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Abstract: In this paper we try to study theretically the anomalous behaviour such as thermal (Elastic constant), 

electrical (resistivity) and impurity effect of heavy fermion system on account of electron and phonon interaction. 

We used here the Zuvarev type double time temperature dependent technique to develop the spectral density and self 

energy which then used to get the elastic constant and resistivity of the system by using dimension less parameter 

‘d’- the f- level location, ‘r’- potency of electron interaction with phonon, ‘g’- coupling constant, ‘b’- the inverse 

temperature and ‘x’- the the fermi level. The results found is quite good agreement with the experimental result. 
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1. Introduction 

Heavy fermion systems represent an interesting group 

of materials recognized for their unique electronic 

characteristics, which emerge from the intense 

interactions between conduction electrons and 

localized magnetic moments, typically associated 

with rare earth or actinide elements. These systems 

often feature f-electrons which significantly influence 

their unusual low temperature behaviours. At very 

low temperature, heavy fermion compounds can 

exhibit a variety of extraordinary phenomena 

including unconventional superconducting prooerty, 

non-Fermi liquid character, quantum critical point etc. 

[1,2]. The effective mass of electrons in these 

materials can become significantly enhanced, 

sometimes by orders of magnitude, leading to term 

“heavy fermions” [3]. The interplay of localization of 

electrons in the f-state and delocalization of the 

conduction electrons gives clues about complex 

ground states and phase transitions, making heavy 

fermion systems a rich area of study in condensed 

matter physics. For a HF material, the value of 

Sommerfeld Coefficient γ exceeds 400 mJ/ f atom 

mol K2 which is much greater than the value for an 

ordinary metal [4]. This owes for enormous electron 

density at the Fermi energy level occurring due to 

robust interaction of electrons and phonons. In 

heavyfermions both γ Gruencien parameter and the 

Pauli susceptibility χ0 is larger by few orders.  Landau 

theory [5] of Fermi liquids helps in understanding the 

highly correlated electronic state at low temperature.  

Heavy fermions exhibit strangely enormous specific 

heat at lower temperatures for such larger values of 𝛾. 

Furthermore 𝛾 strongly depends on temperature 

below 10 K for heavy fermion compounds as opposed 

to the temperature independent 𝛾 for normal metals 

[4]. Understanding these systems has significant 

implications for both fundamental physics and the 

development of advanced materials. Many heavy 

fermion systems, including UBe13, CeCu2Si2, U2Zn17, 

UCd11, CeAl3, and CeCu6exhibit temperature-

dependent resistivity that peaks at a temperature T* 

that is often lower than 40K and is then sharply 

decreased. The formation of a strong coherence 

across many sites is responsible forthe resistivity 

decline in certain heavy fermion systems beyond the 

characteristic temperature T*. In these systems, 

additional electron-phonon interaction is essential for 

changing the low-temperature transport 

characteristics. 

It is found that when temperatures fall below the 

characteristics temperature T*, the alterations in the 

sound wave velocity are significantly influenced by 

the specific characteristics of the density of states of 

quasiparticles [6,7]. In polycrystalline CeAl3, low 

temperature studies of shear and longitudinal elastic 

constants reveal that the elastic constants strongly 

soften at low temperatures, and that softening is much 

more pronounced [8]. Connection between elastic 

deformation and phonons with q=0 to the collective 

behaviour of electrons band plays a significant 

involvement in strongly correlated HF system for the 

superconducting behaviour including CeCu2Si2 as 

observed experimentally [9]. Investigations on elastic 

constants revealed that at very low temperatures 

Heavy fermion compounds especially UPt3, CeAl3 

display a significant decrease or drop of longitudinal 

elastic constant, whereas the transverse modes reach a 

peak [6,10,11]. However, in other systems such as 

CeCu6 and CeRu2Si2, such a drop or minimum is 

either not evident or absent. These observations 

suggest that the interaction between heavy electrons 
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and the longitudinal microscopic phonons is the key 

component to the atomic configuration to heavy 

fermion state. The explanation of this variation of 

elastic constant with temperature changes studied by 

coupling of electrons with phonon which involves 

Ruderman–Kittel–Kasuya–Yosida interaction along 

with conduction electrons scattering in a metal due to 

impurities (magnetic). This explained the various 

phonon anomalies related to elastic constant using the 

framework of Gruineincen parameter coupling [12]. 

Again, impurities can have significant effects on 

heavy fermion systems, which are characterized by 

the presence of strongly correlated electrons that 

exhibit enhanced effective mass. Alloying with 

conduction band (CB) impurities the corporal 

belongings are significantly altered the normal state 

of HFs as demonstrated by certain recent 

experimental observations [13-16]. As with the 

substitution for Au or Ag in place of Cu in CeCl16, the 

cell volume expands leading to higher values of 

‘γ’(specific heat coefficient) and ‘χ’ (magnetic 

susceptibility) as the concentration of conduction 

band impurities rises. In contrast, replacing Cu with 

Al reduces the cell volume resulting in lower values 

of γ and χ. These various occurances offer significant 

insights into the microscopic reasons for the 

constancy of the usual phase. Again, it provides 

evidence about impurities over the renormalization of 

energy of phonon and the interactions between 

electrons and phonons. 

2. Formalism 

The study of heavy fermion materials has presented 

significant challenges for physicists due to the wide 

range of ground state properties they exhibit. Initially 

explaining these anomalies proved to be a significant 

challenge for physicists. However, it is now possible 

to investigate many of the mysteries surrounding the 

HF systems because of the development of several 

theoretical models. Some of theof the effective 

models include: (i). Anderson Model with Single 

impurity (ii) PAM-Periodic Anderson Model (iii). 

KLM-Kondo Lattice Model (iv). Hubbard Model (v). 

Dynamic Mean Field Theory (DMFT).  

To get the solution of Periodic Anderson Model and 

Hubbard Model various approximate schemes have 

been developed. Some techniques are (i). Green 

Function Technique (ii). Hartree Fork Approximation 

(iii). Gutzwiller variational Approximation (iv) 

Methods of Slave Bosons and Fermions. 

The technique of decoupling the retarded Green's 

function was initially used by Hubbard to develop an 

approximation scheme for the solution of Hubbard 

model and PAM [17]. Hubbard applied the concept of 

two time Green functions in his initial studies of the 

correlation effects [18,19], which is especially useful 

when there is a significant particle interaction and no 

small parameter is involved in this interaction.  

3. Methods 

Among those theoretical models the PAM 

(Periodic Anderson Model) has been a valuable 

framework for understanding a number of 

characteristics of these systems. To explore the 

phonon anomalies in heavy fermion systems, we 

follow Fulde [20] and analyzethe mechanisms of 

coupling between electrons and phonons with the help 

of Periodic Anderson Model (PAM). Here in our 

calculation, we have followedZubarev technique for 

Green function reliant on dual time and temperature 

which can be defined by taking the average of T the 

product of operators [19] given as 

G (t, t') = ≪ 𝐴(𝑡); B(t′) ≫a 

= 𝑖𝜃(𝑡 − 𝑡′) < [𝐴(𝑡), B(t′)] >                                 (1) 

where, 𝜃(𝑡) = {
1   𝑓𝑜𝑟  𝑡 > 0
0    𝑓𝑜𝑟 𝑡 < 0

 

which can give the motion equation as 

𝑖
𝑑𝐺(𝑡−𝑡′)

𝑑𝑡
 =𝛿(𝑡 − 𝑡′) < [𝐴(𝑡), B(t′)] > + ≪

𝑖𝑑𝐴(𝑡)

𝑑𝑡
; B(t′) ≫                                                          (2) 

[….] the anti-commutator for fermions and 

commutator for bosons and <….> represents the 

thermodynamic average of the operator. 

Here the model Hamiltonian has been represented by 

the combination of the Host electron Hamiltonian 

denoted as (H0), Hamiltonian for coupling of electron 

with phonon (He-p) and Hamiltonian for interaction of 

phonons (Hp)given as   

𝐻0 =  ∑ 𝜀𝑘𝐶𝑘𝜎
†

𝑘𝜎

𝐶𝑘𝜎 +  𝐸0 ∑ 𝑓𝑘𝜎
†

𝑘𝜎

𝑓𝑘𝜎  

+ 𝛾0 ∑(𝑓𝑘𝜎
† 𝐶𝑘𝜎 + 𝐶𝑘𝜎

† 𝑓𝑘𝜎)

𝑘𝜎

 

+ 
𝑈

2
∑ 𝑛𝑖𝜎

𝑓
𝑘𝜎 𝑛𝑖,−𝜎

𝑓
                                                     (3) 
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𝐻𝑒−𝑝 =  ∑ [
𝑓1(𝑞)(𝐶𝑘+𝑞,𝜎

† 𝑓𝑘𝜎 + 𝑓𝑘+𝑞,𝜎
† 𝐶𝑘𝜎)

+𝑓2(𝑞)(𝑓𝑘𝜎
† 𝑓𝑘𝜎)

]

𝑘𝑞𝜎

 

                                                                                  (4) 

 

𝐻𝑝 =  ∑ 𝑤𝑞𝑞 𝑏𝑞
†𝑏𝑞                                                      (5) 

 

Therefore, the model Hamiltonian takes the form,  

𝐻 =  𝐻0 +  𝐻𝑒−𝑝 +  𝐻𝑝                                            (6) 

Where 𝐶𝑘𝜎& 𝑓𝑘𝜎annihilation operator for 

electron in conductionband and f- level and 

𝐶𝑘𝜎
† &𝑓𝑘𝜎

†
creation operators for electrons in conduction 

bandand f- levelhavingmomentum ‘k’ and spin ‘σ’.𝜀𝑘 

and E0represents the energy of the electron in 

conduction band and f- level respectively. 

Using Zubarev method for Green function 

[19], the components of the Green functions under 

fourier transformation and using Kronecker delta 

function representation, we have calculated the self 

energy of phonon for q = 0 the static limit and with 

temperature value finite, as well as neglecting the 

Coulomb correlation term of the f-levelat normal 

state, 

𝜒(𝑘, 𝑞, 𝜔)=𝜒(0, 𝜔, 𝑇) = 

𝒩(𝜀𝑓)

𝜋
|𝑓1|2 ∫ 𝑑𝜀𝑘

2(𝜀𝑘−𝐸0)2

𝐷(𝑦1−𝑦2)
{(

𝑓1

𝑓2
)

2𝛾0

(𝜀𝑘−𝐸0)
+ 1 +

 (
𝑓1

𝑓2
)

2 𝛾0
2

(𝜀𝑘−𝐸0)2} 𝑇𝑦                                                      (7) 

Here,  

D = {(𝜀𝑓 − 𝐸0)
2

+ 4𝛾0
2 − 𝜔2} 

𝑦1 =  
1

2
(𝜀𝑘 +  𝐸0) +  

1

2
√(𝜀𝑘 −  𝐸0)2 + 4𝛾0

2 

𝑦2 =  
1

2
(𝜀𝑘 +  𝐸0) −  

1

2
√(𝜀𝑘 − 𝐸0)2 + 4𝛾0

2 

and   Ty = -4 exp 
(𝜀𝑘−𝐸0)

2𝑘𝑇
 sinh √(𝜀𝑘 − 𝐸0)2 +  

4𝛾0
2

2𝑘𝑇
 

Further the electron self-energy 𝜒(𝑘, 𝑞, 𝜔) is calculated 

for small wave length limit by taking 𝜔 →  ω + iη. The 

real and imaginary part has been obtained using the 

dimensionless parameters r = (
𝑓1

𝑓2
) where f1 represents 

interaction strength of phonon with hybridization 

band and f band electron, g = 
𝒩(𝜀𝑓)

𝜔𝑞
|𝑓1|2 is the 

effective coupling constant,𝒩(𝜀𝑓)denotes the fermi 

level density of states , U’=U/𝛾0 localized Coulomb 

repulsion, 𝑊′ =  𝑊 𝛾0⁄ width of the band, d = 
𝐸0

𝛾0
 

position of f level, b = 
𝛾0

2𝑘𝑇
 temperature inverse, x = 

𝜀𝑘

𝛾0
 

the fermi level.  

𝑅𝑒 𝜒 (𝑘, 𝑞, 𝜔) = 

[{
{4−𝑐2+(𝑥−𝑑)2}{(𝑥−𝑑)}

{(𝑥−𝑑)2+4−𝑐2−4𝑡2𝑐2}{(𝑥−𝑑)2+4}
1

2⁄
[

𝑟2

(𝑥−𝑑)2 +  
2𝑟

(𝑥−𝑑)
+

1] 𝑒− (𝑥+𝑑)𝑏 sin ℎ {(𝑥 − 𝑑)2 + 4}
1

2⁄ }]                     (8) 

and  

Im 𝜒(𝑘, 𝑞, 𝜔) = 

∫ [
2𝑐𝑡(𝑥−𝑑)2

{[𝑐2−𝑡2−(𝑥−𝑑)2+4]2−4𝑐2𝑡2}]{(𝑥−𝑑)2+4}
1

2⁄
sinh[𝑏(𝑥 − 𝑑)2 + 4]

1
2⁄ ] 𝑑𝑥

+ ∫ [
2𝑐𝑡(𝑥−𝑑) 2𝑟

{[𝑐2−𝑡2−(𝑥−𝑑)2+4]2−4𝑐2𝑡2}]{(𝑥−𝑑)2+4}
1

2⁄
𝑒−𝑏(𝑥+𝑑)sinh[𝑏(𝑥 − 𝑑)2 + 4]

1
2⁄ ] 𝑑𝑥

+ ∫ [
2𝑐𝑡𝑟2

{[𝑐2−𝑡2−(𝑥−𝑑)2+4]2−4𝑐2𝑡2}]{(𝑥−𝑑)2+4}
1

2⁄
𝑒−𝑏(𝑥+𝑑)sinh[𝑏(𝑥 − 𝑑)2 + 4]

1
2⁄ ] 𝑑𝑥

 

                                                                                            (9)  

On further solving we get the renormalized phonon 

frequency as, 

(
𝜔

𝜔0
)

2

= 1 +  
4𝜋

𝜔0
 𝜒 (0, 𝜔)                                       (10)  

The phonon excitation spectrum is influenced by 

various model parameters via the response function of 

electron that subsequently varies spectral density. 

Therefore, the theoretical calculation gives spectral 

density as   

𝑆(𝑞, 𝜔) =  −2 𝐼𝑚 𝐷𝑞𝑞′(𝜔 + 𝑖𝜂)                            (11) 

For long wavelength limit (q=0) the final form of 

𝑆(𝑞 = 0, 𝜔) is written as  

𝑆(𝑞 = 0, 𝜔) =  −2 𝐼𝑚 𝐷00(𝜔 + 𝑖𝜂) 

=  
2 {(

𝜂

𝜔0
)

2

−  (
4𝜋

𝜔0
) 𝐼𝑚 𝜒 (𝑞 = 0, 𝜔)}

𝜋𝜔0
 

[{(
𝜔

𝜔0
)

2

− 1 − (
4𝜋

𝜔0
) 𝑅𝑒 𝜒 (𝑞 = 0, 𝜔)}

2

+ {(
𝜂

𝜔0
)

2

− (
4𝜋

𝜔0
) 𝐼𝑚 𝜒 (𝑞 = 0, 𝜔)}

2

]

−1

 

                                                                                (12) 

As the reduced elastic constant (𝐶̂) is proportional to 

the real part of 𝜒 (𝑘, 𝑞, 𝜔),  

𝐶̂ = 
𝐶

𝐶0
 = 1+ 4g Re 𝜒(𝑘, 𝑞, 𝜔)                                  (13) 

Where C is the elastic constant associated with the 

interaction and C0 is the elastic constant of the bare 

electron. 
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The resistivity ρ is inversely proportional to τ the 

relaxation time that is reciprocally proportional to 

imaginary part of 𝜒(𝑘, 𝑞, 𝜔)  is and we can relate ρ as 

directly proportional to imaginary 𝜒(𝑘, 𝑞, 𝜔). 

Replacing 𝜔 by  𝜔 + 𝑖𝜂 in the imaginary part of 

𝜒(𝑘, 𝑞, 𝜔). Calculation has been done for static limit at 

finite temperature with long wave legnthneglecting f 

– f correlation term (U) in the normal state. Here we 

consider upto 𝛾0
2, 𝜂2 and 𝛾0𝜂  in the expression as 

these are very small quantities to avoid complesity in 

our calculation. The final form of Im𝜒(𝑘, 𝑞, 𝜔) comes 

as the following form as in eqn (11) 

Im 𝜒(𝑘, 𝑞, 𝜔)  

=  

∫ [
2𝑐𝑡(𝑥 − 𝑑)2

{[𝑐2 − 𝑡2 − (𝑥 − 𝑑)2 + 4]
2

− 4𝑐2𝑡2}]{(𝑥 − 𝑑)2 + 4}
1

2⁄
sinh[𝑏(𝑥 − 𝑑)2

+ 4]
1

2⁄ ] 𝑑𝑥

+ ∫ [
2𝑐𝑡(𝑥 − 𝑑) 2𝑟

{[𝑐2 − 𝑡2 − (𝑥 − 𝑑)2 + 4]
2

− 4𝑐2𝑡2}]{(𝑥 − 𝑑)2 + 4}
1

2⁄
𝑒

−𝑏(𝑥+𝑑)
sinh[𝑏(𝑥 − 𝑑)2

+ 4]
1

2⁄ ] 𝑑𝑥

+ ∫ [
2𝑐𝑡𝑟

2

{[𝑐2 − 𝑡2 − (𝑥 − 𝑑)2 + 4]
2

− 4𝑐2𝑡2}]{(𝑥 − 𝑑)2 + 4}1
2⁄

𝑒
−𝑏(𝑥+𝑑)

sinh[𝑏(𝑥 − 𝑑)2
+ 4]

1
2⁄ ] 𝑑𝑥

 

Therefore, the resistivity is calculated as 

Resitivity(𝜌) = 1 +  16𝑔𝐼𝑚𝜒(𝑘, 𝑞 = 0, 𝜔) = 1 +

16 ∫ [
2𝑐𝑡 (𝑥−𝑑+𝑟)2𝑒−𝑏(𝑥+𝑑)

{[𝑐2−𝑡2−(𝑥−𝑑)2+4]2− 4𝑐2𝑡2}{(𝑥−𝑑)2+4}
1

2⁄
sinh[𝑏(𝑥 −

𝑑)2 + 4]
1

2⁄ ] 𝑑𝑥                                                               (14) 

4. Results  

We have parameterized the various terms in 

equations (10) and (12) to make them dimensionless. 

The phonon response function and self energy for 

electron and phonon are numerically calculated. 

Hybridization strength is taken as the reference level 

for all energies in this system. Calculation has been 

done taking the various dimensionless parameters as 

mentioned earlier. Two of the most important 

characteristics in HF systems are the hybridization 

constant ‘𝛾0’and ‘d’ thef-level location with respect to 

Fermi level. Setting zero to the Fermi level d=𝐸0 𝛾0⁄  

represents the position of the f-level. The negative 

value of d occurs when the fermi level lies above the 

f-level. Here in eight figures results of the numerical 

evaluation for various dimensionless parameters has 

been shown. The first two figures show how 

temperature affects reduced phonon frequency𝜔̃ by 

varying localization of the electron in f- state to the 

Fermi level electron state (d) and effective coupling 

constant (g).while the next two plots between ‘S’   

spectral density against reduced frequency with the 

varation of temperature at  different b and g has been 

shown.Similarly, the next two figures shows the 

reduced elastic constant (𝐶̂) at different temperature 

by changing the g and d values and figure seven and 

eight illustrate how resistivity changes with 

temperature for various d and g values as 0.01 and 

0.001 for ‘r’and ‘g’respectively. Fig. 1 displays the 

relation between phonon frequency𝜔̃ and b with d (= 

0, -3, and -5). In this picturethe phonon softening 

decreases with the the f-level proceeding towards the 

fermi level.  
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In Fig.3 the variation of the spectral density function 

‘S’ to that of reduced frequency ω/ω0gives the result 

how the position of the f-level with values d= -0.3, 0 

and 0.3 changes at constant system parameters as 

mentioned. 

 

Fig. 4 illustrates how temperature affects the change 

of Sto that of𝜔̃atb = 0.5, 0.55, 0.6 and 0.65 and with g 

= 0.001, r = 0.01 &d = -3. 

In Fig. 5, 𝐶̂ (the reduced elastic constant) versus 

temperature at various g= 0.01, 0.001 and 0.0001 

while keeping r at 0.01, d at 2 and c at 0. The data 

indicates that, the the reduced elastic constant (𝐶̂) 

increases with decrease in g- values. 

Fig. 6 shows the curve of 𝐶̂ ~ 𝑇
𝑇𝑘

⁄ at d = 2, 4, and 

6with r = 0.01, g = 0.01, and c = 0. The effect of the f-

level position on the elastic constant is depicted in 

The results indicate that the elastic constant decreases 

with increasing distance between the f-level and the 

fermi level.The variation of the resistivity with the 

temperature parameter 1/b in the fig.7. a set of curves 

are plotted for varying the values of the d (=0.5, -1, -

1.5 and -2) at g =0.1 with other parameters fixed. In 

the figure 8, a set of curves are plotted with d=-1 and 

varying the values of parameter g (=0.05, 0.1, and 

0.2). The resistivity increases with the icrease of 

‘g’values. 

5. Discussion 

In rare earth compounds, electron-phonon coupling 

produces intriguing low-temperature phenomena in 

several physical propertiesrelated to elasticity and 

vibrations. The hybridization of 4fstates with 

conduction electron states results in low energy 

electronic states that differ significantly due to 

localize many body states, leading to a wide range of 

lo temperature electrical and thermal anomalies [21]. 

Considering experimental results for the resistivity, 

specific heat and susceptibility of heavy fermions, it 

is evident that theirphysical properties differ 

significantly from those of normal metals. For Heavy 

fermion compounds both the electron correlation and 

the interaction between electron and phonon is 

significant for the anomalous behaviour shown at low 

temperature by these systems. Studies on ultrasonic 

attenuation & sound velocity, elastic constant, Kondo 

volume collapse, and anisotropic Fermi surface, etc. 

have suggested some evidence for significant 

electron-phonon coupling [21,22,23]. Therefore, here 

we try to analyse the self-energy and spectral density 

along with elastic constant and resistivity of heavy 

fermion system taking into account the electron-

phonon (e-p) interaction. Following Periodic 

Anderson model (PAM) and Zubarev technique, the 

theoretical results show the various behaviour as 
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follows. The reduced phonon frequency 
𝜔

𝜔0
 ~ b is 

plotted, with f-level positions (𝑑 =0, -3 and -5) and 

fixed parameters of r = 0.01 and g = 0.001 reveals a 

turn down in phonon softening as the f-level shifts 

nearer to fermi level.  

In fig. 1 it is observed that phonon softening becomes 

more pronounced as the f-level shifts towards the core 

i.e. d = -3 and -5. Fig-2 compares phonon response 

curves across temperatures for varying values of ‘g’ 

with all other system parameters held constant. It 

shows that, at an excitation frequency of 0.87, phonon 

softening increaseswith higher b values, indicating a 

temperature decrease. Fig.3 With system parameters 

constant the variation of the spectral density function 

varies as ‘d’ takes the value (-0.3, 0 and0.3). The 

shifts in the peak position are clearly evident. The 

figure.4 shows the curve for g = 0.1, 0.01 and 0.001. 

The results indicate that phonon softening is more 

significant for the higher effective coupling constants 

at g=0.1 & 0.01 while it is less pronounced g=0.001. 

Additionally, as significant that a larger g correlates 

with a greater f1(0), which reflects a stronger coupling 

of electron with phonons in the hybridization band. In 

HF compounds, the value of f1 higher normally w.r.t 

f2 [24]. Fig. 5 the reduced elastic constant is 

illustrated for various g values: 0.01, 0.001 and 

0.0001 while keeping r at 0.01, d at 2 and c at 0 

suggests that as the interaction of electron and phonon 

increases with the hybridization band enhances the 

softening of the phonon particularly at lower 

temperatures. Fig. 6 suggests as the f- level becomes 

farther from the Fermi level results from phonon 

softening due to the reduction in interaction of 

electron with phonon. The plot shows the resistivity 

dependence on low temperature behaviour similar to 

that observed in the experimental plots for 

certainHFcompounds such as UBe13, CeCu2Si2, 

U2Zn17, UCd11, CeAl3 and CeCu6 [25]. In fig.7 the 

value of resistivity increases with decrease in 

temperature at lower temperature with a notable peak 

at extremely low temperature and then it decreases as 

T approaches zero which indicates that when the 

exchange of momentum between the electrons 

becomes more the effect of change of values of d on 

resistivity gets enhanced. From fig. 8, it is suggested 

thatsince ‘g’ is related to the electron density at Fermi 

level, higher values of g results instronger interaction 

between conduction band electrons and localized 

spins as well as with phonons. As a result, the 

resistivity curve moves upward with increasing g. 

6. Conclusion 

HF systems are primarily influenced by the intense 

electronic correlations, with the 4f and 5f electrons 

significantly shaping their uniquecharacteristics. 

Various experimental and theoretical analyses 

indicates the tough hybridization of electrons  

between conduction electrons  and strongly correlated 

4f electrons that produces the Fermi level with larger 

density of states which enhances the effective mass of 

these HF systems.Even if the electronic correlation is 

significant and the influence of the electron-phonon 

interaction (e-p) is crucial in understanding some of 

the unusual behaviours at low temperature such as 

elastic constant, ultrasonic attenuation, etc.The 

observations like a significant drop in the 

longitudinalelastic constant at extremely low 

temperature and extremely large magneto-striction 

below the characteristic temperature in CeAl3, CeCu6 

andCeCu2Si2 and a pronounced ultrasonic absorption 

peak in UPt3 indicate the importance of the 

interaction of elastic strains and long wavelength 

phonons with quasiparticle bands in these systems. 

The electron phonon (e-p) interaction is the cause 

of the temperature dependent resistivity in few HF 

systems is studied here, the resistivity is evaluated 

numerically for static limit at (q=0). The results so 

obtained are found to shows an increase with decrease 

in temperature which is in the line with the 

experimental results of the HFmaterials like UBe13, 

CeCu2Si2, U2Zn17, UCd11, CeAl3 and CeCu6 [25]. As 

distance of the relative separation between the 

location of Fermi level and f-level (‘d’) acts the key 

role in these systems, and resistivity variation with 

temperature for different values of electron-phonon 

interaction (EPI) strength of the phonons (‘r’) with 

the hybridization band electrons has been presented. 

The results are found to be in the line with the 

experimental facts. 

7. Future Aspects 

In future, we intend to broaden our research to 

examine how impurities affect heavy fermion systems 

and influence electron-phonon interactions. We also 

plan to explore how different impurity concentrations 

alter the anomalous behaviors and theoretical 

characteristics of heavy fermion systems. 
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