d*

In Equation (7), ¢t denotes the minimum value
among all variables in the t™ iteration, while d
represents the vector containing the maximum
values of all variables in that iteration. Similarly, cf
indicates the minimum of all variables for the i" ant,
and df represents the vector containing the

The random motion of ants follows Equation 1.
During optimization, ants move through a random
walk. Due to the constraints of the search area,
Equation 1 alone isn't sufficient for updating their
positions. Therefore, the values are standardized
using Equation 7 to randomize their movements
within the search area.

Y]

the t" iteration. This equation must be applied at
every iteration. To account for the influence of ant
lion traps on the ants' random motion, Equations (8)
and (9) are utilized.

(®)
©)

maximum values for the i ant. In this equation,
Antlion}F specifies the position of the jM ant lion in
the t" iteration. The ant lion's hunting capability is
modeled using the roulette wheel structure, as
shown in Figure 1.

Figure 1. The random movement of an ant within the trap of an ant lion

When ants are ensnared, the ant lion tosses stones towards the trap's edges, as described by Equations 10 and 11.

ct=ct/I

dt =dt/I

(10)
(11)

Variable | represents a constant ratio, where c* is the minimum of all variables in the t" iteration. The d'denotes
the vector containing the maximum of all variables in the t" iteration. The variable 1 is defined by Equation 12.

I=10%(t/T)

(12)
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In Equation 13, t represents the current iteration, T is the maximum number of iterations, and w is a constant
determined based on the current iteration, as specified by Equation 13.

2whent > 0.1T
3whent > 0.5T
4 whent > 0.75T

5whent > 09T
6 whent > 0.95T

The final stage of the hunt occurs when the prey
reaches the bottom of the trap and is captured by the
ant lion. At this point, the ant lion pulls the prey into
the sand and consumes it. This process simulates
hunting, with the ant considered trapped in the sand.

Antlion} = Ant{ if f(Antf) > f(Antlion;)

In Equation 15, t represents the current iteration.
Antlion} denotes the location of the j™ ant lion at
iteration t, while Ant! indicates the location of the
i ant at the same iteration. Here, f refers to the
fitness function. Throughout the algorithm, the best-
Antf = (R} + RE)/2

Thus, R is the random position around the ant lions
by the roulette wheel in iteration t. R is the random
position around the elite state in t* iteration. Ant!
shows the position of the it" ant on the t™ iteration.
This algorithm is defined as triplet ALO(A,B,C).

Thus, R represents the random locations around the
ant lions determined by the roulette wheel in
iteration t, while R: denotes the random positions
around the elite state at the same iteration. Antf
indicates the position of the i ant during iteration t.
The algorithm is defined as the triplet ALO(A, B, C).

A
? = {Myne, Mo, Mpntiion, MOAL}

B
{MAnt' MAntlion} - {MAnt' MAntlion}

C
{MAnt' MAntlion} - {true, false}

In these equations, Mant denotes the matrix of ant
locations, Mant lion represents the matrix of ant lion
locations, Moa includes the ants that have been
hunted, and Moa. lists the predator ants. Function A
initializes the locations of both the ants and the ant
lions. During each iteration, Function B updates the
location of each ant based on a selected ant lion
using Roulette Wheel Selection and elite strategies.
The range for updating locations is set according to
the current iteration, and this update is refined by a
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(13)

Subsequently, the ant lion's position is updated to
where it captured the ant, enhancing the likelihood
of another successful hunt. This update is achieved
using Equation 14.

(14)

performing ant lion in each iteration is designated as
the elite. This elite ant lion influences all ants,
guiding them towards elitism, as described in
Equation 15.

(15)

Function A produces initial random solutions, and
function B is the initial population updated by
function A. Function C gives true results in
satisfying conditions. These functions are shown in
Equations 16, 17, and 18.

Function A generates the initial random solutions,
function B updates the initial population based on
function A, and function C ensures the results meet
the required conditions. These functions are outlined
in Equations 16, 17, and 18.

(16)
(7)

(18)

random walk around the ant lions and elite solutions.
After all ants have moved randomly, their locations
are evaluated using a fitness function. If an ant’s
location relative to the ant lions is deemed
appropriate, it becomes the new location for the next
iteration. The best ant lion is compared with the best
found so far and replaced if it shows improvement.
This process continues until Function C returns an
incorrect value. Figure 2 illustrates the ant lion
algorithm [38].
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Start by randomly generating the initial population of ants and ant lions

Evaluate the fitness levels of both the ants and the ant lions

Identify the top-performing ant lions and designate them as the elite (optimal solution)

while the termination condition is met

for every ant

Choose an ant lion based on the roulette wheel selection method

Adjust the values of "¢’ and “d" according to Equations (10) and (11)

Generate a random walk and normalize it using Equations (1) and (7)

Adjust the ant's position using Equation (15)
end for

Evaluate the fitness of each ant

Substitute an ant lion with its corresponding ant if the ant demonstrates improved fitness, as per Equation (14)

Update the elite ant lion if it shows better fitness than the current elite.

end while

Return elite

Figure 2. Pseudocode of the ALO algorithm
3.2. Aquila Optimizer Algorithm

The Aquila Optimizer (AO) is a meta-heuristic
algorithm that leverages swarm intelligence and a
population-based approach. It draws inspiration
from the hunting techniques of the Aquila, a
prominent predatory bird from the northern
hemisphere, and represents one of the latest
advancements in this field [39]. The four distinct
hunting techniques used by Aquila are simulated by
the Aquila Optimizer. The following subsection

expresses Aquila’s four strategies to hunt prey [40-
42]. The Aquila Optimizer Algorithm flowchart is
illustrated in Figure 3.

l. Expanded exploration

The Aquila initially investigates any potential prey
in the target region. The Aquila chooses the place to
seek its prey, then stoops down vertically to capture
it. The following Equations provide the
mathematical formula for such a behavior:

Xi(t+1) = Xpest () X (1 = ¢/T) + (Xn () = Xpese () X rand) (19)

N
X,y () = 1/1v in(t), i=1,..,Dim
i=1

In Equation 19, X;(t + 1) is the position of it
individuals in the next iteration, and the best result
in this iteration is represented by the X,...(t). The
mean locations of all individuals in the i generation
are represented by X,,(t). The exploration operation
in search area is controlled by (1 — t/T). where tis
the current generation, T is the maximum number of
iterations, and N illustrates the swarms' population

(20)

size. rand represents a randomly generated number
based on a Gaussian distribution between 0 and 1.

Il. Narrowed exploration

Aquila uses this phase the most often for hunting,
and the hunt is conducted at contour flying with a
brief glide assault. This procedure is described as:

X;(t+ 1) = Xpesr (t) X Levy(D) + Xz(t) — (y —x) X rand (21)
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7 22
Levy(D) =s x uxa/|v|f (22)

Where Levy(D) is the levy flight distribution
function for the dimensionality of the problem
solving D, which the calculation would be done by
Equation 22. X (t), is a position of Aquila generated
randomly in the i iteration. y and x represent the

1. Expanded exploitation

spiral shape, and the rand is a random real number
between 0 and 1. The s is a constant parameter equal
to 0.01, and u and v are random values between 0
and 1. ¢ is a dynamic adaptive coefficient, and g is
a constant fixed to 1.5.

In this process, the target area is specified and Aquila can vertically achieve a primary attack with a slow decent
attack. Mathematically, this action is shown by Equation 23.

Xi(t+1) = a X [Xpese(t) — Xy ()] +6 X [(UB — LB) X rand + LB] (23)

o and o are the parameters that adjust the
exploitation and they are 0.1 based on tests for
various benchmarks. X,,(t) demonstrates the mean
position in the i™ iteration, Also LB and UB denote
the lower and upper bounds, respectively.

V. Narrowed exploitation

In this phase, the Aquila walks on the land and can
easily capture the prey and hunt it by pulling. This
step is mathematically modeled by Equation 24. QF
is the quality value that balances the search
strategies, G is the different motions of the AO and
G is the slope of the chasing flight of the AO.

Xi(t+1)= QF X Xpot(t) — Gy X X;(t) X rand — G, X Levy(D) + rand X G, (24)

Expanded exploration (17)

Update the curzent solution using Eq. § | | Initialize the population and pacimeters |

TUpdate the current solution using, Fa. 4

| Calculate the particles fimess to choose
the

current best agent 1bes(t)

Fitness(Xa(r + 1)) <= Fitness(A)

| Xy =(\3¢r + 1) | ves

Tor all of the population

Update the mean value of the current

solution Vi) Fituess(X10r+ 1)) < Fitness(Xees(#)

<

!

Update the parameters |

Nbest(t) =(X3(t 1 1))

Narrowed exploration (1)

Updite the cument solwtion using Eq. 9

|

Nyeh =(Xarr + 1

< e

Nbest(t) =(Xd4(i + 1)}

\\ no ves
< 05 ' Ramd==0.5

| KNhart(d) =(Xi(t+ 1)) |

| i1 =20+ 1) |

Vitness(2(r | 13) = Fitness(Xbesr(1))

| Nbest(t) =CX2(8 + 1)) |

Figure 3. The flowchart of the Aquila Optimizer algorithm
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4. Proposed Meta-heuristic  model

definition

hybrid

This section will cover the ways to enhance the ALO
algorithm and its integration with AO. In this
section, we introduce our method that integrates
ALO and AO. We apply a binary version of
ALOAO to the CSLP issue. While While the ALO
and AO algorithms perform exceptionally well
compared to other swarm intelligence-based
optimization techniques, they struggle with highly
complex functions due to their propensity to become
trapped in local optima [43-47]. To overcome these
limitations and improve search efficiency, we
introduce a novel hybrid algorithm that merges ALO
and AO. This new approach utilizes a multi-swarm
strategy, leveraging the advantages of both
algorithms to enhance exploration, exploitation, and
convergence towards optimal solutions.

The ALO algorithm adjusts ant positions using a
random walk influenced by antlions chosen through
an elite strategy and roulette wheel selection. This
method provides rapid speed, robust convergence,
and high efficiency. However, it tends to converge
prematurely and get trapped in local optima in
complex optimization problems [48]. To address
these issues, enhancements have been implemented
to improve the algorithm's optimization capability
and accuracy.

The Aquila Optimizer (AO) algorithm excels in its
ability to effectively explore the search area and find
global optima in complex and high-dimensional
optimization issues. It mimics the diverse hunting
strategies of the Aquila bird, which enhances its
adaptability and flexibility in solving various
optimization tasks. AO's ability to avoid local
optima ensures it does not get trapped in suboptimal
solutions, making it a robust tool for achieving high-
quality results in challenging optimization
scenarios.

Non-hybrid metaheuristic algorithms are often
based solely on mathematical theory and might end
up in a local minimum. The aim of hybridizing
metaheuristic algorithms is to combine the natural
processes of two different algorithms to solve
various hard optimization problems. The hybrid
algorithm's performance and accuracy will be
enhanced by keeping the balance between
exploration and exploitation when hybridizing
metaheuristic algorithms. The following methods
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are commonly employed to combine optimization
algorithms and create novel hybrid metaheuristic
techniques [49]:

e Sequential method: Each metaheuristic
algorithm will execute consecutively, one
after another.

e Concurrent method: Each algorithm can
operate on the whole population or a part of
it. In the latter case, proper attention should
be given to the formation, integration, and
management of sub-populations.

e Conditional method: Here, a single
optimization technique is wused per
iteration, with its choice depending on
specific conditions.

The proposed method adopts a serial approach to
integrate the suggested algorithms, with the AO
utilizing the ALO as its initial population to enhance
accuracy and convergence speed. This hybrid
method, ALOAO, combines the strengths of two
meta-heuristic algorithms: the ALO and the AO.
The ALO algorithm uses a random walk approach
around antlions chosen through an elite strategy and
roulette wheel selection. In contrast, the AO
algorithm draws inspiration from the Aquila's
hunting tactics and includes four distinct methods.
Combining these algorithms, ALOAO effectively
balances exploration and exploitation, avoiding
premature convergence and stagnation.

By integrating these algorithms, ALOAO achieves
high performance and robustness in solving CSLP
problems. Consequently, ALOAO can find optimal
or near-optimal solutions for the CSLP problem.
Figure 4 presents the flowchart for the proposed
hybrid optimization method. Section 5 showcases
various experiments that highlight the convergence
speed and accuracy of our approach.

The proposed algorithm divides the population into
subpopulations assigned to different algorithms for
diverse search strategies. Initially, solutions are
randomly split between the algorithms, each
operating independently on its designated subset. To
optimize performance, the best solutions are
exchanged using shared memory, where each
algorithm stores its top k solutions (up to 30% of the
population). To improve exploration, a mutation
operator is applied to 20% of the population. Finally,
the best solutions from shared memory are selected
based on objective functions.
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and set the initial values
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v
Divide the population into two equal

parts
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Y

l Set current iteration t = 1
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Calculate the fitness values and

best solution

!

Update the Update the

current solution

using Eq. (20)

current solution

using Eq. (22)

Update the
current solution

using Eq. (23)

Update the
current solution

using Eq. (24)
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Y

Save the best solution

o

best solution and its fitness
function

| Return the

|

S

Mutations

hared memory

v
Calculate the particles fitness and
assume the best antlion as the elite

g

| Iteration = Iteration + |

no

Pair an ant with ant lion using roulette
wheel

Create normalized random walk with
chaotic random numbers

Update the position of prey toward elite,
if becomes better result(Greedyv)

Calculate the probability using transfer
function and update a new position

no

Optimal solution

-

Figure 4. The ALOAO flowchart

The ALO algorithm tends to perform poorly in
exploring global optimizations [50]. To mitigate this
issue and enhance the algorithm's efficiency, we
incorporated five functions based on chaos theory—
circular, Gaussian, and logistic—instead of
traditional random functions [51]. These chaos-
based functions generate numbers within the range
[0, 1], as demonstrated in Table 4, where all random
numbers start with an initial value of 0.7 [52].
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Chaos, deterministic, and quasi-random functions
used in dynamic and nonlinear systems are notable
for their irregular, non-repeating patterns and
bounded behavior. From a mathematical
perspective, chaotic functions describe deterministic
systems that exhibit seemingly random behavior.
Unlike conventional mathematical functions, chaos
maps are utilized in optimization algorithms,
particularly over the past decade, due to their

no
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dynamic properties that facilitate discovery in
complex environments. These functions have
proven effective in practical applications by helping
algorithms avoid local optima and improving

Table 4. Chaotic maps

convergence speed. In the CH-ALOAO algorithm, a
random chaotic function is included in each iteration
to harness these advantages.

No. Name Function
1 Chebyshev V41 = cos(bcos™1(V3)) , b=1..100
2 Circle Voar = Vy + d — () sin(2nV,)mod(1) , C=05, d=0.2
3 Gauss (1) V,=0
Vo =__ = therwi 1 _l_[l]
Vymod(1) OtRETWISe ¥ mod(1) ~ V,, LV,
1 . C
4 Iterative Vot = sin (V_:) C=0.7
5 Logistic Vysr = CV (1 —V,), C=4

In CSLP issues, each particle is represented as a
sequence of numbers that define a layout solution.
Different sequences represent different layout
configurations, with each variable indicating a
structure and its value specifying the assigned
position for that facility. Since each location can
only host one facility, duplicate values within a
particle result in infeasible solutions. However, in
the proposed algorithm, all variables are updated
independently, which can lead to multiple variables
having the same value. Therefore, modifications are
needed in the updating mechanism to address this
issue. The updated mechanism for CH-ALOAO is
detailed below:

Table 5. The S-shaped and V-shaped transfer functions used

To tackle this issue, we can utilize the discrete
environment optimization algorithm. Developing a
binary CH-ALOAO requires binary solutions,
necessitating several conversions. A highly effective
method for transforming a continuous optimizer into
a binary one is to use transfer functions. These
transfer functions are easy to implement, fast, and
cost-efficient [53]. This paper employs four S-
shaped (S1-S4) and four V-shaped (V1-V4) transfer
functions to convert the continuous CH-ALOAO
algorithm into a binary format. The mathematical
formulations of these transfer functions are detailed
in Table 5.

S-shaped family Transfer function

V-shaped family

Transfer function

S1 T(x) = 1/(1+ e )
S2 T(x)=1/1+e™)
S3 T(x)=1/1+ e(_;))
S4

Tx)=1/1+ e(_g))

V1

V2
V3

V4

0= Jers (29
T(x) = |tanh (x)|

T(x) = |x/\/1 + x2|

T(x) = E arc tan (;—t x)|

The Binary Hybrid ALO and AO chaotic
optimization algorithm explores binary search
spaces through the use of transfer functions. This
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method involves two stages for updating particle
positions. First, the particles' positions are updated
in continuous space, similar to non-binary
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algorithms, resulting in new continuous values. In
the second stage, transfer functions are applied to
convert these continuous positions into binary
values. The particle positions are adjusted according

Xt +1) = {1 if rand(0,1) < T(AXA(t + 1))
0 otherwise

In this context, rand(0,1) denotes a random number
in the range [0,1], and T(x) refers to an S-shaped
transfer function. X indicates the position of the i
particle in the d” dimension, while t represents the
current iteration. Unlike the S-shaped transfer

—X ()
X&(t) otherwise

X&(t+1) ={

In countinue, partially mapped crossover (PMX) in
genetic algorithms addresses infeasibility in
permutation problems by exchanging values
between two parent chromosomes at selective genes.
When values are swapped, any repeated value in one
parent is substituted with the corresponding mapped
value from the other parent, and vice versa [54].
Inspired by PMX, this study employs an updating
mechanism in CH-ALOAO to generate feasible
layouts. In this mechanism, particle fitness is
calculated and used as a criterion to determine the
update order, with particles having higher fitness
values being closer to the goal and thus updated first.

5. Results and discussions

This section presents and analyzes the results of the
proposed methods. The experiments were conducted
using MATLAB software on a Core i7 processor
with 8 GB of RAM. The following section details
the case studies and their corresponding results. The
performance of the presented method is assessed in
three steps in this section.

We first applied the presented algorithm 10 times to
the appropriate functions and recorded the
maximum, minimum, median, and mean of the
iterations in Tables 6 and 7 in subsection 5.1. All the
outcomes in this paper follow the IEEE CEC 2005
supported format. The outcomes are highlighted by
the thick pen in these tables. The algorithm performs
1000 searches each time it is fully run. The

if rand(0,1) < T(AXA(t + 1))
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to Equations 25 and 26, with S-shaped functions
specifically updating particle positions as outlined in
Equation 25.

(25)

function, the V-shaped transfer function does not
limit the search agent to the [0,1] interval. Equation
26 illustrates the update process for the particle's
position using V-shaped transfer functions, where
=X signifies the complement of X.

(26)

population size is set to 30, with each solution
comprising a set of 30 elements. To ensure a fair and
accurate  comparison, the population and
computational capabilities the algorithms
compared are kept consistent.

of

In the second and third phases, two case studies are
performed to showcase the effectiveness and
applicability of the CH-ALOAO metaheuristic for
optimizing construction site layouts. The outcomes
were compared with those obtained using the ALO,
AO, and GWO algorithms. The binary version of the
algorithms that are compared is used. We described
the details of the second and third step experiments
in subsection 5.2, and 5.3.

5.1. Benchmark functions

The effectiveness of the exploitation process can be
assessed using unimodal benchmark functions. The
performance of the basic algorithms, the presented
algorithm, and some new algorithms on unimodal
exponential functions is summarized in Table 6
using average, median, minimum, and maximum
values. The presented algorithm has a better
exploitation stage than the other algorithms, as
shown in Table 6. The exploitation stage of the
presented algorithm is improved significantly by
using the ALO algorithm, compared to the basic
Aquila optimizer algorithm and other compared
algorithms.
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Table 6. Results for the unimodal benchmark (F1-F7)
F1
CH- PSO AO DA WOA ALO MVO MFO
ALOAO
Avg 6.4311e-43 8.2763e- 1.4717e- 2.5393e- 8.8970e-  0.002213  1.2821 5408.30
06 27 33 35
Med  5.7219e-43 7.073%- 2.5708e- 2.3910e- 6.1580e-  0.003157  1.2199 348.20
06 28 34 35
Worst  2.3140e-41  6.0059e- 6.3424e- 1.0620e- 1.9140e-  0.005176  1.7088 6901.30
05 27 32 34
Best  2.3425e-43  9.0284e- 1.9719e- 2.0561le- 3.2210e-  0.000212  1.0346 21.5905
06 28 35 36
F2
CH- PSO AO DA WOA ALO MVO MFO
ALOAO
Avg 3.1723e-26  0.06129  5.0014e- 2.2021e- 2.1925e- 23.5150 0.6270 27.8018
16 19 20
Med 3.2021e-26  0.05801  4.4168e- 2.5013e- 2.6509e- 22.7011 0.6023 29.0291
16 19 20
Worst 3.1223e-25 0.16602  2.2137e- 5.5084e- 3.8126e- 42.4121 0.8423 29.4062
15 19 20
Best  2.2369e-26 0.00780  3.6019e- 0.1372e- 5.0095e-  9.1270 0.4012 20.0113
16 19 21
F3
CH- PSO AO DA WOA ALO MVO MFO
ALOAO
Avg 4.1303e-9 65.1090  3.3096e- 6.3341le- 3.0211le- 3029.6101 267.5031 8840.0019
07 09 08
Med 3.6505e-9 68.0677  6.6690e- 5.710le- 3.2009e- 3299.0090 290.7091 8390.5582
07 09 08
Worst  4.5608e-9 98.2266  7.320le- 3.7204e-  6.5150e- 6772.0291 320.2920 9920.9300
06 08 08
Best 1.3918e-10 52.4072  4.0157e- 2.0970e- 2.0118e- 2876.4800 201.0284 7013.3202
08 10 09
F4
CH- PSO AO DA WOA ALO MVO MFO
ALOAO
Avg 2.0117e-10 4.6584 3.3228e-  4.1985e- 3.0174e- 32.2081 7.1220 120.2037
07 09 08

4789



Letters in High Energy Physics Volume 2024
ISSN: 2632-2714

Med  2.1104e-10 4.2895 3.1092e- 4.2022e- 5.0938e-  30.0106 7.2107 122.4992

07 09 08
Worst  4.2012e-10  4.0115 4.8013e- 5.0153e- 5.0613e-  42.0931 9.0056 145.0078
07 09 08
Best  2.1700e-11 2.7010 2.2430e- 2.3120e- 2.52326e- 21.1004 3.1004 60.5600
07 09 09
F5
CH- PSO AO DA WOA ALO MVO MFO
ALOAO

Avg 10.1873 28.5121  25.7456  28.3340  29.0136 125.9000 220.1034 450.8001
Med  9.0293 26.5104  25.0940 28.0977  28.2348 132.3340  225.4500 429.5000
Worst  17.0096 32.0170 27.1101  29.0030  32.8209 230.7000  290.4560 1087.000

Best  9.0102 21.6110 22.0398 24.7870  24.1099 100.1128  178.5130 400.6453
F6
CH- PSO AO DA WOA ALO MVO MFO
ALOAO

Avg 2.0029%-05 0.00001  1.2029 1.1001 1.0309 0.0021 0.8902 13.0931
Med  4.092e-04 0.00012  1.0433 1.9100 1.9600 0.0021 1.2360 12.6234

Worst  0.0029 0.00029  1.9930 2.0702 2.0031 0.0017 1.9007 17.0901
Best 1.1008e-05 1.722e- 0.2506 1.0015 1.2130 0.0006 0.7001 7.0909
05

F7

CH- PSO AO DA WOA ALO MVO MFO

ALOAO
Avg 0.0002 0.1565 0.0034 0.0022 0.0019 0.2320 0.0310 0.0170
Med  0.0019 0.2009 0.0025 0.0019 0.0014 0.2400 0.0290 0.0022
Worst  0.0022 0.2097 0.0039 0.0027 0.0027 0.5510 0.0700 2.1005
Best  0.0001 0.1200 0.0018 0.0005 0.0009 0.2002 0.0218 0.0020

Multimodal benchmark functions test how well the search algorithm can analyze the search area and evade
from local optima. The CEC 2005 test problems include multimodal functions from F8 to F16. You can find
the details of the unimodal and multimodal benchmark functions, such as their dimensions, ranges, minimum
inputs, and cost functions, in [7]. Table 7 displays the statistical results for the multimodal functions. The
proposed algorithm excels over other algorithms in all multimodal functions except for F15 and F16. The PSO
algorithm surpasses the others specifically on the F15 function, and similarly, achieves comparable results on
the F16 function.
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Table 7. Results for the multimodal benchmark (F8-F15)
F8
CH-ALOAO PSO AO DA WOA ALO MVO MFO
Avg -9003.12 -5361.93  -5817.79 -5909.66 -5645.68 - - -
6247.32 7228.41 7087.49
Med -8900.40 -6587.37  -5632.88 -5730.73 -5775.16 - - -
5518.28 7657.85 7196.89
Worst  -6282.91 -3143.67  -4233.70  -3260.13  -4850.06 - - -
3417.67 6047.43 6289.38
Best -9124.62 -6600.24  -6401.59 -6768.75 -6003.93 - - -
6016.27 8132.06 8064.13
F9
CH-ALOAO PSO AO DA WOA ALO MVO MFO
Avg  2.500le-14  20.17 7.07 3.96 0.81 7853  90.43  130.07
Med 2.2437e-13 19.55 0 0 0 77.66 92.18 143.14
Worst 4.3521e-12 73.16 20.15 8.70 4.84 91.56 103.97 150.08
Best 1.1019e-14 0 0 0 4,7643e- 50.73 80.25 42.26
14
F10
CH-ALOAO PSO AO DA WOA ALO MVO MFO
Avg 4,3200e-15 0.1901 1.0489%¢- 1.5081e- 5.0122e- 5.0755 4,0012 20.37
13 14 13
Med 4,3100e-15 0.0161 1.0476e- 1.5190e- 7.2800e- 3.0132 48170 19.82
13 14 13
Worst  4.7511e-15 0.9214 1.1810e- 1.8400e- 1.2810e- 10.108 15.840 23.95
13 14 12
Best 3.0873e-15 0.0094 2.3200e- 0.8798e- 8.5900e- 2.1205 2.4081 12.12
14 14 14
F11
CH-ALOAO PSO AO DA WOA ALO MVO MFO
Avg 0.0002 0.0089 0.0070 0.0040 0.0077 0.0493 0.8967  12.9006
Med 0 0.0092 0.0062 0.0032 0.0079 0.0467 0.9100 13.0114
Worst  0.0068 0.0190 0.0250 0.0200 0.0194 0.0612  0.9420  90.1040
Best 0 1.3011e- O 0 0 0.0377 0.8345  10.9600
05
F12
CH-ALOAO PSO AO DA WOA ALO MVO MFO
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Avg 4.0490e-06 0.0034 0.0422 0.2022 0.0198 12.0039 54905 7.0910

Med  4.0204e-06 4.0036e-  0.0397 0.1248 0.0133 10.5035 5.2503  7.1995
05

Worst  6.0954e-06 0.0084 0.0690 0.6697 0.0658 20.5500 8.4505  10.059
Best  3.1002e-07 1.6014e-  0.0254 0.0229 0.0115 10.1784 2.9052  2.9690

05

F13

CH-ALOAO PSO AO DA WOA ALO MVO MFO
Avg 0.0063 0.1263 0.5109 2.9032 0.6334 19.4474 0.5798  12.6002
Med  0.0001 0.0919 0.4129 2.3042 0.6124 20.0098 0.1206  11.4670
Worst  0.0110 0.3909 0.8256 2.8061 0.7949 32.6724 0.1630  20.4028
Best  1.2010e-06  4.2200e-  0.1504 0.8664 0.4584 3.1091 0.0350  8.7490

05

F14

CH-ALOAO PSO AO DA WOA ALO MVO MFO
Avg 0.0947 4.3014 4.1815 2.2380 1.7900 2.1002  0.9980  3.1500
Med  0.0761 3.9021 4.9820 1.7093 0.9980 1.9902 0.9980  2.9820
Worst  1.0025 6.9900 6.9820 5.6903 2.9902 2.9820 0.9980  5.9280
Best  0.0018 0.9980 0.9980 0.9980 0.9980 0.9980  0.9980  0.9980

F15

CH-ALOAO PSO AO DA WOA ALO MVO MFO
Avg 0.0086 0.0009 0.0046 0.0083 0.0058 0.0048 0.0046 0.0014
Med  0.0006 0.0009 0.0012 0.0008 0.0075 0.0034  0.0075  0.0008
Worst  0.0203 0.0010 0.0203 0.0303 0.0233 0.0203  0.0203  0.0016
Best  0.0003 0.0007 0.0003 0.0007 0.0004 0.0003  0.0005  0.0005

F16

CH-ALOAO PSO AO DA WOA ALO MVO MFO
Avg -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316
Med  -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316
Worst  -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316
Best  -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316
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5.2. Facilities Case Study 1

This case study, based on a medium-sized project from Li et al. [55], focuses on finding the best arrangement for
positioning 11 facilities into 11 designated locations on the site. The facilities considered in this analysis are:

1. Site office 7. Reinforcement steel workshop

2. False work workshop 8. Side gate

3. Labor residence 9. Electrical, water and other utilities control room
4. Storeroom 1 10. Concrete batch workshop

5. Storeroom 2 11. Main gate

6. Carpentry workshop
In this case study, the construction site layout is based on two key assumptions:

1. Any facility can be placed at any of the predetermined locations.
2. The main gate and side gates are treated as fixed facilities, positioned in their designated locations.

The goal of this case study is to minimize the total travel distance for site personnel moving between facilities.
According to [55], the total travel distance is calculated as:

n n n n
Minimize TD = ZZZZJQR X X X fij Xdyy

i=1j=11=1k=1

n n
Subjected to le-j = 1,2 x5 =1

(27)

...
Il
=
-
Il
=

Here, n represents the number of facilities. The variable xi = 1 equals 1 if facility i is assigned to location k;
otherwise, it is 0. Similarly, x; follows the same principle. The coefficient fjindicates the number of trips made
daily by construction personnel between facilities i and j, while dy represents the distance between locations k and
I. Consequently, TD denotes the total daily travel distance for construction personnel. The distances between the
predetermined locations are recorded and detailed in Table 8. The frequency of trips between facilities plays a
crucial role in site layout planning and the positioning of site facilities. Therefore, the daily trip frequencies
between facilities are summarized in Table 9.

Table 8. Travel distance between predetermined locations

Distance Location
1 2 3 4 5 6 7 8 9 10 11
Location 1 0 15 25 33 40 42 47 55 35 30 20
2 15 0 10 18 25 27 32 42 50 45 35
3 25 10 0 8 15 17 22 32 52 55 45
4 33 18 8 0 7 9 14 24 44 49 53
5 40 25 15 7 0 2 7 17 37 42 52
6 42 27 17 9 2 0 5 15 35 40 50
7 47 32 22 14 7 5 0 10 30 35 40
8 55 42 32 24 17 15 10 0 20 25 35
9 35 50 52 44 37 35 30 20 0 5 15
10 30 45 55 49 42 40 35 25 5 0 10
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Table 9. Trip frequency between structures
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This example was evaluated through 50 independent optimization runs, each consisting of 500 iterations, to obtain
statistically significant results with various algorithms. The statistical results from these runs are summarized in
Table 10. According to Table 10, the proposed method achieves an average result of 12,480, a worst-case result
of 13,110, and a standard deviation of 62.5, outperforming other algorithms. The table also highlights that the best
outcome in this case study is 12,460, which is better than the results from all compared algorithms. This
demonstrates that the CH-ALOAO method not only finds a superior optimal solution but also offers enhanced
stability. Figure 5 displays the convergence curves of the different algorithms over the course of the iterations.
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Figure 5. Convergence curve
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Table 10. Comparison of the results of 50 independent runs

Algorithms CH-ALOAO PSO AO DA ALO MVO MFO
Best 12460 12600 12615 12680 12750 12485 12650
Average 12480 12630 12705 12710 12752 12550 12675
Worst 13110 13290 12990 13400 13200 13198 13100
STD 62.5 172.5 93.75 180 112.5 178.25 112.5

5.3. Facilities Case Study 2

The necessity of relocating temporary project
facilities to reduce transportation expenses becomes
especially critical in projects with significant spatial
and temporal dispersion, like road construction
projects. This case study focuses on a project with
highly dynamic development and extensive spatial
dispersion [56].

The operational plan entails positioning ten major
facilities across 11 designated locations within the
site. Additionally, three key work areas have been

identified to represent actual work zones along the
road. These work areas, which handle substantial
material transportation from other facilities, are
considered essential for the construction site. Table
11 details the facilities, including their estimated
initial placement and potential relocation costs.
Among these, the three work areas and the quarry
are fixed in their positions. Table 12 shows the types
of movements, rated from 1 (primarily human
resources) to 5 (primarily heavy vehicles), while
Table 13 provides a comparative scale of trip
frequencies between facilities, ranging from 1 to 5.

Table 11. Costs associated with constructing and relocating facilities.

Relocation cost

Facility Construction cost
1. Quarry area (fixed) 90000
2. Stone crusher 100000
3. Concrete batch plant 150000
4. Asphalt mixing plant 120000
5. Concrete and aggregates depot 10000
6. Asphalt and aggregates depot 10000
7. Sub-base and aggregates depot 10000
8. Work field 1 (fixed) 0

9. Work field 2 (fixed) 0

10. Work field 3 (fixed) 0

11. Asphalt storage 15000
12. Site office 10000
13. Labor rest area 10000
14. Concrete (cement) storage 15000
15. - 0

0
25000
25000
25000
5000
5000
5000

o O O o o o o o

Table 12. Type of movements between facilities

Facility
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Table 13. Number of trips between facilities
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In this situation, it's highly advantageous to place the
site office and labor rest area as far from the
construction activities as possible. The most
significant deviations from optimal solutions occur
when the cost of relocating facilities outweighs the
savings from reduced transportation costs, making
rearrangement less appealing. In such cases, the
model needs to dynamically address the static
problem, with any deviation from the static solution
leading to significant differences in the objective
function value. Conversely, when low relocation
costs incentivize facility rearrangement, multiple
solutions with minimal deviations from the optimal
can be identified, enhancing accuracy. However, as
the problem size increases, the model's efficiency in
tackling larger CSLP issues noticeably declines.

In this example, 20 independent optimization runs of
500 iterations each were conducted to achieve
statistically significant results using various
algorithms. The statistical outcomes from these runs
are compared in Table 14. The proposed method
shows superior performance, with an average result
of 14,540, a worst-case result of 16,280, and a
standard deviation of 107.45, outperforming other
algorithms. Furthermore, Table 14 shows that the
best result achieved is 14,500, surpassing the
outcomes of all other algorithms. This highlights
that CH-ALOAO not only secures a more optimal
solution but also exhibits improved stability. Figure
6 displays the convergence curves of different
algorithms across iterations.
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Figure 6. Convergence curve of algorithms
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Table 14. Results comparison from 50 independent runs
Algorithms CH-ALOAO PSO AO DA ALO MVO MFO
Best 14500 14900 14890 15400 15300 14550 15050
Average 14540 15050 15210 15540 15350 15000 15120
Worst 16280 17600 15800 17400 17000 16800 16700
STD 107.45 309.5 94.23 227 194 243 190.46

6. Conclusion and Future Work

In this study, we introduce a pioneering approach:
the Hybrid Ant Lion Optimizer Algorithm (ALO)
and Aquila Optimizer Algorithm (AQO) based on
chaos theory, specifically tailored for optimizing
construction management tasks. This hybrid
algorithm integrates ALO and AO, leveraging their
respective strengths. ALO mimics the trapping
behavior of antlions, balancing exploration and
exploitation for optimal outcomes. Conversely, AO
emulates the dynamic hunting tactics of eagles,
facilitating agile and adaptive search strategies. By
combining these approaches, the hybrid algorithm
adeptly navigates complex optimization problems,
dynamically adapting to environmental changes.
The CH-ALOAO algorithm utilizes interactive
memory to store optimal solutions, enhancing
computational efficiency. Experimental findings
reveal that CH-ALOAO excels in addressing
construction site layout planning (CSLP) problems,
surpassing conventional metaheuristic algorithms in
both solution quality and convergence speed.

To validate the models, two case studies were
conducted. The results demonstrate that the
proposed CH-ALOAO approach not only achieved
better results but also required fewer evaluations to
find the optimal solution. A comparative analysis
with existing metaheuristic methods highlights the
effectiveness and efficiency of the CH-ALOAO
algorithm in tackling construction site layout
planning (CSLP) problems. CH-ALOAO stands out
for its high-quality solutions and rapid convergence
to optimal outcomes, showcasing its robustness and
effectiveness for complex optimization tasks in
construction management.
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