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Abstract: In recent decades, site layout has been a major challenge for researchers in construction management. 

Recognized as an NP-complete problem, it resists exact solutions, particularly for medium to large-scale projects. 

Numerous studies have explored metaheuristic approaches to tackle this issue, yet there is a demand for novel 

methods that promise improved accuracy within shorter computational periods. In this study, a pioneering 

solution is introduced: a hybrid Ant Lion Optimizer Algorithm (ALO) and Aquila Optimizer Algorithm (AO) 

based on chaos theory tailored specifically for optimizing construction management tasks. The combination of 

ALO and the Aquila Optimizer harnesses the strengths of two distinct optimization strategies. ALO mimics the 

trapping behavior of antlions, striking a balance between exploration and exploitation for optimal outcomes. In 

contrast, the Aquila Optimizer replicates the dynamic hunting tactics of eagles, facilitating swift and adaptive 

search methods. By merging these approaches, the hybrid algorithm adeptly navigates complex problems, 

dynamically adapting to environmental changes. This collaborative synergy holds promise for efficient 

optimization across various domains. The chaotic hybrid algorithm (CH-ALOAO) utilizes interactive memory 

to store optimal solutions throughout the optimization process. Its performance is benchmarked against 

established metaheuristic algorithms regarding search capabilities, avoidance of suboptimal solutions, and 

convergence speed. The results undergo rigorous statistical analysis, with experimental data showcasing CH-

ALOAO's superior performance in addressing construction management optimization challenges compared to 

its competitors. 
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1. Introduction 

Construction site layout planning (CSLP) is a vital 

component of construction planning, aimed at 

optimizing the arrangement of temporary facilities 

while balancing multiple, often conflicting 

objectives within logical and resource constraints 

[1]. Key goals include minimizing costs related to 

facility interactions and reducing safety and 

environmental hazards, which have been the focus 

of recent research [2]. Traditionally, CSLP has been 

approached as a static problem, where temporary 

facilities are placed at the project's outset and remain 

fixed until completion [3]. However, in practice, the 

demand for temporary facilities changes throughout 

different phases of construction, influenced by the 

activity schedule. Zouein and Tommelein [4] 

emphasized the crucial need to consider the 

interdependence between activity scheduling and 

site layout. Acknowledging its impact on result 

reliability, recent studies have increasingly adopted 

dynamic approaches to tackle the CSLP problem. 

CSLP is recognized as an 'NP-hard' problem due to 

its complexity [5]. Recent advancements in swarm 

intelligence-based meta-heuristic algorithms have 

proven effective in solving optimization challenges 

[6-15], leading researchers to apply these modern 

techniques to CSLP models. Ant colony 

optimization (ACO) is a bio-inspired metaheuristic 

that mimics the foraging behavior of ants, as 

described by Dorigo et al. [16]. ACO has been 

applied to solve facility layout problems in 

hypothetical medium-sized construction sites [17]. 

Both Gharaie et al. [18] and Lam et al. [17] utilized 

ACO to address static site layout problems in 

construction projects. Ning et al. [19] presented a 

method to tackle the dynamic multi-objective CSLP 
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problem using the Max-Min Ant System (MMAS), 

a variant of the standard ACO algorithm. While 

previous research has addressed the CSLP problem, 

the introduction of new metaheuristics continues to 

be beneficial, offering potential improvements in 

solution quality. 

Lien and Cheng [3] developed a hybrid particle-bee 

algorithm for optimizing construction site layout 

with a single objective function, aiming to place 

facilities in predetermined positions. Li and Love 

[20] investigated the use of Genetic Algorithms to 

find optimal solutions for single-objective CSLP 

problems, specifically focusing on facilities with 

unequal areas in fixed positions. 

Particle swarm optimization (PSO) is a 

metaheuristic technique that simulates the social 

manners of birds flocking toward a target, as 

introduced by Eberhart and Kennedy [21, 22]. 

Additionally, Xu and Li [2] proposed a multi-

objective PSO algorithm to address the multi-

objective dynamic CSLP problem. Zang and Wang 

[23] employed a particle swarm optimization (PSO) 

methodology to optimize static layouts for facilities 

with varying sizes in predetermined locations.  

The genetic algorithm (GA), which simulates the 

method of natural evolution, is widely used to 

develop effective solutions for optimization and 

search issues. GA employs approaches motivated by 

natural evolution—such as inheritance, 

modification, choice, and crossover—to address 

optimization problems. Several studies have applied 

GA to address the facility site layout problem, 

including works by Adrian et al. [24], Cheung et al. 

[25], and Mawdesley and Al-Jibouri [26]. Osman et 

al. [27] presented a hybrid CAD-based algorithm 

that uses GA to improve the placement of facilities 

with unequal areas in any available area at a 

construction site. 

The artificial bee colony (ABC) algorithm, 

developed by Dervis Karaboga [28], is a recent 

addition to swarm intelligence-based algorithms, 

simulating the foraging manners of honey bees and 

other algorithms such as CBO and MBF [29-32]. In 

[28], a multi-objective ABC algorithm is employed 

to solve the CSLP problem. The standard algorithm 

is improved with Levy flight random walks to help 

employed bees find new food sources. The study 

aims to optimize the dynamic layout problem with 

two primary objectives: undervaluing safety hazards 

and environmental concerns and reducing the total 

handling cost associated with interchange between 

facilities. The model addresses the CSLP issue as a 

non-linear layout challenge concerning facilities of 

varying sizes, which can be arranged in a horizontal 

or vertical orientation. Additionally, the model takes 

into account the existence of blocks when 

calculating travel distances. 

The following are the paper's main contributions: 

I.Introducing a hybrid ALO and AO and 

assessing its performance on diverse global 

optimization problems. 

II.Creating a chaotic hybrid algorithm CH-

ALOAO to optimize construction 

management problem. 

III.Experimentally evaluating CH-ALOAO on 

construction management problem with 

varying complexities and statistically 

analyzing the results. 

The article is structured as follows: Section 2 covers 

the problem and Section 3 outlines background and 

preliminaries of the original algorithms. Section 4 

summarizes the structure of the proposed modified 

optimizer, while Section 5 proposes and examines 

the experimental results, and evaluates CH-ALOAO 

for optimizing the construction management 

problem. Section 6 concludes the paper. 

2. Construction Site Layout Problem 

As noted, construction site layout issues can be 

modeled as quadratic assignment problems, where 

the costs related to the flow between facilities are 

linearly dependent on the distance crossed and the 

amount of flow [33]. The objective is to uniquely 

assign several predetermined facilities (n) to several 

predetermined locations (m), with the number of 

places being equal to or more significant than the 

quantity of facilities. If the quantity of positions (m) 

exceeds the quantity of facilities (n), then m - n 

dummy facilities are added to balance the numbers. 

By allocating both the length and frequency as zero, 

these dummy facilities will not impact the layout 

consequences. 

If each predetermined location can accommodate 

any facility, the layout problem is modeled as an 

equal-area facility layout issue. However, if some 

locations can only accommodate specific facilities, 

the issue evolves into an unequal-area facility layout 

issue, where the predetermined locations have 
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varying scopes. Unequal-area layout issues are 

generally more challenging to solve than equal-area 

layout issues due to the additional constraints 

introduced by the differing area requirements [20]. 

 

The objective functions of various models, as presented by [27], are summarized in Table 1 and follow a general 

form. 

Minimize F =  ∑∑𝑊𝑖𝑗 × 𝑑𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 
(1) 

Table 1. Various types of objective functions have been utilized in previous research studies 

No. Objective function 

1 To minimize the total transport expenses of resources between facilities.[25] 

2 The objective is to reduce a generalized charge function that accounts for construction costs, 

transportation costs, and safety concerns related to the closeness or remoteness of facilities.[34] 

3 underestimate the total handling costs of interchange flows between facilities, as well as safety hazards 

and environmental concerns. [35] 

4 To minimize the costs associated with exchanges between structures. [36] 

5 To minimize the whole charge of site layout, and maximize the space between the ‘high-risk’ structures 

and the ‘high-protection’ structures to decrease the chance of safety or environmental mishaps. [2] 

6 To minimize safety concerns and reducing construction cost. [19] 

 

The objective function F is defined, with n 

representing the quantity of structures and positions. 

The coefficient Wij signifies either the real 

transportation cost per unit space between structures 

i and j (accounting for the number of travels made) 

or a comparative proximity weight indicating the 

desired nearness between structures i and j. The term 

dij indicates the distance between structures i and j. 

Each design choice can be described by an n × n 

permutation matrix, where n is the number of 

structures or places. In this matrix, the rows 

correspond to structures and the columns to places. 

The permutation matrix has a single entry of one in 

each row and column, with all other entrances being 

zero. Table 2 provides an instance of a permutation 

matrix for five structures and five places. 

A typical solution to the site layout issue, as 

demonstrated in Table 2, results in a sparse matrix 

that requires significant computing resources for 

large issues. A more efficient option is using a 

sequence of integers, where each entry illustrates a 

structure and the integer indicates its location, as 

depicted in Table 3. However, this method can lead 

to infeasible solutions with overlapping entrances, 

especially when using meta-heuristic approaches. 

Therefore, adjustments are needed to resolve this 

issue [37]. 

 

Table 2. An example of permutation matrix Table 3. An example of the sequence-based illustration for 

CSLP 

Number of 

Facilities 

Number of Locations 

L1 L2 L3 L4 L5 

F1 1 0 0 0 0 

F2 0 0 1 0 0 

F1 F2 F3 F4 F5 

2 1 3 5 4 
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F3 0 1 0 0 0 

F4 0 0 0 0 0 

F5 0 0 0 0 0 

 

 

3. Background 

We leverage an improved metaheuristic algorithm named CH-ALOAO that contains ALO optimization and AO 

algorithm for optimizing construction management tasks. In this section, we introduce Based algorithms. 

3.1. Ant Lion Optimizer Algorithm 

The ALO algorithm is inspired by the hunting behavior of ant lions preying on ants [38]. First, we assume ants as 

particles in the search area to model their relations. Then, the ant lion is permitted to pursue. The movement of 

the ant, as it randomly searches for food in nature, is modeled by Equation 1. 

(1) 𝑋(𝑡) = [0, (𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑡1 − 1), 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑡2 − 1)),… , 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑡𝑛 − 1))] 

Thus, cumsum calculates the cumulative sum, where n represents the maximum iterations, t denotes the random 

motion phase, and r(t) denotes a random function defined by Equation 2. 

(2) 
𝑟(𝑡) = {

1 𝑖𝑓 𝑟𝑎𝑛𝑑 > 0.5
0 𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 0.5

 

In Equation 2, t represents the random walk step, and rand denotes a random number between 0 and 1. The 

positions of the ants are stored in the matrix defined by Equation 3 and used during optimization. 

(3) 

𝑀𝐴𝑛𝑡 = [

𝐴1,1 ⋯ 𝐴1,𝑑
⋮ ⋱ ⋮

𝐴𝑛,1 ⋯ 𝐴𝑛,𝑑

] 

Thus, MAnt specifies the position of each ant, and Aij determines the jth dimension of the ith ant, n shows the number 

of ants and d the number of dimensions. A fitness function, according to Equation 4, is used during optimization 

for the evaluation of each ant. 

Thus, MAnt determines the status of each ant, with Aij representing the jth dimension of the ith ant. Here, n denotes 

the count of ants, and d represents the count of dimensions. During optimization, a fitness function, defined by 

Equation 4, is used to evaluate each ant. 

(4) 

𝑀𝑂𝐴 = [

𝑓([𝐴1,1, 𝐴1,2, … , 𝐴1,𝑑])

𝑓([𝐴2,1, 𝐴2,2, … , 𝐴2,𝑑])

⋮
𝑓([𝐴𝑛,1, 𝐴𝑛,2, … , 𝐴𝑛,𝑑])

] 

MOA is employed to store the fitness function values for each ant. Additionally, we consider an ant lion obscured 

someplace in the search area. Equations 5 and 6 are used to keep the ant lion's location and objective function. 

(5) 

𝑀𝐴𝑛𝑡𝑙𝑖𝑜𝑛 = [

𝐴𝐿1,1 ⋯ 𝐴𝐿1,𝑑
⋮ ⋱ ⋮

𝐴𝐿𝑛,1 ⋯ 𝐴𝐿𝑛,𝑑

] 

(6) 

𝑀𝑂𝐴𝐿 = [

𝑓([𝐴𝐿1,1, 𝐴𝐿1,2, … , 𝐴𝐿1,𝑑])

𝑓([𝐴𝐿2,1, 𝐴𝐿2,2, … , 𝐴𝐿2,𝑑])

⋮
𝑓([𝐴𝐿𝑛,1, 𝐴𝐿𝑛,2, … , 𝐴𝐿𝑛,𝑑])

] 

MAnt lion  and MOAL specify the location matrix and the objective function matrix of each ant lion, respectively. 

Additionally, ALi,j represents the jth dimension of the ith ant lion, with n indicating the number of ant lions and d 

representing the number of variables. 
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During the optimization process, ants move 

randomly within the search area, influenced by the 

traps set by ant lions. Ant lions create larger pits 

based on the objective function, which allows them 

to capture more ants. When an ant is caught by an 

ant lion, it is taken beneath the sand. The distance 

the ant travels towards the ant lion decreases. 

Following each capture, the ant lion shifts its 

position to target the next ant, forming a new pit with 

suitable modifications. 

The random motion of ants follows Equation 1. 

During optimization, ants move through a random 

walk. Due to the constraints of the search area, 

Equation 1 alone isn't sufficient for updating their 

positions. Therefore, the values are standardized 

using Equation 7 to randomize their movements 

within the search area. 

(7) 
𝑋𝑖
𝑡 =

(𝑋𝑖
𝑡 − 𝑎𝑖) × (𝑑𝑖 − 𝑐𝑖

𝑡)

(𝑑𝑖
𝑡 − 𝑎𝑖)

+ 𝑐𝑖 

In Equation (7), ai is the minimum value of the 

random variable for the ith variable. 𝑐𝑖
𝑡 represents the 

minimum value of the ith variable in the tth iteration, 

while 𝑑𝑖
𝑡 is the maximum value of the ith variable in 

the tth iteration. This equation must be applied at 

every iteration. To account for the influence of ant 

lion traps on the ants' random motion, Equations (8) 

and (9) are utilized. 

 

In Equation (7), 𝑐𝑡 denotes the minimum value 

among all variables in the tth iteration, while dt 

represents the vector containing the maximum 

values of all variables in that iteration. Similarly, 𝑐𝑖
𝑡 

indicates the minimum of all variables for the ith ant, 

and 𝑑𝑖
𝑡 represents the vector containing the 

maximum values for the ith ant. In this equation, 

𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡 specifies the position of the jth ant lion in 

the tth iteration. The ant lion's hunting capability is 

modeled using the roulette wheel structure, as 

shown in Figure 1. 

 

 

Figure 1. The random movement of an ant within the trap of an ant lion 

When ants are ensnared, the ant lion tosses stones towards the trap's edges, as described by Equations 10 and 11. 

(10) 𝑐𝑡 = 𝑐𝑡/𝐼 

(11) 𝑑𝑡 = 𝑑𝑡/𝐼 

Variable I represents a constant ratio, where 𝑐𝑡 is the minimum of all variables in the tth iteration. The dt denotes 

the vector containing the maximum of all variables in the tth iteration. The variable I is defined by Equation 12. 

(12) 𝐼 = 10𝑤(𝑡/𝑇) 

(8) 𝑐𝑖
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡 + 𝑐𝑡 

(9) 𝑑𝑖
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡 + 𝑑𝑡 
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In Equation 13, t represents the current iteration, T is the maximum number of iterations, and w is a constant 

determined based on the current iteration, as specified by Equation 13. 

(13) 

𝑤 =

{
 

 
2 𝑤ℎ𝑒𝑛 𝑡 > 0.1𝑇
3 𝑤ℎ𝑒𝑛 𝑡 > 0.5𝑇
4 𝑤ℎ𝑒𝑛 𝑡 > 0.75𝑇
5 𝑤ℎ𝑒𝑛 𝑡 > 0.9𝑇
6 𝑤ℎ𝑒𝑛 𝑡 > 0.95𝑇

 

The final stage of the hunt occurs when the prey 

reaches the bottom of the trap and is captured by the 

ant lion. At this point, the ant lion pulls the prey into 

the sand and consumes it. This process simulates 

hunting, with the ant considered trapped in the sand. 

Subsequently, the ant lion's position is updated to 

where it captured the ant, enhancing the likelihood 

of another successful hunt. This update is achieved 

using Equation 14. 

In Equation 15, t represents the current iteration. 

𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡 denotes the location of the jth ant lion at 

iteration t, while 𝐴𝑛𝑡𝑖
𝑡 indicates the location of the 

ith ant at the same iteration. Here, f refers to the 

fitness function. Throughout the algorithm, the best-

performing ant lion in each iteration is designated as 

the elite. This elite ant lion influences all ants, 

guiding them towards elitism, as described in 

Equation 15. 

(15) 𝐴𝑛𝑡𝑖
𝑡 = (𝑅𝐴

𝑡 + 𝑅𝐸
𝑡 )/2 

Thus, 𝑅𝐴
𝑡  is the random position around the ant lions 

by the roulette wheel in iteration t. 𝑅𝐸
𝑡   is the random 

position around the elite state in tth iteration. 𝐴𝑛𝑡𝑖
𝑡 

shows the position of the ith ant on the tth iteration. 

This algorithm is defined as triplet ALO(A,B,C). 

Function A produces initial random solutions, and 

function B is the initial population updated by 

function A. Function C gives true results in 

satisfying conditions. These functions are shown in 

Equations 16, 17, and 18. 

 

Thus, 𝑅𝐴
𝑡  represents the random locations around the 

ant lions determined by the roulette wheel in 

iteration t, while 𝑅𝐸
𝑡  denotes the random positions 

around the elite state at the same iteration. 𝐴𝑛𝑡𝑖
𝑡 

indicates the position of the ith ant during iteration t. 

The algorithm is defined as the triplet ALO(A, B, C). 

Function A generates the initial random solutions, 

function B updates the initial population based on 

function A, and function C ensures the results meet 

the required conditions. These functions are outlined 

in Equations 16, 17, and 18. 

(16) ∅ 
𝐴
→ {𝑀𝐴𝑛𝑡,𝑀𝑂𝐴,𝑀𝐴𝑛𝑡𝑙𝑖𝑜𝑛 ,𝑀𝑂𝐴𝐿} 

(17) {𝑀𝐴𝑛𝑡, 𝑀𝐴𝑛𝑡𝑙𝑖𝑜𝑛}  
𝐵
→ {𝑀𝐴𝑛𝑡,𝑀𝐴𝑛𝑡𝑙𝑖𝑜𝑛} 

(18) {𝑀𝐴𝑛𝑡, 𝑀𝐴𝑛𝑡𝑙𝑖𝑜𝑛}  
𝐶
→ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} 

In these equations, MAnt denotes the matrix of ant 

locations, MAnt lion represents the matrix of ant lion 

locations, MOA includes the ants that have been 

hunted, and MOAL lists the predator ants. Function A 

initializes the locations of both the ants and the ant 

lions. During each iteration, Function B updates the 

location of each ant based on a selected ant lion 

using Roulette Wheel Selection and elite strategies. 

The range for updating locations is set according to 

the current iteration, and this update is refined by a 

random walk around the ant lions and elite solutions. 

After all ants have moved randomly, their locations 

are evaluated using a fitness function. If an ant’s 

location relative to the ant lions is deemed 

appropriate, it becomes the new location for the next 

iteration. The best ant lion is compared with the best 

found so far and replaced if it shows improvement. 

This process continues until Function C returns an 

incorrect value. Figure 2 illustrates the ant lion 

algorithm [38]. 

 (14) 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡 =  𝐴𝑛𝑡𝑖

𝑡 𝑖𝑓 𝑓(𝐴𝑛𝑡𝑖
𝑡) > 𝑓(𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡) 
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Start by randomly generating the initial population of ants and ant lions 

Evaluate the fitness levels of both the ants and the ant lions 

Identify the top-performing ant lions and designate them as the elite (optimal solution) 

while the termination condition is met 

   for every ant 

      Choose an ant lion based on the roulette wheel selection method 

      Adjust the values of `c` and `d` according to Equations (10) and (11) 

      Generate a random walk and normalize it using Equations (1) and (7) 

      Adjust the ant's position using Equation (15) 

   end for 

   Evaluate the fitness of each ant 

   Substitute an ant lion with its corresponding ant if the ant demonstrates improved fitness, as per Equation (14) 

   Update the elite ant lion if it shows better fitness than the current elite. 

end while 

Return elite 

Figure 2. Pseudocode of the ALO algorithm 

3.2. Aquila Optimizer Algorithm  

The Aquila Optimizer (AO) is a meta-heuristic 

algorithm that leverages swarm intelligence and a 

population-based approach. It draws inspiration 

from the hunting techniques of the Aquila, a 

prominent predatory bird from the northern 

hemisphere, and represents one of the latest 

advancements in this field [39]. The four distinct 

hunting techniques used by Aquila are simulated by 

the Aquila Optimizer. The following subsection 

expresses Aquila’s four strategies to hunt prey [40-

42]. The Aquila Optimizer Algorithm flowchart is 

illustrated in Figure 3. 

I. Expanded exploration 

The Aquila initially investigates any potential prey 

in the target region. The Aquila chooses the place to 

seek its prey, then stoops down vertically to capture 

it. The following Equations provide the 

mathematical formula for such a behavior: 

(19) 𝑋𝑖(𝑡 + 1) =  𝑋𝑏𝑒𝑠𝑡(𝑡) × (1 − 𝑡 𝑇⁄ ) + (𝑋𝑀(𝑡) − 𝑋𝑏𝑒𝑠𝑡(𝑡) × 𝑟𝑎𝑛𝑑) 

(20) 

𝑋𝑀(𝑡) =  1 𝑁 ∑𝑋𝑖(𝑡), 𝑖 = 1, . . , 𝐷𝑖𝑚

𝑁

𝑖=1

⁄  

In Equation 19, 𝑋𝑖(𝑡 + 1) is the position of ith 

individuals in the next iteration, and the best result 

in this iteration is represented by the 𝑋𝑏𝑒𝑠𝑡(𝑡). The 

mean locations of all individuals in the ith generation 

are represented by 𝑋𝑀(𝑡). The exploration operation 

in search area is controlled by (1 − 𝑡 𝑇⁄ ).  where t is 

the current generation, T is the maximum number of 

iterations, and N illustrates the swarms' population 

size. rand represents a randomly generated number 

based on a Gaussian distribution between 0 and 1. 

II. Narrowed exploration 

Aquila uses this phase the most often for hunting, 

and the hunt is conducted at contour flying with a 

brief glide assault. This procedure is described as: 

(21) 𝑋𝑖(𝑡 + 1) =  𝑋𝑏𝑒𝑠𝑡(𝑡) × 𝐿𝑒𝑣𝑦(𝐷) + 𝑋𝑅(𝑡) − (𝑦 − 𝑥) × 𝑟𝑎𝑛𝑑 
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(22) 
𝐿𝑒𝑣𝑦(𝐷) = 𝑠 ×  𝜇 × 𝜎 |𝑣|

1
𝛽⁄  

Where 𝐿𝑒𝑣𝑦(𝐷) is the levy flight distribution 

function for the dimensionality of the problem 

solving D, which the calculation would be done by 

Equation 22. 𝑋𝑅(𝑡), is a position of Aquila generated 

randomly in the ith iteration. y and x represent the 

spiral shape, and the rand is a random real number 

between 0 and 1. The s is a constant parameter equal 

to 0.01, and 𝜇 and 𝑣 are random values between 0 

and 1. 𝜎 is a dynamic adaptive coefficient, and 𝛽 is 

a constant fixed to 1.5. 

III. Expanded exploitation 

In this process, the target area is specified and Aquila can vertically achieve a primary attack with a slow decent 

attack. Mathematically, this action is shown by Equation 23. 

(23) 𝑋𝑖(𝑡 + 1) =   𝛼 × [𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑀(𝑡)] + 𝛿 × [(𝑈𝐵 − 𝐿𝐵) × 𝑟𝑎𝑛𝑑 + 𝐿𝐵] 

α and δ are the parameters that adjust the 

exploitation and they are 0.1 based on tests for 

various benchmarks. 𝑋𝑀(𝑡) demonstrates the mean 

position in the ith iteration, Also LB and UB denote 

the lower and upper bounds, respectively. 

IV. Narrowed exploitation 

In this phase, the Aquila walks on the land and can 

easily capture the prey and hunt it by pulling. This 

step is mathematically modeled by Equation 24. QF 

is the quality value that balances the search 

strategies, G1 is the different motions of the AO and 

G2 is the slope of the chasing flight of the AO. 

(24) 𝑋𝑖(𝑡 + 1) =   𝑄𝐹 × 𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝐺1 × 𝑋𝑖(𝑡) × 𝑟𝑎𝑛𝑑 − 𝐺2 × 𝐿𝑒𝑣𝑦(𝐷) + 𝑟𝑎𝑛𝑑 × 𝐺1 

 

 

Figure 3. The flowchart of the Aquila Optimizer algorithm 
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4. Proposed hybrid Meta-heuristic model 

definition 

This section will cover the ways to enhance the ALO 

algorithm and its integration with AO. In this 

section, we introduce our method that integrates 

ALO and AO. We apply a binary version of 

ALOAO to the CSLP issue. While While the ALO 

and AO algorithms perform exceptionally well 

compared to other swarm intelligence-based 

optimization techniques, they struggle with highly 

complex functions due to their propensity to become 

trapped in local optima [43-47]. To overcome these 

limitations and improve search efficiency, we 

introduce a novel hybrid algorithm that merges ALO 

and AO. This new approach utilizes a multi-swarm 

strategy, leveraging the advantages of both 

algorithms to enhance exploration, exploitation, and 

convergence towards optimal solutions. 

The ALO algorithm adjusts ant positions using a 

random walk influenced by antlions chosen through 

an elite strategy and roulette wheel selection. This 

method provides rapid speed, robust convergence, 

and high efficiency. However, it tends to converge 

prematurely and get trapped in local optima in 

complex optimization problems [48]. To address 

these issues, enhancements have been implemented 

to improve the algorithm's optimization capability 

and accuracy. 

The Aquila Optimizer (AO) algorithm excels in its 

ability to effectively explore the search area and find 

global optima in complex and high-dimensional 

optimization issues. It mimics the diverse hunting 

strategies of the Aquila bird, which enhances its 

adaptability and flexibility in solving various 

optimization tasks. AO's ability to avoid local 

optima ensures it does not get trapped in suboptimal 

solutions, making it a robust tool for achieving high-

quality results in challenging optimization 

scenarios. 

Non-hybrid metaheuristic algorithms are often 

based solely on mathematical theory and might end 

up in a local minimum. The aim of hybridizing 

metaheuristic algorithms is to combine the natural 

processes of two different algorithms to solve 

various hard optimization problems. The hybrid 

algorithm's performance and accuracy will be 

enhanced by keeping the balance between 

exploration and exploitation when hybridizing 

metaheuristic algorithms. The following methods 

are commonly employed to combine optimization 

algorithms and create novel hybrid metaheuristic 

techniques [49]: 

• Sequential method: Each metaheuristic 

algorithm will execute consecutively, one 

after another. 

• Concurrent method: Each algorithm can 

operate on the whole population or a part of 

it. In the latter case, proper attention should 

be given to the formation, integration, and 

management of sub-populations. 

• Conditional method: Here, a single 

optimization technique is used per 

iteration, with its choice depending on 

specific conditions. 

The proposed method adopts a serial approach to 

integrate the suggested algorithms, with the AO 

utilizing the ALO as its initial population to enhance 

accuracy and convergence speed. This hybrid 

method, ALOAO, combines the strengths of two 

meta-heuristic algorithms: the ALO and the AO. 

The ALO algorithm uses a random walk approach 

around antlions chosen through an elite strategy and 

roulette wheel selection. In contrast, the AO 

algorithm draws inspiration from the Aquila's 

hunting tactics and includes four distinct methods. 

Combining these algorithms, ALOAO effectively 

balances exploration and exploitation, avoiding 

premature convergence and stagnation. 

By integrating these algorithms, ALOAO achieves 

high performance and robustness in solving CSLP 

problems. Consequently, ALOAO can find optimal 

or near-optimal solutions for the CSLP problem. 

Figure 4 presents the flowchart for the proposed 

hybrid optimization method. Section 5 showcases 

various experiments that highlight the convergence 

speed and accuracy of our approach. 

The proposed algorithm divides the population into 

subpopulations assigned to different algorithms for 

diverse search strategies. Initially, solutions are 

randomly split between the algorithms, each 

operating independently on its designated subset. To 

optimize performance, the best solutions are 

exchanged using shared memory, where each 

algorithm stores its top k solutions (up to 30% of the 

population). To improve exploration, a mutation 

operator is applied to 20% of the population. Finally, 

the best solutions from shared memory are selected 

based on objective functions. 
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Figure 4. The ALOAO flowchart 

The ALO algorithm tends to perform poorly in 

exploring global optimizations [50]. To mitigate this 

issue and enhance the algorithm's efficiency, we 

incorporated five functions based on chaos theory—

circular, Gaussian, and logistic—instead of 

traditional random functions [51]. These chaos-

based functions generate numbers within the range 

[0, 1], as demonstrated in Table 4, where all random 

numbers start with an initial value of 0.7 [52]. 

Chaos, deterministic, and quasi-random functions 

used in dynamic and nonlinear systems are notable 

for their irregular, non-repeating patterns and 

bounded behavior. From a mathematical 

perspective, chaotic functions describe deterministic 

systems that exhibit seemingly random behavior. 

Unlike conventional mathematical functions, chaos 

maps are utilized in optimization algorithms, 

particularly over the past decade, due to their 
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dynamic properties that facilitate discovery in 

complex environments. These functions have 

proven effective in practical applications by helping 

algorithms avoid local optima and improving 

convergence speed. In the CH-ALOAO algorithm, a 

random chaotic function is included in each iteration 

to harness these advantages. 

 

Table 4. Chaotic maps 

No. Name Function 

1 Chebyshev  𝑉𝑏+1 = 𝑐𝑜𝑠(𝑏𝑐𝑜𝑠
−1(𝑉𝑏)) , b=1..100 

2 Circle  𝑉𝑏+1 = 𝑉𝑏 + 𝑑 − (
𝐶

2𝜋
) 𝑠𝑖𝑛(2𝜋𝑉𝑏)𝑚𝑜𝑑(1) , C=0.5, d=0.2 

3 Gauss 

𝑉𝑏+1 =  {

0
1

𝑉𝑏𝑚𝑜𝑑(1)
           

𝑉𝑏 = 0

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
1

𝑉𝑏𝑚𝑜𝑑(1)
=
1
𝑉𝑏
− [

1
𝑉𝑏
]
   

4 Iterative 𝑉𝑏+1 = 𝑠𝑖𝑛 (
𝐶𝜋

𝑉𝑏
) , C=0.7 

5 Logistic 𝑉𝑏+1 = 𝐶𝑉𝑏(1 − 𝑉𝑏), C=4 

 

 

In CSLP issues, each particle is represented as a 

sequence of numbers that define a layout solution. 

Different sequences represent different layout 

configurations, with each variable indicating a 

structure and its value specifying the assigned 

position for that facility. Since each location can 

only host one facility, duplicate values within a 

particle result in infeasible solutions. However, in 

the proposed algorithm, all variables are updated 

independently, which can lead to multiple variables 

having the same value. Therefore, modifications are 

needed in the updating mechanism to address this 

issue. The updated mechanism for CH-ALOAO is 

detailed below: 

To tackle this issue, we can utilize the discrete 

environment optimization algorithm. Developing a 

binary CH-ALOAO requires binary solutions, 

necessitating several conversions. A highly effective 

method for transforming a continuous optimizer into 

a binary one is to use transfer functions. These 

transfer functions are easy to implement, fast, and 

cost-efficient [53]. This paper employs four S-

shaped (S1-S4) and four V-shaped (V1-V4) transfer 

functions to convert the continuous CH-ALOAO 

algorithm into a binary format. The mathematical 

formulations of these transfer functions are detailed 

in Table 5. 

Table 5. The S-shaped and V-shaped transfer functions used 

Transfer function V-shaped family Transfer function S-shaped family 

𝑻(𝒙) =  |𝒆𝒓𝒇 (
√𝝅

𝟐
𝒙)|  V1 𝑻(𝒙) =  𝟏 (𝟏 + 𝒆−𝟐𝒙)⁄  S1 

𝑻(𝒙) =  |𝒕𝒂𝒏𝒉 (𝒙)|  V2 𝑻(𝒙) =  𝟏 (𝟏 + 𝒆−𝒙)⁄  S2 

𝑻(𝒙) =  |𝒙/√𝟏 + 𝒙𝟐|  V3 𝑻(𝒙) =  𝟏 (𝟏 + 𝒆(−
𝒙
𝟐
))⁄  

S3 

𝑻(𝒙) =  |
𝟐

𝝅
𝒂𝒓𝒄 𝒕𝒂𝒏 (

𝝅

𝟐
𝒙)|  V4 𝑻(𝒙) =  𝟏 (𝟏 + 𝒆(−

𝒙
𝟑
))⁄  

S4 

 

The Binary Hybrid ALO and AO chaotic 

optimization algorithm explores binary search 

spaces through the use of transfer functions. This 

method involves two stages for updating particle 

positions. First, the particles' positions are updated 

in continuous space, similar to non-binary 
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algorithms, resulting in new continuous values. In 

the second stage, transfer functions are applied to 

convert these continuous positions into binary 

values. The particle positions are adjusted according 

to Equations 25 and 26, with S-shaped functions 

specifically updating particle positions as outlined in 

Equation 25. 

(25) 
𝑋𝑖
𝑑(𝑡 + 1) =  {1   𝑖𝑓 𝑟𝑎𝑛𝑑

(0,1) < 𝑇(∆𝑋𝑖
𝑑(𝑡 + 1))

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                       
 

In this context, rand(0,1) denotes a random number 

in the range [0,1], and T(x) refers to an S-shaped 

transfer function. 𝑋𝑖
𝑑  indicates the position of the ith 

particle in the dth dimension, while t represents the 

current iteration. Unlike the S-shaped transfer 

function, the V-shaped transfer function does not 

limit the search agent to the [0,1] interval. Equation 

26 illustrates the update process for the particle's 

position using V-shaped transfer functions, where 

¬X signifies the complement of X. 

(26) 
𝑋𝑖
𝑑(𝑡 + 1) = {

¬𝑋𝑖
𝑑(𝑡)     𝑖𝑓 𝑟𝑎𝑛𝑑(0,1) <  𝑇(∆𝑋𝑖

𝑑(𝑡 + 1)) 

𝑋𝑖
𝑑(𝑡)   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                        

 

In countinue, partially mapped crossover (PMX) in 

genetic algorithms addresses infeasibility in 

permutation problems by exchanging values 

between two parent chromosomes at selective genes. 

When values are swapped, any repeated value in one 

parent is substituted with the corresponding mapped 

value from the other parent, and vice versa [54]. 

Inspired by PMX, this study employs an updating 

mechanism in CH-ALOAO to generate feasible 

layouts. In this mechanism, particle fitness is 

calculated and used as a criterion to determine the 

update order, with particles having higher fitness 

values being closer to the goal and thus updated first. 

 

5. Results and discussions  

This section presents and analyzes the results of the 

proposed methods. The experiments were conducted 

using MATLAB software on a Core i7 processor 

with 8 GB of RAM. The following section details 

the case studies and their corresponding results. The 

performance of the presented method is assessed in 

three steps in this section. 

We first applied the presented algorithm 10 times to 

the appropriate functions and recorded the 

maximum, minimum, median, and mean of the 

iterations in Tables 6 and 7 in subsection 5.1. All the 

outcomes in this paper follow the IEEE CEC 2005 

supported format. The outcomes are highlighted by 

the thick pen in these tables. The algorithm performs 

1000 searches each time it is fully run. The 

population size is set to 30, with each solution 

comprising a set of 30 elements. To ensure a fair and 

accurate comparison, the population and 

computational capabilities of the algorithms 

compared are kept consistent.  

In the second and third phases, two case studies are 

performed to showcase the effectiveness and 

applicability of the CH-ALOAO metaheuristic for 

optimizing construction site layouts. The outcomes 

were compared with those obtained using the ALO, 

AO, and GWO algorithms. The binary version of the 

algorithms that are compared is used. We described 

the details of the second and third step experiments 

in subsection 5.2, and 5.3. 

5.1. Benchmark functions 

The effectiveness of the exploitation process can be 

assessed using unimodal benchmark functions. The 

performance of the basic algorithms, the presented 

algorithm, and some new algorithms on unimodal 

exponential functions is summarized in Table 6 

using average, median, minimum, and maximum 

values. The presented algorithm has a better 

exploitation stage than the other algorithms, as 

shown in Table 6. The exploitation stage of the 

presented algorithm is improved significantly by 

using the ALO algorithm, compared to the basic 

Aquila optimizer algorithm and other compared 

algorithms. 
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Table 6. Results for the unimodal benchmark (F1-F7) 

 F1 

 CH-

ALOAO  

PSO AO DA WOA ALO MVO MFO 

Avg 6.4311e-43 8.2763e-

06 

1.4717e-

27 

2.5393e-

33 

8.8970e-

35 

0.002213 1.2821 5408.30 

Med 5.7219e-43 7.0739e-

06 

2.5708e-

28 

2.3910e-

34 

6.1580e-

35 

0.003157 1.2199 348.20 

Worst 2.3140e-41 6.0059e-

05 

6.3424e-

27 

1.0620e-

32 

1.9140e-

34 

0.005176 1.7088 6901.30 

Best 2.3425e-43 9.0284e-

06 

1.9719e-

28 

2.0561e-

35 

3.2210e-

36 

0.000212 1.0346 21.5905 

 F2 

 CH-

ALOAO  

PSO AO DA WOA ALO MVO MFO 

Avg 3.1723e-26 0.06129 5.0014e-

16 

2.2021e-

19 

2.1925e-

20 

23.5150 0.6270 27.8018 

Med 3.2021e-26 0.05801 4.4168e-

16 

2.5013e-

19 

2.6509e-

20 

22.7011 0.6023 29.0291 

Worst 3.1223e-25 0.16602 2.2137e-

15 

5.5084e-

19 

3.8126e-

20 

42.4121 0.8423 29.4062 

Best 2.2369e-26 0.00780 3.6019e-

16 

0.1372e-

19 

5.0095e-

21 

9.1270 0.4012 20.0113 

 F3 

 CH-

ALOAO  

PSO AO DA WOA ALO MVO MFO 

Avg 4.1303e-9 65.1090 3.3096e-

07 

6.3341e-

09 

3.0211e-

08 

3029.6101 267.5031 8840.0019 

Med 3.6505e-9 68.0677 6.6690e-

07 

5.7101e-

09 

3.2009e-

08 

3299.0090 290.7091 8390.5582 

Worst 4.5608e-9 98.2266 7.3201e-

06 

3.7204e-

08 

6.5150e-

08 

6772.0291 320.2920 9920.9300 

Best 1.3918e-10 52.4072 4.0157e-

08 

2.0970e-

10 

2.0118e-

09 

2876.4800 201.0284 7013.3202 

 F4 

 CH-

ALOAO  

PSO AO DA WOA ALO MVO MFO 

Avg 2.0117e-10 4.6584 3.3228e-

07 

4.1985e-

09 

3.0174e-

08 

32.2081 7.1220 120.2037 
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Med 2.1104e-10 4.2895 3.1092e-

07 

4.2022e-

09 

5.0938e-

08 

30.0106 7.2107 122.4992 

Worst 4.2012e-10 4.0115 4.8013e-

07 

5.0153e-

09 

5.0613e-

08 

42.0931 9.0056 145.0078 

Best 2.1700e-11 2.7010 2.2430e-

07 

2.3120e-

09 

2.52326e-

09 

21.1004 3.1004 60.5600 

 F5 

 CH-

ALOAO  

PSO AO DA WOA ALO MVO MFO 

Avg 10.1873 28.5121 25.7456 28.3340 29.0136 125.9000 220.1034 450.8001 

Med 9.0293 26.5104 25.0940 28.0977 28.2348 132.3340 225.4500 429.5000 

Worst 17.0096 32.0170 27.1101 29.0030 32.8209 230.7000 290.4560 1087.000 

Best 9.0102 21.6110 22.0398 24.7870 24.1099 100.1128 178.5130 400.6453 

 F6 

 CH-

ALOAO  

PSO AO DA WOA ALO MVO MFO 

Avg 2.0029e-05 0.00001 1.2029 1.1001 1.0309 0.0021 0.8902 13.0931 

Med 4.092e-04 0.00012 1.0433 1.9100 1.9600 0.0021 1.2360 12.6234 

Worst 0.0029 0.00029 1.9930 2.0702 2.0031 0.0017 1.9007 17.0901 

Best 1.1008e-05 1.722e-

05 

0.2506 1.0015 1.2130 0.0006 0.7001 7.0909 

 F7 

 CH-

ALOAO  

PSO AO DA WOA ALO MVO MFO 

Avg 0.0002 0.1565 0.0034 0.0022 0.0019 0.2320 0.0310 0.0170 

Med 0.0019 0.2009 0.0025 0.0019 0.0014 0.2400 0.0290 0.0022 

Worst 0.0022 0.2097 0.0039 0.0027 0.0027 0.5510 0.0700 2.1005 

Best 0.0001 0.1200 0.0018 0.0005 0.0009 0.2002 0.0218 0.0020 

 

Multimodal benchmark functions test how well the search algorithm can analyze the search area and evade 

from local optima. The CEC 2005 test problems include multimodal functions from F8 to F16. You can find 

the details of the unimodal and multimodal benchmark functions, such as their dimensions, ranges, minimum 

inputs, and cost functions, in [7]. Table 7 displays the statistical results for the multimodal functions. The 

proposed algorithm excels over other algorithms in all multimodal functions except for F15 and F16. The PSO 

algorithm surpasses the others specifically on the F15 function, and similarly, achieves comparable results on 

the F16 function. 
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Table 7. Results for the multimodal benchmark (F8-F15)  

 F8 

 CH-ALOAO  PSO AO DA WOA ALO MVO MFO 

Avg -9003.12 -5361.93 -5817.79 -5909.66 -5645.68 -

6247.32 

-

7228.41 

-

7087.49 

Med -8900.40 -6587.37 -5632.88 -5730.73 -5775.16 -

5518.28 

-

7657.85 

-

7196.89 

Worst -6282.91 -3143.67 -4233.70 -3260.13 -4850.06 -

3417.67 

-

6047.43 

-

6289.38 

Best -9124.62 -6600.24 -6401.59 -6768.75 -6003.93 -

6016.27 

-

8132.06 

-

8064.13 

 F9 

 CH-ALOAO  PSO AO DA WOA ALO MVO MFO 

Avg 2.5001e-14 20.17 7.07 3.96 0.81 78.53 90.43 130.07 

Med 2.2437e-13 19.55 0 0 0 77.66 92.18 143.14 

Worst 4.3521e-12 73.16 20.15 8.70 4.84 91.56 103.97 150.08 

Best 1.1019e-14 0 0 0 4.7643e-

14 

50.73 80.25 42.26 

 F10 

 CH-ALOAO  PSO AO DA WOA ALO MVO MFO 

Avg 4.3200e-15 0.1901 1.0489e-

13 

1.5081e-

14 

5.0122e-

13 

5.0755 4.0012 20.37 

Med 4.3100e-15 0.0161 1.0476e-

13 

1.5190e-

14 

7.2800e-

13 

3.0132 4.8170 19.82 

Worst 4.7511e-15 0.9214 1.1810e-

13 

1.8400e-

14 

1.2810e-

12 

10.108 15.840 23.95 

Best 3.0873e-15 0.0094 2.3200e-

14 

0.8798e-

14 

8.5900e-

14 

2.1205 2.4081 12.12 

 F11 

 CH-ALOAO  PSO AO DA WOA ALO MVO MFO 

Avg 0.0002 0.0089 0.0070 0.0040 0.0077 0.0493 0.8967 12.9006 

Med 0 0.0092 0.0062 0.0032 0.0079 0.0467 0.9100 13.0114 

Worst 0.0068 0.0190 0.0250 0.0200 0.0194 0.0612 0.9420 90.1040 

Best 0 1.3011e-

05 

0 0 0 0.0377 0.8345 10.9600 

 F12 

 CH-ALOAO  PSO AO DA WOA ALO MVO MFO 



Letters in High Energy Physics 
ISSN: 2632-2714 

Volume 2024 

 

 

4792 
 

Avg 4.0490e-06 0.0034 0.0422 0.2022 0.0198 12.0039 5.4905 7.0910 

Med 4.0204e-06 4.0036e-

05 

0.0397 0.1248 0.0133 10.5035 5.2503 7.1995 

Worst 6.0954e-06 0.0084 0.0690 0.6697 0.0658 20.5500 8.4505 10.059 

Best 3.1002e-07 1.6014e-

05 

0.0254 0.0229 0.0115 10.1784 2.9052 2.9690 

 F13 

 CH-ALOAO  PSO AO DA WOA ALO MVO MFO 

Avg 0.0063 0.1263 0.5109 2.9032 0.6334 19.4474 0.5798 12.6002 

Med 0.0001 0.0919 0.4129 2.3042 0.6124 20.0098 0.1206 11.4670 

Worst 0.0110 0.3909 0.8256 2.8061 0.7949 32.6724 0.1630 20.4028 

Best 1.2010e-06 4.2200e-

05 

0.1504 0.8664 0.4584 3.1091 0.0350 8.7490 

 F14 

 CH-ALOAO  PSO AO DA WOA ALO MVO MFO 

Avg 0.0947 4.3014 4.1815 2.2380 1.7900 2.1002 0.9980 3.1500 

Med 0.0761 3.9021 4.9820 1.7093 0.9980 1.9902 0.9980 2.9820 

Worst 1.0025 6.9900 6.9820 5.6903 2.9902 2.9820 0.9980 5.9280 

Best 0.0018 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980 

 F15 

 CH-ALOAO  PSO AO DA WOA ALO MVO MFO 

Avg 0.0086 0.0009 0.0046 0.0083 0.0058 0.0048 0.0046 0.0014 

Med 0.0006 0.0009 0.0012 0.0008 0.0075 0.0034 0.0075 0.0008 

Worst 0.0203 0.0010 0.0203 0.0303 0.0233 0.0203 0.0203 0.0016 

Best 0.0003 0.0007 0.0003 0.0007 0.0004 0.0003 0.0005 0.0005 

 F16 

 CH-ALOAO  PSO AO DA WOA ALO MVO MFO 

Avg -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 

Med -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 

Worst -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 

Best -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 
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5.2. Facilities Case Study 1 

This case study, based on a medium-sized project from Li et al. [55], focuses on finding the best arrangement for 

positioning 11 facilities into 11 designated locations on the site. The facilities considered in this analysis are: 

1. Site office 

2. False work workshop 

3. Labor residence 

4. Storeroom 1 

5. Storeroom 2 

6. Carpentry workshop 

7. Reinforcement steel workshop 

8. Side gate 

9. Electrical, water and other utilities control room 

10. Concrete batch workshop 

11. Main gate 

In this case study, the construction site layout is based on two key assumptions: 

1. Any facility can be placed at any of the predetermined locations. 

2. The main gate and side gates are treated as fixed facilities, positioned in their designated locations. 

The goal of this case study is to minimize the total travel distance for site personnel moving between facilities. 

According to [55], the total travel distance is calculated as: 

(27) 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝐷 =  ∑∑∑∑𝑥𝑖𝑘  ×  𝑥𝑗𝑙  ×  𝑓𝑖𝑗  × 𝑑𝑘𝑙

𝑛

𝑘=1

𝑛

𝑙=1

𝑛

𝑗=1

𝑛

𝑖=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 ∑𝑥𝑖𝑗

𝑛

𝑖=1

= 1,∑𝑥𝑖𝑗

𝑛

𝑗=1

= 1 

  

Here, n represents the number of facilities. The variable xik = 1 equals 1 if facility i is assigned to location k; 

otherwise, it is 0. Similarly, xjl follows the same principle. The coefficient fij indicates the number of trips made 

daily by construction personnel between facilities i and j, while dkl represents the distance between locations k and 

l. Consequently, TD denotes the total daily travel distance for construction personnel. The distances between the 

predetermined locations are recorded and detailed in Table 8. The frequency of trips between facilities plays a 

crucial role in site layout planning and the positioning of site facilities. Therefore, the daily trip frequencies 

between facilities are summarized in Table 9. 

Table 8. Travel distance between predetermined locations 

Distance Location 

1 2 3 4 5 6 7 8 9 10 11 

Location 1 0 15 25 33 40 42 47 55 35 30 20 

2 15 0 10 18 25 27 32 42 50 45 35 

3 25 10 0 8 15 17 22 32 52 55 45 

4 33 18 8 0 7 9 14 24 44 49 53 

5 40 25 15 7 0 2 7 17 37 42 52 

6 42 27 17 9 2 0 5 15 35 40 50 

7 47 32 22 14 7 5 0 10 30 35 40 

8 55 42 32 24 17 15 10 0 20 25 35 

9 35 50 52 44 37 35 30 20 0 5 15 

10 30 45 55 49 42 40 35 25 5 0 10 
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11 20 35 45 53 52 50 40 35 15 10 0 

Table 9. Trip frequency between structures 

Trip frequency Facility 

1 2 3 4 5 6 7 8 9 10 11 

Facility 1 0 5 2 2 1 1 4 1 2 9 1 

2 5 0 2 5 1 2 7 8 2 3 8 

3 2 2 0 7 4 4 9 4 5 6 5 

4 2 5 7 0 8 7 8 1 8 5 1 

5 1 1 4 8 0 3 4 1 3 3 6 

6 1 2 4 7 3 0 5 8 4 7 5 

7 4 7 9 8 4 5 0 7 6 3 2 

8 1 8 4 1 1 8 7 0 9 4 8 

9 2 2 5 8 3 4 6 9 0 5 3 

10 9 3 6 5 3 7 3 4 5 0 5 

11 1 8 5 1 6 5 2 8 3 5 0 

 

This example was evaluated through 50 independent optimization runs, each consisting of 500 iterations, to obtain 

statistically significant results with various algorithms. The statistical results from these runs are summarized in 

Table 10. According to Table 10, the proposed method achieves an average result of 12,480, a worst-case result 

of 13,110, and a standard deviation of 62.5, outperforming other algorithms. The table also highlights that the best 

outcome in this case study is 12,460, which is better than the results from all compared algorithms. This 

demonstrates that the CH-ALOAO method not only finds a superior optimal solution but also offers enhanced 

stability. Figure 5 displays the convergence curves of the different algorithms over the course of the iterations. 

 

Figure 5. Convergence curve 
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Table 10. Comparison of the results of 50 independent runs 

Algorithms CH-ALOAO  PSO AO DA ALO MVO MFO 

Best 12460 12600 12615 12680 12750 12485 12650 

Average 12480 12630 12705 12710 12752 12550 12675 

Worst 13110 13290 12990 13400 13200 13198 13100 

STD 62.5 172.5 93.75 180 112.5 178.25 112.5 

 

5.3. Facilities Case Study 2 

The necessity of relocating temporary project 

facilities to reduce transportation expenses becomes 

especially critical in projects with significant spatial 

and temporal dispersion, like road construction 

projects. This case study focuses on a project with 

highly dynamic development and extensive spatial 

dispersion [56]. 

The operational plan entails positioning ten major 

facilities across 11 designated locations within the 

site. Additionally, three key work areas have been 

identified to represent actual work zones along the 

road. These work areas, which handle substantial 

material transportation from other facilities, are 

considered essential for the construction site. Table 

11 details the facilities, including their estimated 

initial placement and potential relocation costs. 

Among these, the three work areas and the quarry 

are fixed in their positions. Table 12 shows the types 

of movements, rated from 1 (primarily human 

resources) to 5 (primarily heavy vehicles), while 

Table 13 provides a comparative scale of trip 

frequencies between facilities, ranging from 1 to 5. 

Table 11. Costs associated with constructing and relocating facilities. 

Facility Construction cost Relocation cost 

1. Quarry area (fixed) 90000 0 

2. Stone crusher 100000 25000 

3. Concrete batch plant 150000 25000 

4. Asphalt mixing plant 120000 25000 

5. Concrete and aggregates depot 10000 5000 

6. Asphalt and aggregates depot 10000 5000 

7. Sub-base and aggregates depot 10000 5000 

8. Work field 1 (fixed) 0 0 

9. Work field 2 (fixed) 0 0 

10. Work field 3 (fixed) 0 0 

11. Asphalt storage 15000 0 

12. Site office 10000 0 

13. Labor rest area 10000 0 

14. Concrete (cement) storage 15000 0 

15. - 0 0 

Table 12. Type of movements between facilities 

 Facility 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Facility 1 0 5 1 1 1 1 1 1 1 1 1 1 1 1 0 

2 5 0 1 1 5 5 5 1 1 1 1 1 1 1 0 

3 1 1 0 1 4 1 1 4 1 1 1 1 1 3 0 

4 1 1 1 0 1 4 1 1 1 4 3 1 1 1 0 

5 1 5 4 1 0 1 1 1 1 1 1 1 1 2 0 

6 1 5 1 4 1 0 1 1 1 1 2 1 1 1 0 

7 1 5 1 1 1 1 0 1 4 1 1 1 1 1 0 

8 1 1 4 1 1 1 1 0 1 1 1 2 1 1 0 

9 1 1 1 1 1 1 4 1 0 1 1 2 1 1 0 

10 1 1 1 4 1 1 1 1 1 0 1 2 1 1 0 

11 1 1 1 3 1 2 1 1 1 1 0 1 1 1 0 

 12 1 1 1 1 1 1 1 2 2 2 1 0 3 1 0 

 13 1 1 1 1 1 1 1 1 1 1 1 3 0 1 0 

 14 1 1 3 1 2 1 1 1 1 1 1 1 1 0 0 

 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Table 13. Number of trips between facilities 

 Facility 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Facility 1 0 5 1 1 1 1 1 1 1 1 1 1 1 0 0 

2 5 0 1 1 3 3 3 1 1 1 1 1 1 1 0 

3 1 1 0 1 3 1 1 3 1 1 1 1 1 2 0 

4 1 1 1 0 1 3 1 1 1 3 2 1 1 1 0 

5 1 3 3 1 0 1 1 1 1 1 1 1 1 2 0 

6 1 3 1 3 1 0 1 1 1 1 2 1 1 1 0 

7 1 3 1 1 1 1 0 1 3 1 1 1 1 1 0 

8 1 1 3 1 1 1 1 0 1 1 1 1 1 1 0 

9 1 1 1 1 1 1 3 1 0 1 1 1 1 1 0 

10 1 1 1 3 1 1 1 1 1 0 1 1 1 1 0 

11 1 1 1 2 1 2 1 1 1 1 0 1 1 1 0 

 12 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 

 13 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 

 14 1 1 2 1 2 1 1 1 1 1 1 1 1 0 0 
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 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

In this situation, it's highly advantageous to place the 

site office and labor rest area as far from the 

construction activities as possible. The most 

significant deviations from optimal solutions occur 

when the cost of relocating facilities outweighs the 

savings from reduced transportation costs, making 

rearrangement less appealing. In such cases, the 

model needs to dynamically address the static 

problem, with any deviation from the static solution 

leading to significant differences in the objective 

function value. Conversely, when low relocation 

costs incentivize facility rearrangement, multiple 

solutions with minimal deviations from the optimal 

can be identified, enhancing accuracy. However, as 

the problem size increases, the model's efficiency in 

tackling larger CSLP issues noticeably declines. 

In this example, 20 independent optimization runs of 

500 iterations each were conducted to achieve 

statistically significant results using various 

algorithms. The statistical outcomes from these runs 

are compared in Table 14. The proposed method 

shows superior performance, with an average result 

of 14,540, a worst-case result of 16,280, and a 

standard deviation of 107.45, outperforming other 

algorithms. Furthermore, Table 14 shows that the 

best result achieved is 14,500, surpassing the 

outcomes of all other algorithms. This highlights 

that CH-ALOAO not only secures a more optimal 

solution but also exhibits improved stability. Figure 

6 displays the convergence curves of different 

algorithms across iterations. 

 

 

Figure 6. Convergence curve of algorithms 
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Table 14. Results comparison from 50 independent runs 

Algorithms CH-ALOAO  PSO AO DA ALO MVO MFO 

Best 14500 14900 14890 15400 15300 14550 15050 

Average 14540 15050 15210 15540 15350 15000 15120 

Worst 16280 17600 15800 17400 17000 16800 16700 

STD 107.45 309.5 94.23 227 194 243 190.46 

 

 

6. Conclusion and Future Work 

In this study, we introduce a pioneering approach: 

the Hybrid Ant Lion Optimizer Algorithm (ALO) 

and Aquila Optimizer Algorithm (AO) based on 

chaos theory, specifically tailored for optimizing 

construction management tasks. This hybrid 

algorithm integrates ALO and AO, leveraging their 

respective strengths. ALO mimics the trapping 

behavior of antlions, balancing exploration and 

exploitation for optimal outcomes. Conversely, AO 

emulates the dynamic hunting tactics of eagles, 

facilitating agile and adaptive search strategies. By 

combining these approaches, the hybrid algorithm 

adeptly navigates complex optimization problems, 

dynamically adapting to environmental changes. 

The CH-ALOAO algorithm utilizes interactive 

memory to store optimal solutions, enhancing 

computational efficiency. Experimental findings 

reveal that CH-ALOAO excels in addressing 

construction site layout planning (CSLP) problems, 

surpassing conventional metaheuristic algorithms in 

both solution quality and convergence speed. 

To validate the models, two case studies were 

conducted. The results demonstrate that the 

proposed CH-ALOAO approach not only achieved 

better results but also required fewer evaluations to 

find the optimal solution. A comparative analysis 

with existing metaheuristic methods highlights the 

effectiveness and efficiency of the CH-ALOAO 

algorithm in tackling construction site layout 

planning (CSLP) problems. CH-ALOAO stands out 

for its high-quality solutions and rapid convergence 

to optimal outcomes, showcasing its robustness and 

effectiveness for complex optimization tasks in 

construction management. 
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