ISSN: 2632-2714

Collaborative Innovations in Medical Care in Saudi Arabia: Advancing Nursing, Laboratory Sciences, Radiology, and Epidemiology Through Discoveries in Physical Sciences

¹Hajji Eid Juhayman Alrashedi, ²Shrafah Mutlaq Muqbil Alharbi, ³Naif Hani Muhanna Airashdi, ⁴Nasser Naif Alotaibi, ⁵Nouf Saleh Alamro, ⁶Marzouq Saleh Hamad Al Kulayb, ⁷Ali Salem Hamad Al Shurayyan, ⁸Khaled Hamad Hassan Al Siwar, ⁹Saleh Ali Al-Razq, ¹⁰Saeed Haris Alzahrani, ¹¹Abdulaziz Ali Ahmad Alzahrani

¹Nursing Technician, Alsulaimy General Hospital

²Nursing Technician, Kemashiya Health Center

³Nursing Technician, Alsulaimy General Hospital

⁴Medical Laboratory Specialist, Kfmmc- Dhahran

⁵Medical Laboratory Specialist, Work At King Abdulaziz Airbase Hospital - Dhahran

⁶Epidemiology Monitor, Work At Raiman Health Center- Najran

⁷Specialist Nursing, Wadi Riman Health Center - Najran

⁸X-Ray Technician, Wadi Riman Health Center - Najran

⁹Epidemiology Technician, Al-Husainiyah Health Center

¹⁰Senior Epidemiologist, Health Surveillance Centres At King Abdulaziz Airport, Epidemiology And Biostatistics

¹¹Health Administration Services, Rehabilitation Centre

Abstract

The integration of physics and interdisciplinary sciences into healthcare is transforming patient care, diagnostics, and treatment methodologies in Saudi Arabia. Aligned with Vision 2030, this paper explores how advancements in nursing, laboratory sciences, radiology, and epidemiology are driving innovation and addressing healthcare challenges. By leveraging technologies such as AI-driven diagnostics, nanotechnology-based drug delivery systems, and telemedicine platforms, Saudi Arabia is creating a sustainable, patient-centered healthcare system. Interdisciplinary collaboration among physical scientists, healthcare professionals, and policymakers plays a pivotal role in fostering these advancements. The study highlights the importance of updating educational curricula, enhancing research and development, and developing ethical frameworks to ensure equitable access and the safe adoption of these technologies. This paper underscores the potential of a physics-driven approach to healthcare innovation, aiming to position Saudi Arabia as a global leader in medical science and healthcare delivery.

Keywords-Physics, healthcare, Saudi Arabia, Vision 2030, interdisciplinary collaboration, nursing, radiology, laboratory sciences, epidemiology, innovation, nanotechnology, telemedicine, AI-driven diagnostics, personalized medicine, preventive healthcare.

1. Introduction

Background: Improving and advancing medical care in Saudi Arabia and worldwide necessitates the move from the silo operation of disciplines, which is the traditional way academic subjects have developed side by side without any points of coordination, toward multidisciplinary mechanisms of action. From the medical care point of view,

physical scientists are expected to develop technologies and solutions based on deep insights into the patients' biology, the fundamental cause of medical problems, effective interventions and strategies, and the restoration of the patients to healthy status. Much of their work can be applied to detecting and preventing diseases at early stages, providing better diagnosis, designing treatment, and discovering and tracking medical treatment

responses. Physical sciences of particular interest for integration are physics, mathematics, statistics, computer science, bioinformatics, informatics, and computer engineering. Saudi Arabia healthcare challenges similar to those of other countries. Chronic diseases, for instance, have become the major cause of morbidity and mortality. problems are also surrounded These complications that require multidisciplinary Saudi innovations. medical colleges recognized such challenges; they updated their strategic objectives to build on teams' teamwork that includes collaboration among multiple disciplines and cutting-edge research directions. (Asmri et al.2020)(Alsadaan et al., 2021)(Rahman, 2020)(Alasiri & Mohammed, 2022)(Chowdhury et al., 2021)(Katoue et al.2022)(Parveen, 2020)(Al et al.2021)

The responsible research professionals within any of the basic sciences or medical schools that provide health professions instruction today are keenly aware of the many intellectual breakthroughs that exist and are emerging, and wish to introduce to their own students the leading subjects of effort, concern, and innovation. This paper provides a summary of new innovations in medical institutions and policies to highlight their value of prominence to put them in a lead role in national health and well-being so that they are considered top priorities in health disciplines practices of study. New innovative education and research should be very focused and selective and should be developed in real-time in collaboration with the relevant employers and professionals to practice effectively in clinical, scientific, research-related issues, and basic medical science as well. We hope that through the novelty of this paper, new innovative practices will be introduced and practiced. (Børte et al., 2023)(Sancar al., 2021)(Tapalova & Zhiyenbayeva, 2022)(Kwangmuang et al.2021)(Onu et al., 2024)(Zhang & 2021)(Kooli, 2023)(Demchenko et al.2021)

1.1. Background and Significance

Innovations in Saudi biological advanced health care are relatively recent, occurring over the last sixty or so years. During this time, several strategies were implemented to develop sufficient and qualified health care professionals, especially in nursing,

laboratory sciences, radiology, and epidemiology. This effort resulted in many state-of-the-art, hightechnology medical diagnostics and interventions nationwide. Although these outcomes and unique medical services have improved patient health and safety, particularly in acute medical care settings, health-related housekeeping is important to reduce hospital and primary and continuing ambulatory health care needs, including advances in preventing and stopping the spread of chronic diseases and infectious etiologies. Improved health begins with health promotion, includes prevention, intervention, and screening, and health conservation and selfpreserving supportive services provided by health care providers across the continuum of care to reduce unnecessary service demands. Innovations in this health care sector can be greatly facilitated by the collaboration and integration of physical sciences to explain, develop, provide, and address health care preventive, health-promoting, and support-of-solving needs. Current and future challenges in this overtly technological milieu include patient demands superseding clinical capacities affecting patient capabilities and outcomes, increasing use of high technology resulting in technological dependency, preventative and outpatient healthcare complexity thresholds, and increasing disease incidence that intensifies these healthcare thresholds. Adopting discussing innovations will improve quality of life and functional independence in Saudi Arabia. This creative session is a continuation of the triennial creative sessions addressed in the underserved health informatics market. (Omri al.2022)(Rahman, 2020)(Omri et al., 2023)(Wilson et al.2022)(Al-Hanawi et al.2020)(Kinkorová, 2021)(Harris, 2023)

2. Nursing Innovations

Advances in nursing patient care through the integration of radiology, laboratory sciences, and the collection of epidemiologic data. Innovations are leading to transformational changes in nursing practices. Widespread computerization and technological advancements in radiology, laboratory sciences, and epidemiology are reshaping the way nurses practice patient care—from the integration of newly developed, highly sensitive laboratory investigations such as special protein assays, monoclonal antibody tests, and molecular diagnostic

ISSN: 2632-2714

technologies into nursing practice, to the use of epidemiological data in decision making, nursing work redesign, and patient care processes. These new technologies are not merely aids to traditional nursing practice, but are rapidly becoming part of the everyday fabric of nursing care. Computers and telecommunications are increasingly used by nursing staff to carry out executive tasks, administer medications, and receive results of diagnostic and New methodologies laboratory tests. teleconferencing and telerehabilitation enable patients and their healthcare providers to interact more usefully and effectively despite geographic distances. (Subrahmanya et al.2022)(Merchant et al.2022)(Seth et al.2023)(Senbekov al.2020)(Saxena et al.2023)(Zhong et al.2023)

New technologies position nurses at an ideal intersection for patient care. New diagnostics and new interventions in the laboratory, radiology, and epidemiology support the alignment of nursing care to a patient's progression through their disease process, evaluate a patient's response to treatment choices, and influence the management and reduction of symptoms and side effects in a streamof-care environment. Education and training are necessary for nursing to address the technological revolution. Nurses with more years of work experience and familiarity with computers tend to like and use computers more. Increasingly, nurses are entering the workforce with such familiarity as nursing programs integrate computers and related information technologies into traditional curricula. Nurses practice in a data-rich world of connections and communication. Through the use of personal phones, pagers, email, and electronic health records, possibilities now exist to communicate in ways that were impossible when handwritten notes or typed were the mainstay of communication. Rising to the surface are numerous innovations enhancing the potential for a nurse to conduct patient care and redesign the workflow in their setting. Nurses working in the collaborative innovations model of care can closely coordinate sequences of care activities, initiate a priority initiative for care, or rapidly construct an action plan in response to a change in a patient's pathophysiology. When nurses know what is happening with a patient's disease in real-time, they can design and carry out care more informally. (Seibert et al.2020)(Duffy, 2022)(Rubeis,

2021)(Tursunbayeva and Renkema2023)(Leaver et al., 2022)(Omboni et al.2020)

2.1. Technological Advancements in Nursing Care

- 2.1.1. Electronic Health Record systems keep digitally organized medical records and enable nurses and other clinical staff members to access shared patient data in real-time. The use of electronic health records can help prevent errors, improve safety and quality, and enhance nurse management. (Tapuria et al.2021)(Tanwar et al.2020)(Pai et al.2021)
- 2.1.2. Telehealth Telehealth or telemedicine has gained a lot of interest and development in the past few years. When the patient is a far distance from health care services, professionals advise that diagnosis and treatment can be conducted using telecommunications technology. Patients in remote or inaccessible places can experience quality health care. (Doraiswamy et al.2020)(Ali et al.2020)(Garfan et al.2021)(Wong et al.2021)
- 2.1.3. Mobile Health Applications mHealth apps are designed to connect nursing care staff while contacting patients for optimal patient management. Nurses use secure mobile applications to communicate with their patients to monitor patient health information, symptoms, track care plans, and treatment protocols. Increased use of mobile technology for phone calls, texting, instant messaging, and video conferencing can positively affect patient-nurse communication, operatively reducing the gaps. Thus, the use of mobile technology through apps will meet patient needs and achieve nursing care implementation. (El-Rashidy et al.2021)(Singh et al., 2020)(Ghose et al., 2021)(Awad et al.2021)(Guo et al.2020)

Clinical Training Program The healthcare sector, including nursing, should have a system to improve staff knowledge and skills through clinical training. Technological improvements and software can streamline treatments and help nurses. Continuing education in the practice of implementing and updating technological developments is essential. In addition, patient satisfaction is increasing because the use of technology is accessible to anyone who wants healthcare. The use of technology that

involves interdisciplinary requirements, such as surgery and nursing care, needs to be done in each department. The majority of health professionals agreed that the needs of the patient were involved in nursing care. We know the future, and we care about the vision to build nurses who need to improve their skills for the future using IT tools and technologies. (Morandini et al.2023)(Javaid et al.2023)(Singh et al.2021)(Javaid et al., 2021)(Haleem et al.2022)

3. Laboratory Sciences Advancements

Overview Laboratory advancements are fundamental to both the accurate diagnosis of patient disease and the correct treatment of the patient. Rather than hindering processing and testing capabilities, these innovations build from them and further yield exceptional results. Across the globe, technology is adapting to include artificial intelligence and automation in laboratory workflows, and describes how this can impact workflow and the reduction of turnaround time. Case studies further demonstrate the ease of implementing these technological advances and document their lasting effects. Efficient molecular diagnostics are advancing, most impressively evident in the progression of personalized medicine, which is now reflected in laboratory practice. An entire chapter is devoted to such medical advancements in this eBook and the subsequent direct applications upon laboratory professionals. Establishing collaboration among healthcare providers, a report between an infection control team and a laboratory about reducing the inappropriate use of procalcitonin is worth mentioning. The topic combines the discoveries of physical science and their applications to colleagues who are developing technologies for diagnosing and treating patients. Collaboration between professionals in different industries is crucial for the success of these translated physical sciences. Besides diagnosis and treatment, these discoveries can also minimize toxicity, address polypharmacy issues, reduce hospitalization times, and facilitate Innovation, therefore, must be accompanied by ongoing research. Services that prove multiple diseases or mark the first line of response in a resource-limited setting have room for development. Genomics and informatics will define a new era of laboratories - 'biosensing' or laboratories without walls. These laboratories focus on disease risk

stratification and early diagnosis and will be established in partnership with U.S.-based counterparts. They also aim to create publications for the general public that break down complex results of diagnostic investigations. (Lippi & Plebani, 2020)(Pulumati et al.2023)(Lee et al., 2021)(Olatunji et al.2024)(Rabbani et al., 2022)(Haghayegh et al.2024)(Sreepadmanabh et al., 2020)(Kalra et al., 2024)

3.1. Impact of Advanced Technologies in Laboratories

The field of healthcare laboratory practices has seen major transformations in its setup, techniques, and functions from basic manual testing to advanced levels of automated and robotic testing. This helps the laboratory to sustain fast, consistent, and rapid diagnosis through quick, error-free, and accurate results: firstly by reducing human errors during testing; secondly, by saving time and bringing efficiency. Even some laboratory tests can only be done by automated and robotic machines and not manually. The next technological transformation is big data application and data science, i.e., data analytics and machine learning algorithms. This not only gives us a glimpse of predictive tests but also makes decision-making more precise and accurate for the care of patients and customers of laboratories with their demographic characteristics lifestyles. This also makes possible a predictive and preventive kind of personalized care before the occurrence of orthopaedic damage to the bodies of individuals through appropriate measures suggested by epidemiologists. The relevance of big data is also applicable to the digital world of radiology and imaging frames. (Bhute et al.2021)(Haleem et al.2022)(Gamage et al.2020)(Olatunji al.2024)(Alowais et al.2023)(McPherson & Pincus, 2021)

Furthermore, digital tools can play a remarkable role. These tools can help labs to receive work and workload, without error, on principled bases, which can help laboratories to get maximum workload out of spared resources in the best of ways. They can help to train and report the measures related to services to stakeholders. The absence of any integrated tools may render a laboratory to get less work than possible. The efficiency of modern tools is estimated to be 96.24%. Automation and the

digital world are different phases like conventional, automation of labor, automation in the handled environment work, and now the digital worldwhere automated functions are to be performed with decisions at the algorithm level and human cognition level. With the increasing workload, a person cannot think like a supercomputer—on temporary and permanently stored data, doing the processing with algorithm-based decisions. In this age of machine learning, decisions by the machine are like a lifesaver for the laboratory and help to limit human errors to a minimum. A combinatorial approach of automation from front desk to inventory to array handling, to sample preprocessing and analysis to reporting will help to give near-to-zero error results and can be demonstrated on simulation software. Another software that can handle full automation and digital integration is CERN particle accelerator software. As the laboratory grows, the digital ability to carry maximum workload can make a difference. Based on cost and benefit analysis, these tools are useful. New tools might be more useful, but the focus should be on integration tools. This should create potential and security for countries to avoid the ill impacts like humanity desertion. The technologies have the capability to make a parallel difference in healthcare systems through predictive analysis before any individual physical processes get impacted. Decisions by machines can add precision to clinical decision-making. The role of the digital world superimposed by artificial intelligence in laboratories is depicted. (Ullah et al.2021)(Ling et al., 2024)(Sharapova, 2021)(Hamil al.2022)(Sharma et al., 2022)(Mehta and Bhalla2024)(Grigoriev et al.2021)

4. Innovations in Radiology

Innovations in Radiology. The field of medical imaging is making dramatic strides in the development of new imaging techniques to improve quality, speed, and reduce radiation dose in departments of medical imaging. Every few years, a new modality or modification to an existing modality is developed, each with a potential impact on diagnosing various diseases. For example, new modifications for MRI enable high-resolution pictures of the blood supply in the breast. 128-slice CT scans can generate micrometer-resolution images of the arteries and veins.

MRI – Advances in this field include even faster scanning and more powerful magnets to cut exam times. CT - 128-slice scanners provide more detailed pictures of organs and blood vessels while reducing patient radiation dosage. Faster imaging and reconstruction speeds further reduce patient exam times. Advances in computer analysis are elevating radiologists' interpretation capabilities. Ultrasound – Techniques are rapidly advancing, with improved image quality to aid in diagnoses. Image analysis advances are opening the door to possible ultrasound breast imaging capabilities rivaling screening mammography. Interventional therapeutic procedures have made great advances in the control and treatment of fatty liver disease. Techniques for innovative biopsies are being examined. For this reason, the advances in imaging have made it unnecessary to continue taking conventional biopsies.

Ultrasound. Ultrasound has been around for over 50 years and can provide information about the different organs and other soft tissues of the body. Digital imaging has made amazing improvements in the resolution of systems. For example, for the radiologist, the gold standard examination is the radiological image of the fetus. In the last few years, there has been a great deal of cooperation between radiologists, pediatricians, and obstetricians in turning this into a set of dynamic images to create a 3D image. All radiologists should have the ability to do this. Even if not, they should be in a position to interpret the findings. It is this dynamic change that makes 3D and 4D imaging or tomography a novel dynamic imaging procedure. In the field of imaging, we are now doing three types of 3D imaging: section-to-section CT sections, sectional-slice MR sections, and reverse-engineered ultrasound. This kind of new imaging is computer-generated and the quality is similar to anatomic sections. The power of this device is the use of volumetric thick section images or 0.5-mm sections. It is easy to change the soft tissue image into a bone-soft tissue image. It is the best system for being fast in the tissues comprising a re-slice image of two digital modalities. The radiologist can use this technique to organize anatomic positions either in 3D or as two positions in the transverse way as in the 2D plane. (Nielsen et al.2021)(Dietrich et al.2022)(Avola et al.2021)(Moran & Thomson, 2020)(Demi et al.2023)

ISSN: 2632-2714

4.1. Emerging Imaging Technologies

Traditionally, films took time for processing and developing before diagnosing an X-ray was possible. Today, digital radiography can produce images instantly. Coupling that with two- and threedimensional imaging permits radiologists to reconstruct images as required and provide additional information. A more constrained slicing through a structure of interest can be useful for diagnosis. For instance, "axial and coronal enterography" more accurately depicts disease activity in patients with small bowel Crohn's disease. In addition, superimposition of structures is reduced when a 3D series is presented. Thus, an image of one anatomic structure is less distorted by having another structure superimposed upon it. Lastly, advancements in molecular imaging are allowing for the diagnosis of disease before it becomes symptomatic. CT and PET imaging are combined and used in oncology for qualitative quantification of cell malignancy and to seek positive responses to therapy. None of these findings would be possible without further technologies. (Hussain et al.2022)(Mun et al.2021)(Malamateniou et al.2021)(Alhasan & Hasaneen, 2021)(Al-Antari et al., 2021)(Al-Antari et al.2020)(Shimada et al.2020)

Since technology has always been and will continue to be an essential "handmaiden" to radiology in patient care, collaboration among professionals and each technology developer is crucial. Furthermore, a critical area of study remains the development of human-computer interfaces so the electronic information obtained is then translated into the diagnostic information communicated clearly to the clinician. Given that almost 100% of X-rays are ordered in the hospital for patient assessment, approval of recent protocols among multiple radiologists is essential. Unfortunately, each additional CT and MRI scan adds extra radiation dose. The future in imaging will expand the capabilities of the technologies listed in order to provide portability of equipment. With current technology, we use hand-held ultrasound to ensure proper equipment placement or guidance of a procedure. Future teleradiology will include rapid MR exams where the diagnosis and report will be quickly without the reading room. Specifically, each piece of technology reviewed in this section will become smaller and abridged

through handheld. portable, and telecommunications advancements. Radiologists and other imaging technologists will continue to evolve to specialize in certain examinations and protocols. Every day, multiple technological advancements bring a new application, process, idea, or disease assessment. These technological opportunities are producing unlimited research projects. Technologies will continue to emerge and redefine the future of radiology. To expand our capabilities, its driving force will continue to be the discovery in the physical sciences. (Najjar, 2023)(Venigandla & Tatikonda, 2021)(Mollura et al.2020)(Alam2023)(Aminizadeh et al.2023)(Diaz et al.2021)

5. Epidemiology and Public Health Innovations

Despite the advances that have been made in the natural and biomedical sciences, clinicians are limited in their abilities to detect and treat health problems that occur in large populations without previously being observable in any individual. Epidemiology is the foundation of health care that public health professionals use to understand health trends and threats, to contain uncommon diseases, and to explain why global health patterns occur. It is a pillar of public health focusing on populationbased tools for public health officers to protect populations. Additionally, data on disease are primary in supporting early-warning systems in public health through advanced data collection. management, and adaptive algorithms. Syndromic data feed many surveillance systems, including those for monitoring mental health topics and influenza-like illness, and they provide information to first responders and emergency managers who help coordinate their public health response. The application of science to protect and improve the health of the population is well recognized, numerous, and critical to the nation's homeland security against human pandemic flu, bioterrorism, and other threats. (Krieger, 2024)(Stewart, 2022)(Kohl et al., 2020)(Breilh, 2021)(Gómez-Ochoa et al.2021)(McClure et al.2020)(Nyarko et al., 2020)

That is why the effective prevention of chronic diseases and conditions, such as diabetes, high blood pressure, obesity, and injury, are high social policy priorities. Since the 1950s, following the historical

ISSN: 2632-2714

study, multiple studies have originally detailed the causes and consequences of chronic diseases and have proposed community-wide interventions to prevent chronic conditions. Population-focused approaches to chronic disease prevention have been rooted in the epidemiological data specific to each concerned chronic disease. At present, there is a chronic disease prevention and health promotion division to use these epidemiological data to apply six cutting-edge workgroup recommendations to address chronic disease risk and protection. These include: community-clinical linkage; early care and education; health care support; healthy housing; healthy schools; and worksite health promotion. Effects of the various cutting-edge recommendations are presented in case studies. (Vodovotz et al.2020)(Janakiram & 2020)(Malik & Hu, 2022)(Mavlonovna Akbarovna2021)(Hacker et al.2021)(Budreviciute et al.2020)(Brian & Weintraub, 2020)

5.1. Data Analytics in Epidemiology

5.1.1. Predictive Modeling and Management of Epidemics

A data set of features inferred from physical parameter domains coupling can be implemented with big data, machine learning, or statistical models. This will give a more definite result in terms of early detection, or even forecast/prediction of a possible disease progression in a given situation. Predictive modeling in epidemiology is a very necessary tool before arranging any intervention strategies to control an outbreak or epidemic. Big data, in terms of a very large scale of population genome studies, is connected with urbanization data and socioeconomic factors. We need big data analytics to refine this information using statistical modeling.

This big data can be a digital pattern of people's lives. Data mining algorithms are also important in terms of finding the longitudinal effect of the island. Moreover, space and time clustering are also an emerging trend to suspect the area and upcoming window of the outbreak. However, for patterning, two important persons should be involved: (1) the affected/deceased person: they will study the signs, symptoms, and the sequence of physical parameters affected, and (2) data analytic experts to study the

digital pattern. The collaborative work of both persons can save human discomfort. Very little literature suggests collaboration between professionals and infectious disease epidemiologists so that the infected people can be managed better. Consent of a patient, the legal aspect of a disease, quarantine, psychological fear of the community about diseases, and patient privacy are also some of the challenges in getting physical parameters related to pattern analysis. Closing such gaps can help public health professionals make quick yet informed decisions to minimize the potential long-term disease repercussions. (Brooks et al., 2021)(Johnson al.2021)(Yang al.2020)(Bhimraj et al.2024)(Sweileh, 2022)(Randall et al.2021)

6. Interdisciplinary Collaborations

Problem-solving through the partnership of different fields allows for a comprehensive problem-solving approach. Those closest to patient care identify a need and pose a question, apropos of their expertise. A literature review and a scoping of the current possibilities for a solution are then represented by desk research, typically by researchers from either an outcome-based viewpoint or further into the transfer of knowledge. The pool of physical scientist possibilities is then typically approached, and yet this pool cannot be exhaustive when seeking solutions to larger problems in commercial and industrial sectors. That early approach ought to take place also at the planning of a 'cross-field' collaboration: the team's pool of physical scientists or purely academic researchers who know about material science, new technologies, new diagnostic or therapeutic technologies, physics, engineering, or materials chemistry, able to assist in not only the diagnostic part of the project but also in measuring the change of a problem under study as part of assaycreation methodologies using existing or novel technologies. It is this approach that marks out the newly forming practices of 'bridging' researchers, and not only does the opportunity to collaborate exist thanks to improving access to expertise – the synergy among researchers, medics, and physical scientists exists because the mentality of the medical profession is actually in alignment with that of researchers, when we realize they are about understanding in order to apply knowledge, as are medical staff, our roles becoming one of global 'N equals one' approaches. Constraints to collaboration

arise because the norms or culture of one versus the organizational part of another disallow for patient care to be extended to such a research extent. In the approval process, these 'permitted bridges' are being treated as a 'social experiment to be understood.' Most team proposals are accepted with either no comments or insightful additions about the teamwork once it is shown that a researcher bridging health science and social science/arts and humanities gets the go-ahead from their own department's governance structures. Six of these proposed projects of medicine and materials science will be reported in a paper familiarizing this methodology for its ethics. The added value should be an improvement in patient care through any collaborative translation, more imaginative healthcare-led research topics, and an increased pipeline for healthcare-led researchers. (Austin, 2021)(Jaleel et al.2020)(Malathi et al.2024)(Enticott et al., 2021)(Dang et al., 2021)(Abu-Odah et al.2022)

6.1. Integration of Physical Sciences in Medical Research

When we consider how critical it is for a scienceoriented country to pursue what we are proposing, we would like you to think about what the role of the physical sciences will be in the field of medical research in the future and in the pursuit of innovation. In this manner, we would like to intentionally and strongly imply the need to foster further collaboration between the physical sciences and the medical and healthcare fields, and to encourage the pursuit of research based on the positioning of the physical sciences. Accordingly, in addition to the explanation of past examples, this proposal provides evidence of the key role of such collaboration in the pursuit of healthcare. (Schot et al.2020)(Alderwick et al., 2021)(Javed et al.2020)(Esmaeilzadeh, 2020)(Alowais et al.2023)(Garritty et al.2021)

Physics, chemistry, and engineering are disciplines that contribute to the development of tools and methods in the medical field; in particular, physics has laid the foundation for various fields of medicine, such as diagnostic radiology and nuclear medicine. The development of various tomographic techniques incorporating a computer can be approached by applying constructive numerical techniques whose principles are similar to those of

applied mathematics. For example, the advancement of positron annihilation spectroscopy has made a significant contribution to the medical field, and this is also directly related to the collaboration between the field of physics and clinical medicine. Several beneficial discoveries have been made by applying advanced physical principles to the medical field, including radiation and radioactivity, atomic and molecular structure, plasma research, and the physics of particles and currents. The increase in the potential energy to be released by the fusion reaction and the need for a heat development system has led rapid advancements in plasma heating technology. We believe that these experiences contribute to the preparation of a solid foundation for future healthcare innovation. The limited examples of research in the interdisciplinary field of bio-medicine, science, and technology have been successful and have received great feedback from funders and institutions. The possibility of further innovation in the medical care field has only begun to make advances in the physical sciences, and the translation and commercialization of these research fields could also demonstrate that a new field of healthcare can be cultivated as a prosperous area for future development. The needs. potential breakthroughs, and points of concern regarding this proposal are carefully and thoroughly described in detail. For healthcare and other fields to be integrated together, and the potential of the 'discovery,' this 'possibility' was established four years ago and is now planned to commence in 2023. This project has been funded by various federal institutions through resources and support. Evaluating the challenges and oppositions to the community and expressing the community are as influential and valuable as communication. Ironically, previous talks about this proposal started from the expectation that the use of physics technology would begin to have a significant impact on the projects themselves, and the aforementioned concerns are also worthy of deep consideration.

Conclusion

The integration of physics and interdisciplinary sciences into healthcare is pivotal for driving innovation, improving patient outcomes, and addressing complex healthcare challenges in Saudi Arabia. Under Vision 2030, Saudi Arabia has made significant strides in leveraging cutting-edge

ISSN: 2632-2714

technologies, such as advanced imaging modalities, laboratory automation, and telemedicine, to transform healthcare delivery. By fostering collaboration across disciplines—nursing, laboratory sciences, radiology, and epidemiology—the Kingdom is building a robust foundation for preventive, personalized, and efficient healthcare systems.

While challenges such as regulatory hurdles, resource allocation, and technological disparities remain, the potential for interdisciplinary collaboration offers unprecedented opportunities. Advancements in nanotechnology, data analytics, and predictive modeling underscore the role of physics in revolutionizing diagnostics, therapeutics, and patient care. By investing in education, research, and infrastructure, Saudi Arabia can position itself as a global leader in healthcare innovation, setting benchmarks for quality and equity in medical services.

The future of healthcare in Saudi Arabia lies in the seamless integration of science, technology, and collaborative practices. Through sustained efforts in innovation, capacity-building, and strategic partnerships, the Kingdom can achieve its vision of a healthier, more prosperous society, while contributing significantly to the global advancements in medical science.

Recommendations

1. Strengthen Interdisciplinary Collaboration

Encourage partnerships between healthcare professionals, physical scientists, engineers, and policymakers to develop innovative solutions for healthcare challenges, leveraging the strengths of each discipline.

- Enhance Educational Curricula
 Update academic programs in nursing, radiology, laboratory sciences, and epidemiology to include physics and technology-focused courses that prepare students for interdisciplinary healthcare roles.
- 3. **Invest in Research and Development**Allocate resources for R&D initiatives that
 explore the integration of physics in

healthcare, such as nanotechnology-based drug delivery systems, predictive analytics, and advanced imaging technologies.

4. Promote Adoption of Emerging Technologies

Accelerate the implementation of cuttingedge tools like AI-driven diagnostics, wearable health devices, and telemedicine platforms to enhance patient care and operational efficiency.

5. Develop Ethical and Regulatory Frameworks

Create clear guidelines to address the ethical and regulatory challenges posed by rapid technological advancements, ensuring patient safety, privacy, and equitable access to innovations.

6. Foster Public-Private Partnerships
Strengthen collaborations between
government agencies, private companies,
and academic institutions to drive
innovation, share resources, and scale
successful healthcare technologies.

7. Improve Accessibility and Equity in Healthcare

Expand access to innovative healthcare solutions, particularly in rural and underserved areas, through mobile health units, telemedicine, and community-based health programs.

8. Focus on Preventive and Personalized Medicine

Leverage advancements in data analytics, genomics, and biophysics to develop preventive and personalized healthcare strategies, reducing the burden of chronic diseases.

9. Implement Continuous Training for Healthcare Professionals

Provide ongoing training programs to equip healthcare workers with the knowledge and skills to use advanced medical technologies effectively.

10. Monitor and Evaluate Outcomes
Establish robust mechanisms for tracking the impact of innovations on patient outcomes, cost efficiency, and healthcare quality, and use the insights to guide future initiatives.

ISSN: 2632-2714

References:

- 1. Asmri, M. A., Almalki, M. J., Fitzgerald, G., & Clark, M. (2020). The public health care system and primary care services in Saudi Arabia: a system in transition. Eastern Mediterranean Health Journal, 26(4), 468-476. qut.edu.au
- Alsadaan, N., Jones, L. K., Kimpton, A., & DaCosta, C. (2021). Challenges facing the nursing profession in Saudi Arabia: an integrative review. Nursing Reports. mdpi.com
- 3. Rahman, R. (2020). The privatization of health care system in Saudi Arabia. Health services insights. sagepub.com
- Alasiri, A. A. & Mohammed, V. (2022). Healthcare transformation in Saudi Arabia: an overview since the launch of vision 2030. Health services insights. sagepub.com
- Chowdhury, S., Mok, D., & Leenen, L. (2021). Transformation of health care and the new model of care in Saudi Arabia: Kingdom's Vision 2030. Journal of Medicine and Life. nih.gov
- Katoue, M. G., Cerda, A. A., García, L. Y.,
 Jakovljevic, M. (2022). Healthcare system development in the Middle East and North Africa region: challenges, endeavors and prospective opportunities. Frontiers in public health, 10, 1045739. frontiersin.org
- Parveen, M. (2020). Challenges faced by pandemic COVID 19 crisis: A case study in Saudi Arabia. Challenge. <u>academia.edu</u>
- 8. Al Saffer, Q., Al-Ghaith, T., Alshehri, A., Al-Mohammed, R., Al Homidi, S., Hamza, M. M., ... & Alazemi, N. (2021). The capacity of primary health care facilities in Saudi Arabia: infrastructure, services, drug availability, and human resources. BMC health services research, 21, 1-15. springer.com
- Børte, K., Nesje, K., & Lillejord, S. (2023). Barriers to student active learning in higher education. Teaching in Higher Education. [HTML]
- Sancar, R., Atal, D., & Deryakulu, D. (2021). A new framework for teachers' professional development. Teaching and teacher education. [HTML]

- Tapalova, O. & Zhiyenbayeva, N. (2022). Artificial intelligence in education: AIEd for personalised learning pathways.. Electronic Journal of e-Learning. ed.gov
- Kwangmuang, P., Jarutkamolpong, S., Sangboonraung, W., & Daungtod, S. (2021). The development of learning innovation to enhance higher order thinking skills for students in Thailand junior high schools. Heliyon, 7(6). cell.com
- Onu, P., Pradhan, A., & Mbohwa, C. (2024). Potential to use metaverse for future teaching and learning. Education and Information Technologies. springer.com
- 14. Zhang, K. & Aslan, A. B. (2021). AI technologies for education: Recent research & future directions. Computers and Education: Artificial Intelligence. sciencedirect.com
- Kooli, C. (2023). Chatbots in education and research: A critical examination of ethical implications and solutions. Sustainability. mdpi.com
- Demchenko, I., Maksymchuk, B., Bilan, V., Maksymchuk, I., & Kalynovska, I. (2021). Training future physical education teachers for professional activities under the conditions of inclusive education. BRAIN. Broad Research in Artificial Intelligence and Neuroscience, 12(3), 191-213. lumenpublishing.com
- Omri, A., Kahouli, B., Afi, H., & Kahia, M. (2022). Environmental quality, healthcare and research and development in Saudi Arabia. Environmental Science and Pollution Research, 29(42), 63709-63721. springer.com
- Omri, A., Kahouli, B., Afi, H., & Kahia, M. (2023). Impact of environmental quality on health outcomes in Saudi Arabia: does research and development matter?. Journal of the Knowledge Economy. springer.com
- Wilson, S., Steele, S., & Adeli, K. (2022). Innovative technological advancements in laboratory medicine: Predicting the lab of the future. Biotechnology & Biotechnological Equipment, 36(sup1), S9-S21. tandfonline.com
- 20. Al-Hanawi, M. K., Mwale, M. L., Alshareef, N., Qattan, A. M., Angawi, K., Almubark, R., & Alsharqi, O. (2020).

- Psychological distress amongst health workers and the general public during the COVID-19 pandemic in Saudi Arabia. Risk management and healthcare policy, 733-742. tandfonline.com
- 21. Kinkorová, J. (2021). Education for future biobankers-the state-of-the-art and outlook. Epma Journal. springer.com
- 22. Harris, M. (2023). Decolonizing healthcare innovation: low-cost solutions from low-income countries. [HTML]
- 23. Subrahmanya, S. V. G., Shetty, D. K., Patil, V., Hameed, B. Z., Paul, R., Smriti, K., ... & Somani, B. K. (2022). The role of data science in healthcare advancements: applications, benefits, and future prospects. Irish Journal of Medical Science (1971-), 191(4), 1473-1483. springer.com
- 24. Merchant, S. A., Shaikh, M. J. S., & Nadkarni, P. (2022). Tuberculosis conundrum-current and future scenarios: a proposed comprehensive approach combining laboratory, imaging, and computing advances. World Journal of Radiology, 14(6), 114. nih.gov
- 25. Seth, P., Hueppchen, N., Miller, S. D., Rudzicz, F., Ding, J., Parakh, K., & Record, J. D. (2023). Data science as a core competency in undergraduate medical education in the age of artificial intelligence in health care. JMIR medical education, 9, e46344. jmir.org
- Senbekov, M., Saliev, T., Bukeyeva, Z., Almabayeva, A., Zhanaliyeva, M., Aitenova, N., ... & Fakhradiyev, I. (2020). The recent progress and applications of digital technologies in healthcare: a review. International journal of telemedicine and applications, 2020(1), 8830200. wiley.com
- Saxena, P. D., Mayi, K., Arun, R., Kumar, S. S., Mishra, B. R., & Praveen, K. B. (2023). Impact of Artificial Intelligence on Healthcare Informatics: Opportunities and Challenges. Journal of Informatics Education and Research, 3(2). jier.org
- 28. Zhong, N. N., Wang, H. Q., Huang, X. Y., Li, Z. Z., Cao, L. M., Huo, F. Y., ... & Bu, L. L. (2023, July). Enhancing head and neck tumor management with artificial intelligence: Integration and perspectives.

- In Seminars in Cancer Biology. Academic Press. [HTML]
- Seibert, K., Domhoff, D., Huter, K., Krick, T., Rothgang, H., & Wolf-Ostermann, K. (2020). Application of digital technologies in nursing practice: Results of a mixed methods study on nurses' experiences, needs and perspectives. Zeitschrift für Evidenz, Fortbildung und Qualität im Gesundheitswesen, 158, 94-106. sciencedirect.com
- 30. Duffy, J. R. (2022). Quality caring in nursing and health systems: Implications for clinicians, educators, and leaders. [HTML]
- 31. Rubeis, G. (2021). Guardians of humanity? The challenges of nursing practice in the digital age. Nursing Philosophy. wiley.com
- 32. Tursunbayeva, A., & Renkema, M. (2023).

 Artificial intelligence in health-care: implications for the job design of healthcare professionals. Asia Pacific Journal of Human Resources, 61(4), 845-887. wiley.com
- Leaver, C. A., Stanley, J. M., & Veenema,
 T. G. (2022). Impact of the COVID-19 pandemic on the future of nursing education. Academic Medicine. nih.gov
- 34. Omboni, S., McManus, R. J., Bosworth, H. B., Chappell, L. C., Green, B. B., Kario, K., ... & Wakefield, B. J. (2020). Evidence and recommendations on the use of telemedicine for the management of arterial hypertension: an international expert position paper. Hypertension, 76(5), 1368-1383. ahajournals.org
- Tapuria, A., Porat, T., Kalra, D., Dsouza, G., Xiaohui, S., & Curcin, V. (2021).
 Impact of patient access to their electronic health record: systematic review.
 Informatics for Health and Social Care, 46(2), 194-206. tandfonline.com
- Tanwar, S., Parekh, K., & Evans, R. (2020). Blockchain-based electronic healthcare record system for healthcare 4.0 applications. Journal of Information Security and Applications, 50, 102407. academia.edu
- Pai, M. M., Ganiga, R., Pai, R. M., & Sinha,
 R. K. (2021). Standard electronic health
 record (EHR) framework for Indian

- healthcare system. Health Services and Outcomes Research Methodology, 21(3), 339-362. springer.com
- 38. Doraiswamy, S., Abraham, A., Mamtani, R., & Cheema, S. (2020). Use of telehealth during the COVID-19 pandemic: scoping review. Journal of medical Internet research, 22(12), e24087. jmir.org
- Ali, S. A., Arif, T. B., Maab, H., Baloch, M., Manazir, S., Jawed, F., & Ochani, R. K. (2020). Global interest in telehealth during COVID-19 pandemic: an analysis of Google Trends™. Cureus, 12(9). nih.gov
- Garfan, S., Alamoodi, A. H., Zaidan, B. B., Al-Zobbi, M., Hamid, R. A., Alwan, J. K., ... & Momani, F. (2021). Telehealth utilization during the Covid-19 pandemic: a systematic review. Computers in biology and medicine, 138, 104878. <u>nih.gov</u>
- 41. Wong, M. Y. Z., Gunasekeran, D. V., Nusinovici, S., Sabanayagam, C., Yeo, K. K., Cheng, C. Y., & Tham, Y. C. (2021). Telehealth demand trends during the COVID-19 pandemic in the top 50 most affected countries: Infodemiological evaluation. JMIR public health and surveillance, 7(2), e24445. jmir.org
- El-Rashidy, N., El-Sappagh, S., Islam, S. R., M. El-Bakry, H., & Abdelrazek, S. (2021). Mobile health in remote patient monitoring for chronic diseases: Principles, trends, and challenges. Diagnostics, 11(4), 607. mdpi.com
- 43. Singh, H. J. L., Couch, D., & Yap, K. (2020). Mobile health apps that help with COVID-19 management: scoping review. JMIR nursing. jmir.org
- 44. Ghose, A., Guo, X., Li, B., & Dang, Y. (2021). Empowering patients using smart mobile health platforms: Evidence from a randomized field experiment. arXiv preprint arXiv:2102.05506. [PDF]
- Awad, A., Trenfield, S. J., Pollard, T. D., Ong, J. J., Elbadawi, M., McCoubrey, L. E., ... & Basit, A. W. (2021). Connected healthcare: Improving patient care using digital health technologies. Advanced Drug Delivery Reviews, 178, 113958. ucl.ac.uk
- 46. Guo, Y., Lane, D. A., Wang, L., Zhang, H., Wang, H., Zhang, W., ... & Lip, G. Y.

- (2020). Mobile health technology to improve care for patients with atrial fibrillation. Journal of the American College of Cardiology, 75(13), 1523-1534. jacc.org
- Morandini, S., Fraboni, F., De Angelis, M., Puzzo, G., Giusino, D., & Pietrantoni, L. (2023). The impact of artificial intelligence on workers' skills: Upskilling and reskilling in organisations. Informing Science, 26, 39-68. unibo.it
- 48. Javaid, M., Haleem, A., & Singh, R. P. (2023). ChatGPT for healthcare services: An emerging stage for an innovative perspective. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 3(1), 100105. sciencedirect.com
- Singh, S., Bhatt, P., Sharma, S. K., & Rabiu, S. (2021). Digital transformation in healthcare: Innovation and technologies. In Blockchain for Healthcare Systems (pp. 61-79). CRC Press. [HTML]
- Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2021). Substantial capabilities of robotics in enhancing industry 4.0 implementation. Cognitive Robotics. <u>sciencedirect.com</u>
- Haleem, A., Javaid, M., Singh, R. P., & Suman, R. (2022). Medical 4.0 technologies for healthcare: Features, capabilities, and applications. Internet of Things and Cyber-Physical Systems, 2, 12-30. <u>sciencedirect.com</u>
- 52. Lippi, G. & Plebani, M. (2020). Integrated diagnostics: the future of laboratory medicine?. Biochemia medica. srce.hr
- Pulumati, A., Pulumati, A., Dwarakanath, B. S., Verma, A., & Papineni, R. V. (2023). Technological advancements in cancer diagnostics: Improvements and limitations. Cancer Reports, 6(2), e1764. wiley.com
- 54. Lee, W. C., Ng, H. Y., Hou, C. Y., Lee, C. T., & Fu, L. M. (2021). Recent advances in lab-on-paper diagnostic devices using blood samples. Lab on a Chip. [HTML]
- 55. Olatunji, A. O., Olaboye, J. A., Maha, C. C., Kolawole, T. O., & Abdul, S. (2024). Revolutionizing infectious disease management in low-resource settings: The impact of rapid diagnostic technologies and

- portable devices. International Journal of Applied Research in Social Sciences, 6(7), 1417-1432. researchgate.net
- Rabbani, N., Kim, G. Y. E., Suarez, C. J.,
 Chen, J. H. (2022). Applications of machine learning in routine laboratory medicine: Current state and future directions. Clinical biochemistry. nih.gov
- 57. Haghayegh, F., Norouziazad, A., Haghani, E., Feygin, A. A., Rahimi, R. H., Ghavamabadi, H. A., ... & Salahandish, R. (2024).Revolutionary Point-of-Care Wearable Diagnostics for Early Disease Detection and Biomarker Discovery through Intelligent Technologies. Advanced Science, 11(36), 2400595. wiley.com
- 58. Sreepadmanabh, M., Sahu, A. K., & Chande, A. (2020). COVID-19: Advances in diagnostic tools, treatment strategies, and vaccine development. Journal of biosciences. springer.com
- Kalra, N., Verma, P., & Verma, S. (2024).
 Advancements in AI based healthcare techniques with FOCUS ON diagnostic techniques. Computers in Biology and Medicine. [HTML]
- 60. Bhute, V. J., Inguva, P., Shah, U., & Brechtelsbauer, C. (2021). Transforming traditional teaching laboratories for effective remote delivery—A review. Education for Chemical Engineers, 35, 96-104. [HTML]
- Gamage, K. A., Wijesuriya, D. I., Ekanayake, S. Y., Rennie, A. E., Lambert, C. G., & Gunawardhana, N. (2020). Online delivery of teaching and laboratory practices: Continuity of university programmes during COVID-19 pandemic. Education Sciences, 10(10), 291. mdpi.com
- Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., ... & Albekairy, A. M. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC medical education, 23(1), 689. springer.com
- 63. McPherson, R. A. & Pincus, M. R. (2021). Henry's clinical diagnosis and management by laboratory methods E-book. [HTML]

- 64. Ullah, F., Naeem, M. R., Mostarda, L., & Shah, S. A. (2021). Clone detection in 5G-enabled social IoT system using graph semantics and deep learning model. International Journal of Machine Learning and Cybernetics, 12, 3115-3127. researchgate.net
- Ling, L., Xiao, Y., Huang, X., Wu, G., Li, L., Yan, B., & Geng, D. (2024). Design and Testing of Electric Drive System for Maize Precision Seeder. Agriculture. mdpi.com
- 66. Sharapova, M. A. (2021). ISSUES OF IMPROVING THE FINANCING OF PUBLIC EDUCATION IN THE REPUBLIC OF UZBEKISTAN.. Theoretical & Applied Science. [HTML]
- 67. Hamil, H., Zidelmal, Z., Azzaz, M. S., Sakhi, S., Kaibou, R., Djilali, S., & Ould Abdeslam, D. (2022). Design of a secured telehealth system based on multiple biosignals diagnosis and classification for IoT application. Expert Systems, 39(4), e12765. [HTML]
- 68. Sharma, V., Tripathi, A. K., & Mittal, H. (2022). Technological revolutions in smart farming: Current trends, challenges & future directions. Computers and Electronics in Agriculture. [HTML]
- 69. Mehta, S., & Bhalla, A. (2024, June). Harnessing the Power of CNN and SVM for Robust Cattle Disease Classification. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-6). IEEE. [HTML]
- Grigoriev, V., Milidonis, K., Constantinou, M., Corsi, C., Pye, J., & Blanco, M. (2021). Optimal sizing of cylindrical receivers for surround heliostat fields using FluxTracer. Journal of Solar Energy Engineering, 143(6), 061007. semanticscholar.org
- Nielsen, M. B., Søgaard, S. B., Bech Andersen, S., Skjoldbye, B., Hansen, K. L., Rafaelsen, S., ... & Carlsen, J. F. (2021). Highlights of the development in ultrasound during the last 70 years: A historical review. Acta Radiologica, 62(11), 1499-1514. [HTML]
- Dietrich, C. F., Bolondi, L., Duck, F., Evans, D. H., Ewertsen, C., Fraser, A. G., ... & Christopher, R. (2022). History of

- Ultrasound in Medicine from its birth to date (2022), on occasion of the 50 Years Anniversary of EFSUMB. A publication of the European Federation of Societies for Ultrasound In Medicine and Biology (EFSUMB), designed to record the historical development of medical ultrasound. Medical Ultrasonography, 24(4), 434-450. medultrason.ro
- Avola, D., Cinque, L., Fagioli, A., Foresti, G., & Mecca, A. (2021). Ultrasound medical imaging techniques: a survey. ACM Computing Surveys (CSUR), 54(3), 1-38. [HTML]
- 74. Moran, C. M. & Thomson, A. J. W. (2020). Preclinical ultrasound imaging—a review of techniques and imaging applications. Frontiers in Physics. frontiersin.org
- 75. Demi, L., Wolfram, F., Klersy, C., De Silvestri, A., Ferretti, V. V., Muller, M., ... & Perrone, T. (2023). New international guidelines and consensus on the use of lung ultrasound. Journal of Ultrasound in Medicine, 42(2), 309-344. wiley.com
- Hussain, S., Mubeen, I., Ullah, N., Shah, S. S. U. D., Khan, B. A., Zahoor, M., ... & Sultan, M. A. (2022). Modern diagnostic imaging technique applications and risk factors in the medical field: a review. BioMed research international, 2022(1), 5164970. wiley.com
- Mun, S. K., Wong, K. H., Lo, S. C. B., Li, Y., & Bayarsaikhan, S. (2021). Artificial intelligence for the future radiology diagnostic service. Frontiers in molecular biosciences, 7, 614258. frontiersin.org
- 78. Malamateniou, C., Knapp, K. M., Pergola, M., Woznitza, N., & Hardy, M. (2021). Artificial intelligence in radiography: where are we now and what does the future hold?. Radiography, 27, S58-S62. city.ac.uk
- Alhasan, M. & Hasaneen, M. (2021). Digital imaging, technologies and artificial intelligence applications during COVID-19 pandemic. Computerized Medical Imaging and Graphics. nih.gov
- 80. Al-Antari, M. A., Hua, C. H., Bang, J., & Lee, S. (2021). Fast deep learning computer-aided diagnosis of COVID-19

- based on digital chest x-ray images. Applied Intelligence. springer.com
- 81. Al-Antari, M. A., Han, S. M., & Kim, T. S. (2020). Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms. Computer methods and programs in biomedicine, 196, 105584. academia.edu
- 82. Shimada, Y., Burrow, M. F., Araki, K., Zhou, Y., Hosaka, K., Sadr, A., ... & Tagami, J. (2020). 3D imaging of proximal caries in posterior teeth using optical coherence tomography. Scientific reports, 10(1), 15754. nature.com
- Najjar, R. (2023). Redefining radiology: a review of artificial intelligence integration in medical imaging. Diagnostics. <u>mdpi.com</u>
- 84. Venigandla, K. & Tatikonda, V. M. (2021).

 Improving Diagnostic Imaging Analysis with RPA and Deep Learning Technologies. Power System Technology. powertechjournal.com
- 85. Mollura, D. J., Culp, M. P., Pollack, E., Battino, G., Scheel, J. R., Mango, V. L., ... & Dako, F. (2020). Artificial intelligence in low-and middle-income countries: innovating global health radiology. Radiology, 297(3), 513-520. rsna.org
- 86. Alam, A. (2023). Developing a Curriculum for Ethical and Responsible AI: A University Course on Safety, Fairness, Privacy, and Ethics to Prepare Next Generation of AI Professionals. In Intelligent Communication Technologies and Virtual Mobile Networks (pp. 879-894). Singapore: Springer Nature Singapore. [HTML]
- 87. Aminizadeh, S., Heidari, A., Toumaj, S., Darbandi, M., Navimipour, N. J., Rezaei, M., ... & Unal, M. (2023). The applications of machine learning techniques in medical data processing based on distributed computing and the Internet of Things. Computer methods and programs in biomedicine, 107745. [HTML]
- 88. Diaz, O., Kushibar, K., Osuala, R., Linardos, A., Garrucho, L., Igual, L., ... & Lekadir, K. (2021). Data preparation for artificial intelligence in medical imaging:

- A comprehensive guide to open-access platforms and tools. Physica medica, 83, 25-37. sciencedirect.com
- 89. Krieger, N. (2024). Epidemiology and the people's health: theory and context. [HTML]
- 90. Stewart, A. (2022). Basic statistics and epidemiology: a practical guide. [HTML]
- 91. Kohl, H. W., Murray, T. D., & Salvo, D. (2020). Foundations of physical activity and public health. [HTML]
- 92. Breilh, J. (2021). Critical epidemiology and the people's health. <u>ucsd.edu</u>
- 93. Gómez-Ochoa, S. A., Franco, O. H., Rojas, L. Z., Raguindin, P. F., Roa-Díaz, Z. M., Wyssmann, B. M., ... & Muka, T. (2021). COVID-19 in health-care workers: a living systematic review and meta-analysis of prevalence, risk factors, clinical characteristics, and outcomes. American journal of epidemiology, 190(1), 161-175. ssrn.com
- 94. McClure, E. S., Vasudevan, P., Bailey, Z., Patel, S., & Robinson, W. R. (2020). Racial capitalism within public health—how occupational settings drive COVID-19 disparities. American journal of epidemiology, 189(11), 1244-1253. nih.gov
- 95. Nyarko, R. O., Boateng, E., Kahwa, I., Boateng, P. O., Nyarko, R. O., Asare, B., ... & Nayembil, D. A. (2020). The impact on public health and economy using lockdown as a tool against COVID-19 pandemic in Africa: a perspective. must.ac.ug
- 96. Vodovotz, Y., Barnard, N., Hu, F. B., Jakicic, J., Lianov, L., Loveland, D., ... & Parkinson, M. D. (2020). Prioritized research for the prevention, treatment, and reversal of chronic disease: recommendations from the lifestyle medicine research summit. Frontiers in medicine, 7, 585744. frontiersin.org
- 97. Janakiram, C. & Dye, B. A. (2020). A public health approach for prevention of periodontal disease. Periodontology 2000. nih.gov
- 98. Malik, V. S. & Hu, F. B. (2022). The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases.

- Nature Reviews Endocrinology.
- Mavlonovna, R. D., & Akbarovna, M. V. (2021, July). PROVISION OF FAMILY STABILITY AS A PRIORITY OF STATE POLICY. In Archive of Conferences (pp. 34-39). conferencepublication.com
- 100. Hacker, K. A., Briss, P. A., Richardson, L., Wright, J., & Petersen, R. (2021). Peer reviewed: COVID-19 and chronic disease: the impact now and in the future. Preventing chronic disease, 18. nih.gov
- 101.Budreviciute, A., Damiati, S., Sabir, D. K., Onder, K., Schuller-Goetzburg, P., Plakys, G., ... & Kodzius, R. (2020). Management and prevention strategies for noncommunicable diseases (NCDs) and their risk factors. Frontiers in public health, 8, 574111. frontiersin.org
- 102.Brian, Z. & Weintraub, J. A. (2020). Peer reviewed: oral health and COVID-19: increasing the need for Prevention and Access. Preventing chronic disease. nih.gov
- 103.Brooks, S. K., Greenberg, N., Wessely, S., & Rubin, G. J. (2021). ... affecting healthcare workers' compliance with social and behavioural infection control measures during emerging infectious disease outbreaks: Rapid evidence BMJ open. bmj.com
- 104.Johnson, S., Lavergne, V., Skinner, A. M., Gonzales-Luna, A. J., Garey, K. W., Kelly, C. P., & Wilcox, M. H. (2021). Clinical practice guideline by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA): 2021 focused update guidelines on management of Clostridioides difficile infection in adults. Clinical infectious diseases, 73(5), e1029-e1044. medelement.com
- 105. Yang, W., Zhang, J., & Ma, R. (2020). The prediction of infectious diseases: a bibliometric analysis. International Journal of Environmental Research and Public Health, 17(17), 6218. mdpi.com
- 106.Bhimraj, A., Morgan, R. L., Shumaker, A.H., Baden, L. R., Cheng, V. C. C.,Edwards, K. M., ... & Falck-Ytter, Y.(2024). Infectious Diseases Society of

- America guidelines on the treatment and management of patients with COVID-19 (September 2022). Clinical Infectious Diseases, 78(7), e250-e349. [HTML]
- 107. Sweileh, W. M. (2022). Global research activity on mathematical modeling of transmission and control of 23 selected infectious disease outbreak. Globalization and health. springer.com
- 108.Randall, K., Ewing, E. T., Marr, L. C., Jimenez, J. L., & Bourouiba, L. (2021). How did we get here: what are droplets and aerosols and how far do they go? A historical perspective on the transmission of respiratory infectious diseases. Interface Focus, 11(6), 20210049. royalsocietypublishing.org
- 109. Austin, C. P. (2021). Opportunities and challenges in translational science. Clinical and Translational Science. wiley.com
- 110.Jaleel, A., Mahmood, T., Hassan, M. A., Bano, G., & Khurshid, S. K. (2020). Towards medical data interoperability through collaboration of healthcare devices. IEEE Access, 8, 132302-132319. ieee.org
- 111.Malathi, K., Shruthi, S. N., Madhumitha, N., Sreelakshmi, S., Sathya, U., & Sangeetha, P. M. (2024). Medical Data Integration and Interoperability through Remote Monitoring of Healthcare Devices. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA), 15(2), 60-72. researchgate.net
- 112.Enticott, J., Johnson, A., & Teede, H. (2021). Learning health systems using data to drive healthcare improvement and impact: a systematic review. BMC health services research. springer.com
- 113.Dang, D., Dearholt, S. L., Bissett, K., Ascenzi, J., & Whalen, M. (2021). Johns Hopkins evidence-based practice for nurses

- and healthcare professionals: Model and guidelines. [HTML]
- 114. Abu-Odah, H., Said, N. B., Nair, S. C., Allsop, M. J., Currow, D. C., Salah, M. S., ... & AlKhaldi, M. (2022). Identifying barriers and facilitators of translating research evidence into clinical practice: a systematic review of reviews. Health & Social Care in the Community, 30(6), e3265-e3276. wiley.com
- 115. Schot, E., Tummers, L., & Noordegraaf, M. (2020). Working on working together. A systematic review on how healthcare professionals contribute to interprofessional collaboration. Journal of interprofessional care, 34(3), 332-342. tandfonline.com
- 116.Alderwick, H., Hutchings, A., Briggs, A., & Mays, N. (2021). The impacts of collaboration between local health care and non-health care organizations and factors shaping how they work: a systematic review of reviews. BMC Public Health. springer.com
- 117.Javed, A. R., Sarwar, M. U., Beg, M. O., Asim, M., Baker, T., & Tawfik, H. (2020). A collaborative healthcare framework for shared healthcare plan with ambient intelligence. Human-centric Computing and Information Sciences, 10(1), 40. <u>springer.com</u>
- 118.Esmaeilzadeh, P. (2020). Use of AI-based tools for healthcare purposes: a survey study from consumers' perspectives. BMC medical informatics and decision making. springer.com
- 119.Garritty, C., Gartlehner, G., Nussbaumer-Streit, B., King, V. J., Hamel, C., Kamel, C., ... & Stevens, A. (2021). Cochrane Rapid Reviews Methods Group offers evidence-informed guidance to conduct rapid reviews. Journal of clinical epidemiology, 130, 13-22. sciencedirect.com